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Abstract
Sensory systems have mechanisms to respond to the external environment and adapt to

them. Such adaptive responses are effective for a wide dynamic range of sensing and per-

ception of temporal change in stimulus. However, noise generated by the adaptation sys-

tem itself as well as extrinsic noise in sensory inputs may impose a limit on the ability of

adaptation systems. The relation between response and noise is well understood for equi-

librium systems in the form of fluctuation response relation. However, the relation for non-

equilibrium systems, including adaptive systems, are poorly understood. Here, we

systematically explore such a relation between response and fluctuation in adaptation sys-

tems. We study the two network motifs, incoherent feedforward loops (iFFL) and negative

feedback loops (nFBL), that can achieve perfect adaptation. We find that the response mag-

nitude in adaption systems is limited by its intrinsic noise, implying that higher response

would have higher noise component as well. Comparing the relation of response and noise

in iFFL and nFBL, we show that whereas iFFL exhibits adaptation over a wider parameter

range, nFBL offers higher response to noise ratio than iFFL. We also identify the condition

that yields the upper limit of response for both network motifs. These results may explain

the reason of why nFBL seems to be more abundant in nature for the implementation of

adaption systems.

Introduction
Sensory systems have a number of mechanisms to keep track of their environment and to
respond appropriately to any changes. Adaptation is one such mechanism where the system
shows a transient response to a temporal perturbation followed by a return back to its original
state [1–5]. Such adaptive response contributes to detecting stimulus over a wide dynamic
range of environmental conditions [6]. By responding to perturbations, adaptation systems can
also perform sensing of temporal changes in stimulus. Such a temporal sensing capability of
adaptation system is used in bacterial chemotaxis [7–11]. An adaptive response has also been
shown to occur in many eukaryotic systems, such as yeast osmoregulation [12], olfactory
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receptor cells [13] and calcium homeostasis [14]. In chemotactic cell Dictyostelium, an adaptive
response is used to sense the direction of wave propagation in the chemoattractant concentra-
tion field [15–17]. While these diverse systems show adaptive response, common principles
underlie their mechanism. It has been reported that the perfect adaptation can be achieved by
two types of network motifs [18]. One is incoherent feedforward loop (iFFL), and the other is
negative feedback loop (nFBL). For instance, the chemotaxis receptor in bacteria uses feedback
mechanism to achieve perfect adaptation [19], whereas the adaptive response in chemotaxis
signaling pathway of Dictyostelium cells is operated by a feed-forward mechanism [20].

Adaptive responses are known to be extremely sensitive to small changes in the stimulus
[21]. Such a sensitive response can be achieved by amplification mechanisms, such as molecu-
lar cooperativities among subunits and a push-pull type reaction of antagonistic enzymes [22,
23]. Perfect adaptation systems have a larger tendency towards more sensitive response as
compared with imperfect adaptation [24]. Generally, sensitive amplification mechanisms are
also sensitive to stochastic variation in the stimulus, and they may further generate large sto-
chastic variations in their activities [25]. Because the cellular reactions are often operated by a
small number of molecules, such stochastic fluctuations are inevitable. For a relatively simple
reaction that works under the thermal equilibrium conditions and reactions which work essen-
tially with one degree of freedom, a relation between fluctuations and responses has been
known. For non-equilibrium condition, relations between fluctuation and responses at steady
state values has been also studied (see [26] and references cited therein). Adaptive mechanism
works far from thermodynamic equilibrium and thus adaptive response requires free energy
input [27, 28]. Therefore, a simple relation between response and fluctuation may not be
expected as in the situations close to thermodynamic equilibrium.

Previously, a linear relationship between behavioral variability and response time in bacterial
chemotaxis has been found experimentally [29]. A theoretical study indicates that such a linear
relationship can hold in a limited parameter range, otherwise a combination of fluctuations and
nonlinearity generally produces a complex response with many time scales, which deviates from
the linear relationship [30]. A relation between noise suppression and responsiveness in feedback
loops for non adaptive systems has been reported previously [31, 32]. For adaptive networks,
their noise filtering [33, 34], noise generation and noise propagation characteristic [35, 36] have
been studied. However, how the relation between response in adaptation system, and its steady
state fluctuations before perturbations has not been explored yet. Such a relation can be important
to understand the limitations of adaptive response in a noisy enviornment. While with a high
response magnitude, smaller perturbation can be detected by the adaptive system, it becomes dif-
ficult to distinguish between small random fluctuations and deterministic changes in the presence
of noise. Therefore, we study the quantitative relation between the peak response and fluctuations
before perturbation in adaptation reactions. Here, we focus on the intrinsic noise of the adaptive
response, that is the noise generated in the adaptation reaction, and ignore the fluctuations in the
input perturbation. Thus, in this paper, we consider the adaptive network motifs of iFFL and
nFBL that consist of two signaling molecules as shown in Fig 1(B) and 1(C). Using numerical
simulation and theoretical analysis, we first show that the peak amplitude in the adaptive
response is limited by noise. We then study the conditions when the peak amplitude achieves its
upper limit, and also study the key differences between iFFL and nFBL in this context.

Results

Adaptation network models of two enzymes
We study iFFL and the nFBL consisting of three nodes, where the input node is S, the output
node is A and the intermediate node is B. For the nodes A and B, we consider enzymes which
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can take active and inactive states. We denote the active form by Aa and Ba and the inactive
form by Ai and Bi, respectively. These states can inter convert into each other by enzymatic
reactions. Thus, the total numbers of molecules of A and B, denoted by NA and NB, respec-
tively, are constant in time. For the sake of convenience, the numbers of Aa, Ba and S are
denoted by A, B and S, respectively.

In iFFL, the input node S activates both A and B, and the active form Ba inactivates Aa (inco-
herent feedforward loop, Fig 1B). Thus, S regulates A through two regulatory pathway with
opposing regulatory effects. The inactivation of B is carried out by a basal enzyme whose num-
ber remains fixed, and whose concentration we assume to be unity. This reaction scheme can
be represented by

AiÐ
GA
a �S

GA
d
�B

Aa; BiÐ
GB
a�S

GB
d

Ba ð1Þ

Fig 1. Adaptive responses and network motifs capable of perfect adaptation. (A) For an input perturbation to a system in steady state, three types of
response is possible: perfect adaptation, where the system comes back exactly to the pre stimulus state, imperfect adaptation where it returns partially
towards the prestimulus state, and no adaptation, where it remains in its new state. The two network motifs can show perfect adaptation to perturbations: (B)
Incoherent feedforward loop(iFFL) and (C) negative feedback loop(nFBL). Both species A and B have an active (Aa) and inactive state(Ai), which can inter-
convert between each other through enzymatic reactions. The number of Aa is considered to be the output.

doi:10.1371/journal.pone.0136095.g001
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where the rates of reaction per molecule for activation and deactivation, for the species A and

B, are given by GA
a � S, GA

d � B, GB
a � S and GB

d , respectively.
In nFBL, the input node S regulates only the output node A (Fig 1B). While A activates B,

node B inactivates A, completing the negative feedback loop. Node B decays to the inactive
form by the basal enzyme whose number is fixed with unity concentration. The reaction
scheme for the nFBL can thus be written as:

AiÐ
GA
a �S

GA
d
�B

Aa; BiÐ
GB
a�A

GB
d

Ba ð2Þ

These reaction rates are described by the Michaelis-Menten kinetics. For instance, the total
activation rate for species A for the iFFL can be written as

GA
a SðNA � AÞ ¼ VSAS

NA � A
KSA þ ðNA � AÞ ð3Þ

where VSA is the maximum reaction rate, and KSA is the Michaelis constant giving the half
maximum concentration. The reaction rate for the deactivation can be written similarly. The
total reaction rates are given by

GA
a SðNA � AÞ ¼ VSASðNA � AÞ

KSA þ NA � A
; ð4Þ

GA
dB � A ¼ VBAB � A

KBA þ A
; ð5Þ

GB
dB ¼ VBB

KB þ B
: ð6Þ

For the activation of B, the rate for iFFL is given by

GB
a SðNB � BÞ ¼ VSBSðNB � BÞ

KSB þ NB � B
; ð7Þ

whereas for nFBL

GB
aAðNB � BÞ ¼ VABAðNB � BÞ

KAB þ NB � B
: ð8Þ

We shall denote the steady state numbers of A and B by A� and B� respectively.
For iFFL, perfect adaptation is achieved if the number of intermediate node B is propor-

tional to the level of input S. If we choose the parameters such that NB − B� KSB, and KB � B,

then, with the constants GB
a � VSB=KSB and G

B
d � VB=KB, B becomes proportional to the input

S.

B� ffi SGB
a

GB
d

ð9Þ

This makes the number of node A independent of the input, as it is activated by one pathway
and simultaneously deactivated by the other.

In the nFBL given by Eqs (2), (4), (5), (6), and (8), the perfect adaptation of Aa is achieved
when the reaction rates for B, Eqs (6) and (8), do not depend on the number of B at the reaction
steady state. Such a situation is obtained if KB� B and KAB � NB − B in Eqs (6) and (8),
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respectively. Then, the reaction equilibrium in B gives VB = AVAB, leading towards A indepen-
dent of S, as

A� ffi VB

VAB

and GA
a SðNA � A�Þ ¼ GA

dA
�B� ð10Þ

The correlation between gain and noise in adaptation reactions
When a step stimulus is applied, the adaptive network shows a response by changing its activity
A, which is followed by adaptation through returning towards the prestimulus level. The mag-
nitude of this response varies for different parameters. In Fig 2, the time series of four different
parameter sets are plotted for iFFLs (A-B) and nFBL (C-D). For each of these networks in
steady state, a unit step perturbation of magnitude ΔS = S was provided at time t = 10. The
green lines show the time series obtained by stochastic simulation using Gillespie Algorithm
[37]. For a guide, the time series obtained by the corresponding differential equation are plot-
ted as well(red line). Among the two examples from iFFLs in Fig 2(A) and 2(B), the response in
Fig 2(A) is slightly distinguishable, while in Fig 2(B), it is completely blurred by noise. In con-
trast, the response in Fig 2(C) is clearly distinguishable over the noise. Depending on the
parameter value, nFBL can show both non-oscillatory as well as oscillatory response, as shown
in Fig 2(C) and 2(D) respectively. iFFL shows only non-oscillatory responses.

Using the time series of the responses above, the response magnitude can be quantified by
gain g, which is defined as a ratio between the fractional changes in the input signal S and in
output signal A, that is,

g ¼ jDAj=A�

jDSj=S : ð11Þ

where ΔA is the change in A from the steady state value A� before external stimulus to the
maximum response Amax (see Fig 2A), when the signal intensity is changed from S to S + ΔS.
For this quantification, we used A� and Amax obtained by the differential equation without sto-
chastic effects. Noise can be quantified by the variance s2

a of time series of A at the steady state
using the Gillespie algorithm. The variance is usually proportional to the average, we consider
the ratio between the variance and the average, which is called Fano factor f defined as

f ¼ s2
a=A

�: ð12Þ

We note here that the average and the variance are measured for the number of molecules
instead of concentrations.

The exhibited response for a given parameter can be classified into three groups using (A�,
Amax, A��), where A�� is the steady state after the stimulus as shown in Fig 1A. The first group
shows perfect adaptation with jAmax − A�j> 0 and A� � A��. The second group shows adap-
tive response which is not perfect, that is jAmax − A�j> 0 and A�� 6¼ A�. The last group does
not show adaptive response with Amax � A��. The tendency of network to return to its presti-
mulus state after a response is quantified by the adaptation tendency α, given by

a ¼ Amax � A��

Amax � A� ð13Þ

Here, we classify the response into the first two groups with adaptive tendency when α	 0.2,
whereas the response is non adaptive when α< 0.2. The precision of perfect adaptation is
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quantified by the adaptation error �, given by

� ¼ jA�� � A�j=A�

jDSj=S ð14Þ

Here, we consider that the system shows the perfect adaptation when � < 0.01.
To study the relation between response and noise, we quantified the gain and Fano factor

over 106 parameters for both iFFL and nFBL. Here, we focus on the parameters that show only
adaptive responses (the first and second groups), and exclude the non adaptive parameters for
which (α< 0.2). These networks have eight different kinetic parameters, as introduced in the
last section. Each of them were sampled from a uniform distribution on a logarithmic scale
from the range [10−3,103] using random sampling(see Methods for detail). We also excluded
those parameters from our analysis for which either the steady state was too small or too large,
that is {(A/V, B/V, (NA − A)/V, (NB − B)/V)<.001}, where V = 10,000 is the system volume.
We also removed those parameters for which the gain was too small, i.e. g<.001. For iFFL,
8.3% parameters among 106 randomly chosen parameters showed adaptive response, among
which 41% showed perfect adaptation and 59% were imperfect. For nFBL, 12.8% showed adap-
tive response, among which 5.3% showed perfect adaptation while 94.7% were imperfect.
Among the parameters with adaptive responses, 56.64% showed non oscillatory response, and
43.35% showed damped oscillation. Among the parameters with perfect adaptation, 43.56%
was non-oscillatory while 56.44% showed damped oscillation.

The joint histograms of the gain g and Fano factor f is shown for the parameters with adap-
tive responses and with perfect adaptation for iFFL and for nFBL in Fig 3. For both iFFL and

Fig 2. Stochastic reactions with perfect adaptation response. For a randomly selected network in steady
state, a unit step input stimulus was applied at t = 10. Fig 2(A-B) shows the response for iFFL, while Fig 2
(C-D) shows the non-oscillatory and damped oscillatory response for nFBL respectively. The green lines
show the response of the network obtained using Gillespie Algorithm, while red lines show the corresponding
deterministic response obtained from differential equations. The parameters for each case are provided in the
sectionMethods.

doi:10.1371/journal.pone.0136095.g002
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nFBL, we observe that the gain seem to be not larger than the variance, given by

g 
 s2
a

A� ð15Þ

indicating that the gain is limited by noise. We note that the average and the variance on the
right hand side are considered with respect to the number of molecules rather than concentra-
tion. When these values are considered in the unit of concentration, an appropriate pre-factor
is necessary to convert the unit of right hand side to a dimensionless number. For iFFL shown
in Fig 3(A), the parameters with adaptive responses are distributed in a wide range of both gain
and noise strengths from 10−3 to 101 satisfying inequality Eq (15). The same tendency is seen
even for the parameters with perfect adaptation (Fig 3(B)). For nFBL shown in Fig 3(C), the
parameters with adaptive responses are distributed in a wide range with inequality Eq (15). In
contrast to iFFL, however, they are rarely distributed in the range with smaller values of both
gain and noise. Furthermore, when the adaptation is perfect, as shown in Fig 3(D), the parame-
ters lie relatively closer to the line which satisfies equality in Eq (15). Such a tendency is even
more pronounced when we focus on the parameters with only non-oscillatory responses as
shown in Fig 3(E) and 3(F).

To see that with the perfect adaptation condition the points in nFBL (Fig 3F) are distributed
closer to the line of equality than in iFFL (Fig 3B), we consider the ratio between the gain and
Fano factor, g/f. In Fig 4, using the samples in Fig 3A and 3E, we plot the average of the ratio g/f
calculated over the samples for which the adaptation error � is less than a given threshold. This
threshold decreases from 10−1 to 10−3, implying the selected points show increasing more per-
fect adaptation. In the plot, the average of ratio g/f of nFBL is larger than that of iFFL for any
value of �, indicating that nFBL is closer to the equality line than iFFL. Furthermore, as the per-
fect adaptation becomes more strict as the adaptation error � decreases, the average value of
ratio g/f for nFBL increases approaching to the equality line, whereas that for iFFL decreases.
This indicates that in nFBL the perfect adaptation condition takes the gain closer to the limit of
Fano factor.

The adaptive response is limited by noise
Here, we derive the gain-noise inequality given by Eq 15 analytically within a linear range. We
first introduce the linear chemical Langevin equation. The perfect adaptation condition is
given in terms of the linear coefficients. Then, the gain and noise are derived and compared.

We consider small deviations in A and B at the steady state values, denoted by a and b,
respectively. By performing the linearization for the chemical Langevin equation Eq (35)
shown in Appendix A and applying the linear noise approximation [38] at the steady state, we
obtain the linearized Langevin equation given by

_a ¼ �k11a� k12bþ gaDSðtÞ þ xaðtÞ
_b ¼ �k21a� k22bþ gbDSðtÞ þ xbðtÞ

ð16Þ

with the linear coefficient or regression matrix,

K ¼ k11 k12

k21 k22

 !
ð17Þ

where γa and γb are the coupling with the input signal S, and ξa and ξb are the Gaussian white

noise with hξai = hξbi = 0 and hξi(t)ξj(t0)i = Dij δ(t − t0), (i, j = a, b). Here, K, γa, γb and D = {Dij}
are can be written with the reaction constants, which are explicitly given in Appendix B. Using
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the eigenvalues of K, λ1 > 0 and λ2 > 0, and the corresponding eigenvectors, t(1, p1) and
t(p2,

1), K can be rewritten as K = PΛP−1 with

P ¼ 1 p2

p1 1

 !
and Λ ¼ l1

1 0

0 w

 !
ð18Þ

where χ = λ2/λ1. The regression matrix K for iFFL is given with p1 = 0, while the nFBL is given

Fig 3. Joint histograms of Fano factor and gain for adaptation networks. The histograms of Fano factor f and gain g are shown for iFFL (A, B) and nFBL
(C-F). Colors indicate the density of parameters in a given region, with red indicating maximum density. (A) iFFL with adaptive response including imperfect
adaptation. (B) iFFL with only perfect adaptation. (C) nFBL with adaptive response including imperfect adaptation. (D) nFBL with only perfect adaptation. (E)
nFBL with non-oscillatory adaptive response including imperfect adaptation. (D) nFBL with non-oscillatory and only perfect adaptation. The histograms are
made for logarithms of both Fano factor f and gain g. The range of the density is indicated by the colorbar, where the numbers indicate the logarithmic of the
density of the parameters. For details, see the section Methods.

doi:10.1371/journal.pone.0136095.g003
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with γb = 0. The perfect adaptation condition that a vanishes (a = 0) at steady state is given as

gaðp1 � w=p2Þ ¼ gbð1� wÞ ð19Þ

In iFFL, with this perfect adaptation condition, the regression matrix reduces to

K ¼ l1
1

gaw
gb

0 w

0
@

1
A: ð20Þ

Because the eigenvalues λ1 and λ2 are always positive real number, the ratio χ for iFFL can take
any positive value. In the case of nFBL, with the perfect adaptation condition, the regression
matrix is given by

K ¼ l1

1þ w �w=p1
p1 0

 !
: ð21Þ

Here, the eigenvalues can be real or complex. For complex eigenvalues, damping oscillations
takes place in the response. For real eigenvalues and non-oscillatory response, the ratio χ is
constrained to be always not larger than unity, i.e., χ
 1.

Next, we derive the gain g using the linearized equation Eq (16) and condition Eq (19),
which is given by

g ¼ S
A�

ga
l1

w
w

1�w ð22Þ

The variance of a, s2
a, is obtained by using the generalized fluctuation-response relation, Kσ

2 +

Fig 4. The dependence of the average ratio between gain and Fano factor g/f on the adaptation error �. (A) iFFL (B) nFBL with non-oscillatory
response.

doi:10.1371/journal.pone.0136095.g004
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σ2 t K − D = 0, where σ2 is the variance-covariance matrix, K is the regression matrix, and D is
the noise strength. When Dab = 0, the variance of a is calculated as

s2
a ¼

Daag
2
b þ Dbbg

2
a

2l1ðgb � p1gaÞ2
w

1þ w
þ Daa

2l1ð1þ wÞ ð23Þ

Now, we compare the gain and noise by using Eqs (22) and (23). By comparing the gain and
noise, we find that the sufficient condition for the inequality Eq (15) is given by

Daa 	 2Sgað1þ wÞw w
1�w; ð24Þ

As the noise strengths Daa for both iFFL and nFBL can be written as

Daa ¼ 2gaS: ð25Þ

the above condition Eq (24) is always satisfied in both network motifs. Therefore, the gain is
always less than the intrinsic noise, and it is a direct consequence of the relation between noise
strength and input coupling constant for the adapting variable. This relation can be also be
extended to the case with Dab 6¼ 0.

Equality conditions restricts gain around unity in iFFL
We next provide insight into how the equality between gain and noise in Eq (15) are achieved
for iFFL. With the condition for iFFL, p1 = 0, and Eq (25), the difference between gain and
noise is given by

s2
a

A� � g ¼ Dbbg
2
a

2l1A�g2b

w
1þ w

þ gaS
l1A� �

gaS
l1A� w

w
1�w ð26Þ

The second term on the right hand side indicates the contribution of noise generated in reac-
tions of A. Because it does not pass through reactions in B, the second term is independent of
the ratio χ that includes the property of reaction in B. We also notice that since the second
term is independent of B, it does not depend on whether the adaptation is perfect or not. In Eq
(26), as χ decreases to zero, the second and third terms are canceled with each other, while the
first term vanishes. As a result, the deviation between gain and noise vanishes, and the equality
in Eq (15) holds. In contrast, as χ increases, the first term increases, while the deviation
between the second and third terms increases.

We verified this dependence on χ numerically, as shown in Fig 5(A) and 5(B). As χ
decreases, both gain and noise approach to unity, reaching the equality. In contrast, as χ

increases, the gain systematically decreases as w
w

1�w according to Eq (22), while the Fano factor f
is maintained around unity or larger than unity for many parameter sets (Fig 5(A)) indepen-
dent of χ, because the noise contribution from the reactions of A is independent of χ. As a
result, the deviation between noise and gain increases with a larger value in Eq (26).

For iFFL, the number A� can take any values up to NA without any constraint by the perfect
adaptation condition. When A� is large and close to NA, the noise (the first two terms in Eq
(26)) and the gain (the third term) decrease as A approaches to NA, because the response coeffi-

cient ga ¼ GA
a ðNA � A�Þ decreases as A� approaches to NA. This dependence of gain and noise

on A� is also found numerically as shown in the Fig 6(A) and 6(B). Thus, as A� approaches to
NA, the gain approaches to the noise, though the gain is small.
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Another way to achieve the equality in Eq (15) is to decrease χ. When A�/NA � 1, the ratio
χ can be approximated as

w � �p2
gagb

�
KSB

KSBþNB
GB

a þ
GB
d
S

KSA
KSAþNA

GA
a

GA
d

GB
d

GB
aNB

þ 1

GB
d

GB
aNB

1

GA
d

ð27Þ

For this condition, the coefficient of gain in Eq (22) and the second term in Eq (26) are approx-
imately given by

gaS
l1A� � 1

KSA

KSA þ NA

GA
a

GA
d

GB
d

GB
aNB

þ 1

� ��
ð28Þ

which can increase up to unity as the first term in the denominator decreases. By increasing GA
d

in Eqs (27) and (28), χ can decrease systematically approaching the equality condition in Eq

Fig 5. The dependence of gain and noise on the ratio of eigenvalues. The joint histograms of the Fano factor f and ratio χ of eigenvalues (A, C), and the
gain g and χ (B, D) for iFFL (A, B) and nFBL (C, D), for the parameters with perfect adaptation. For nFBL, the non-oscillatory case is considered. The colors
indicate the log of histogram of the density of points, as explained in Fig 3. The dashed line in (B) shows fðwÞ ¼ w

w
1�w.

doi:10.1371/journal.pone.0136095.g005
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(15), while both gain g and the Fano factor f approach to unity. Therefore, as shown in Fig 3
(C), with perfect adaptation property, the equality between gain and noise is achieved when
both values are about unity.

Perfect adaptation decreases the noise in nFBL
For nFBL with non-oscillatory responses, we consider the conditions under which the gain
approaches to the equality in Eq (15). With the condition γb = 0 for nFBL, and Eq (25), the dif-
ference between gain and noise is given by

s2
a

A� � g ¼ Dbb

2l1A�p21

w
1þ w

þ gaS
l1A�

1

1þ w
� gaS
l1A� w

w
w�1 ð29Þ

In contrast to iFFL, the second term on the right hand side is a function of χ, because the noise
contribution from reactions of A is affected by reactions of B. Because χ
 1 is always satisfied
as mentioned above, the second and third terms are easier to be close to each other than iFFL.

Fig 6. The dependence of Fano factor and gain on the number in steady state. The scatter plot for steady state number A*/NA with Fano factor f and
gain g have been plotted for the parameters showing perfect adaptation. Color indicates the density of parameters as explained in the Fig 3. (A) A*/NA

against f for iFFL. (B) A*/NA against g for iFFL (C) A*/NA against f for nFBL. (B) A*/NA against g for nFBL.

doi:10.1371/journal.pone.0136095.g006
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In fact, as shown in Fig 5(C) and 5(D), the gain and noise exhibit similar tendency for any
value of χ. Thus, the equality in Eq (15) is achieved easier than iFFL. When A is sufficiently
smaller than the total number NA, the coefficient in the second and third terms is approxi-
mately given by

gaS
l1A� � 1þ A�=KBA

KSA

KSA þ NA

A�

NA

ð1þ A�=KBAÞ þ 1
ð30Þ

which can be larger than unity. This indicates that even for sufficiently large χ approaching to
zero on the right hand side in Eq (29), a higher gain is possible. For non oscillatory parameters
and for adaptive response, the dependence of gain and noise on the steady state is shown in Fig
6(C) and 6(D). In contrast to iFFL, steady state values close to NA don’t occur in nFBL.

In Fig 3(E) without perfect adaptation conditions, the points are present far below the equal-
ity line. Among all points shown in Fig 3(E), only points that exhibit perfect adaptation are
shown in Fig 3(F). As mentioned above, those points with perfect adaptation are distributed
closely to the equality line. To study this behavior, we introduce the deviation from the perfect
adaptation, ω, given by

o ¼ p1p2 � w
1� w

: ð31Þ

From Eq (19), the perfect adaptation condition is given by ω = 0. Then, the gain and the noise
in A are respectively written as

g ¼ gaS
l1A�

ðwþ oð1� wÞÞ 1
1�w � o

wð1� oÞ ð32Þ

and

s2
a

A� ¼
Dbbðwþ oð1� wÞÞ2

l1A�p21wð1þ wÞð1� oÞ2 þ
gaS
l1A�

wð1� oÞ2 þ o2

wð1þ wÞð1� oÞ2 ð33Þ

In Fig 7(A), the gain in Eq (32) (blue line) and the second term in the noise in Eq (33) (green
line) are plotted as functions of ω. When ω = 0 and the perfect adaptation condition is satisfied,
these two values are close to each other. As ω increases, the gain decreases while the noise
increases. Therefore, in nFBL the perfect adaptation condition can contribute to increase the
gain and decrease the noise at the same time. In Fig 7(B) and 7(C), we show the effect of adap-
tation error on the noise and gain for nFBL. As the adaptation error decreases, the gain and
noise both approach same value, thus leading to high signal to noise ratio in the limit of perfect
adaptation.

Discussion
In this paper, we have studied the relation between response and noise in the network motifs
that show perfect adaptation. By numerical simulation, we found that the gain measured at the
peak response is not larger than the intrinsic noise, measured as the Fano factor. For the case
with perfect adaptation, we showed analytically that the inequality in Eq (15) holds in the linear
regime. In iFFL, modulating the gain towards its limiting value of Fano factor constraints both
of them around a range of unity. Thus, for iFFL, parameters showing perfect adaptation, higher
gain and unity gain to noise ratio is difficult to achieve. In contrast, for nFBL, while imperfect
adaptation itself shows higher gain to noise ratio, perfect adaptation narrows down the range
of gain around its limit of Fano factor. We also note that in nFBL the parameters that show
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perfect adaptation property also exhibit higher gains. In contrast, in iFFL the parameters with
perfect adaptation are distributed in a range from low values to around unity, though the fre-
quency of perfect adaptation among randomly chosen parameters are higher than that in
nFBL.

We can have some insight about the differences between iFFL and nFBL for perfect and
imperfect adaptation by looking at the analytical terms of the response function and the corre-
lation function. Between the correlation function C(t) and the response function h(t) = exp(−K

t), the equation dCðtÞ
dt

¼ �hðtÞ Dþa
2

holds, where α characterizes the degree of non-equilibrium

defined as Kσ2 − σ2 t K − α = 0 [39]. By integrating this equation with respect to time t, and

introducing a step response function R, which is given by RðtÞ ¼ R t

0
hðsÞds, we have

1

2
Rðt�ÞDþ 1

2
Rðt�Þα ¼ σ2 � Cðt�Þ ð34Þ

at time t� = log χ/λ1(χ − 1), which is the time when the response in A reaches the maximum
value. The response in A to a step increase in S is given by the first row of R(t�) � γ, i.e.,
g ¼ S

A� ð1; 0Þ � Rðt�Þ � γ. For iFFL, considering γ ¼ 1
2S
D � tð1; 1Þ, the gain g can be calculated

from the first term on the left hand side in Eq (34) by applying t (1,1) to Eq (34) from the right.
When the ratio of eigenvalues, χ, is sufficiently small, the (1,2) component in R vanishes as evi-
dent from the regression matrix K in Eq (20). Thus, only (1,1) component in R(t�) contributes
to the gain g. We also note that the diagonal components in α is always zero by the definition,
indicating that the second term does not contribute to the gain g. On the right hand side in Eq
(34), C(t�) vanishes as χ approaches to zero. Consequently, we see that the equality holds in Eq
(15), when χ is sufficiently small for iFFL. This does not depend on whether the adaptation is
perfect. In a similar way, for nFBL, considering γ ¼ 1

2S
D � tð1; 0Þ, the (1,1) components in Eq

(34) are enough to calculate the gain g. As seen in Fig 5(C) and 5(D), even when χ is not very
small, the gain and Fano factor are close with each other. This indicates that (1,1) component
in the first terms in Eq (34) are close to each other while the (1,1) components in second terms
are almost canceled at t = t�. The condition that this occurs in Eq (34) and the gain approaches
to the limit of Fano factor remains to be a future problem.

Fig 7. Dependence of Fano factor and gain on the adaptation error.Gain and noise as a function of adaptation error for nFBL has been plotted. (A) Gain
and Fano factor as a function of deviation from perfect adaptationω calculated from Eqs (32) and (33) for χ = .01 and gaS

l1A� ¼ 1. (B) Fano factor as a function of
� for nFBL obtained from simulations of different parameters, plotted as a scatter plot with the colors indicating the logarithm of density of parameters, as
explained in Fig 3. (C) Gain as a function of � for different parameters of nFBL. Note that while both � andω denote the deviation from adaptation, their
definitions are slightly different. From simulation, the parameters showing non oscillatory response only have been included.

doi:10.1371/journal.pone.0136095.g007

Adaptive Responses Limited by Intrinsic Noise

PLOS ONE | DOI:10.1371/journal.pone.0136095 August 25, 2015 14 / 20



We have studied the noise generated by the adaption reaction (intrinsic noise). For the
noise in an input stimulus (extrinsic noise), filtering properties of adaptive response has been
studied [33, 34]. Fast fluctuations in the input are averaged out by the low pass filtering effect,
while slow fluctuations are attenuated by adaptation. Thus, adaptive reactions behaves as a
bandpass filter. Because of this filtering property, the magnitude of the extrinsic noise is domi-
nated by the intrinsic noise.

In the bacterial chemotaxis, the adaptive responses is well studied. The mechanism of adap-
tation is considered to be negative feedback loop, in which the receptor activity shows response
to ligand-binding, which is then attenuated through a modulation of methylation level by
methylesterase CheB, the activity of which depends on the receptor activity. Examples of iFFL
has been reported for eukaryotic cells. In a cultured mammalian cell, epidermal growth factor
(EGF) induces transient activation of extracellular-signal-regulated kinase (ERK). To explain
this adaptive response, an iFFL mechanism upstream of ERK has been proposed, in which
phosphorylated EGF receptors activate both Ras GEF and GAP with different time constants
[40]. Similarly, for the adaptive response of chemotaxis signaling pathway in Dictyostelium cell,
iFFL of Ras and its GAP and GEF has been proposed [20].

Previously, it has been reported that iFFL is more robust than nFBL with respect to the per-
fect adaptation [18]. Our analysis also confirms that the frequency of perfect adaptation is
higher in iFFL than nFBL. However, our result indicates that the frequency to have higher gain
is larger for nFBL. Moreover, in nFBL the gain is close to the upper limit of the Fano factor,
while in iFFL the parameters are broadly distributed away from the upper limit. Also, our anal-
ysis shows that the perfect adaptation condition itself can contribute to increase the gain up to
the limit of Fano factor for nFBL, which could be of great advantage. In particular, in small
cells with smaller number of molecules, such as in bacteria, nFBL should work more robustly
against molecular noise. We hope our results would help to understand the mechanism and
occurrence of adaptive networks in biological systems.

Methods

Sampled parameter space
To quantify the gain and noise for adaptive networks, the Michaelis-Menten parameters for
the iFFL and nFBL were sampled randomly, where each of the network needs 8 parameters.
The Michaelis-Menten parameters Vm and Km were sampled from a uniform distribution on a
logarithmic scale, from the range (.001 − 1000), where Vm is the dimensionless maximal veloc-
ity, and Km is the Michaelis constant, in the units of moles.

For calculating the deterministic gain using the differential equations, the simulations were
performed with the concentration of each species. For computing the Fano factor, and for
observing the stochastic response, the simulations were performed with the actual number of
molecules with a uniform system size or volume V = 10,000 for each parameter. The Michaelis
constant in terms of number of molecules, KM is computed by KM = VKm. The maximum
velocity in terms of number of molecules is the same as in the concentration space, that is VM =
Vm.

Quantifying the response
For a given parameter, first the steady state of the system was obtained. For iFFL, the steady
state number can be obtained analytically in a closed form, while for nFBL, the steady state
number was obtained using numerically solving the nonlinear differential equation using the
Runge-Kutta method. If the steady state number was too small or large, that is (A/V< 0.001,

Adaptive Responses Limited by Intrinsic Noise

PLOS ONE | DOI:10.1371/journal.pone.0136095 August 25, 2015 15 / 20



B/V< 0.001), or ((NA − A)/V< 0.001, (NB − B)/V< 0.001), where V = 10,000 then we call it
an ill-behaved parameter and discard it.

For parameters which were not ill-behaved, a small perturbation ΔS was applied to it in the
steady state, and the deterministic part of the response was obtained using the differential
equation. For solving the differential equation, we used the fourth order Runge-kuttamethod
with a default step size of h = .001 and the global error tolerance, that is the difference between
successive values (yn+1 − yn), to be less than h/50, where yi is the numerical solution of the dif-
ferential equation at the ith step. If the solver failed to reach the steady state with this step size,
we successively used a smaller step size of h = 10−4 or 10−5. A response was considered to be
perfectly adaptive if the adaptation error � < 0.01. The response was calculated in the concen-
tration space and then converted into numbers using the system volume information.

From the obtained time series of the response, the quantities A�, the initial steady state,
Amax, the maximum number, and A��, the final number of the node A was obtained. The maxi-
mum change in the output is ΔA = (Amax − A�). Using these quantities, we compute the
following:

1. Adaptive tendency a ¼ Amax�A��
Amax�A� , which quantifies the tendency of the network to get back to

its pre stimulus state from its maximum state.

2. Adaptation error � ¼ ðA���A�Þ=A�
DS=S , which quantifies the deviation from perfect adaptation.

3. Gain g ¼ jDAj=A�
DS=S , which gives a scale free estimate of the response for a perturbation of ΔS in

the input signal.

For nFBL, the oscillatory and non oscillatory parameters were differentiated by observing
the response time series, where the total number of times the slope of the response changed its
sign was calculated. If the total sign change happened at least three times, then we considered
the response as oscillatory response.

Quantifying the Noise
To quantify the Fano factor, the system was simulated by using the stochastic simulation algo-
rithm described by Gillespie [37]. All the simulations were performed with a system volume of
V = 10,000, and reaction was ran for a minimum of 100 time units and 105 reaction events. The
steady state of the system itself was chosen as the initial condition. The resultant time series
was used to calculate the variance σ2 of the output. From this output, the Fano factor can be

estimated by f ¼ s2

A� as defined in Eq (12) where A� is the steady state value.

Parameters used for Fig 2. The exact parameters used for the time series plot in the Fig 2
are as follows:

• Fig 2A: Vsa = 0.19, Ksa = 6, Vba = 57, Kba = 0.007, Vsb = 0.01, Ksb = 10, Vb = 119, Kb = 55.9

• Fig 2B: Vsa = 0.02, Ksa = 0.04, Vba = 8.9, Kba = 1.5, Vsb = 0.29, Ksb = 3.7, Vb = 651, Kb = 53.

• Fig 2C: Vsa = 1.03, Ksa = 0.008, Vba = 11.3, Kba = 3.22, Vab = 0.29, Kab = 0.002, Vb = 0.17, Kb =
0.004

• Fig 2D: Vsa = 0.0035, Ksa = .63, Vba = 0.003, Kba = 0.001, Vab = 2.79, Kab = 9.5, Vb = 0.2, Kb =
0.5

The total number of molecules was NA = NB = 200,000, S = 10,000, and a large perturbation
of ΔS = 10000 was provided at the steady state, where the volume is V = 10,000.
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Parameters for Fig 3 and following figures. For obtaining the joint histogram of Fano
factor and gain in Fig 3, a total of 106 random parameters were sampled for each of iFFL and
nFBL, and both Fano factor and gain was calculated for them. In each of the above case, the
total number of molecules was NA = NB = 200,000, S = 10,000, and a 1% perturbation of
ΔS = 100 was provided at the steady state, where the volume is V = 10,000. The same parame-
ters were also used for the Figs (4–7) as well.

Making the log histogram plot
To represent the distribution of Fano factor and gain or for other pair of variables, we used log
of the histogram plot, as there was large variation in the parameter density in low density and
high density regions. To obtain the log histogram plot, first the relevant pair of variables were
converted on a log base(base 10). Subsequently, the histogram was obtained by counting the
number of parameters falling in each square bin of chosen size. This count was again taken on
a log 10 base, and the resultant matrix was plotted on a pseudo color plot using the function
pcolor of matlab, with maximum density being assigned the red color, and the minimum den-
sity as blue color. The binwidths were typically chosen to be of size.1 for both x and y
coordinates.

Appendix A
Here, we show the chemical Langevin equations for iFFL and nFBL, which are given by

_A ¼ GA
a SðNA � AÞ � GA

dBAþ xaðtÞ
_B ¼ GB

aSðNB � BÞ � GB
dBþ xbðtÞ

ð35Þ

and

_A ¼ GA
a SðNA � AÞ � GA

dBAþ xaðtÞ
_B ¼ GB

aAðNB � BÞ � GB
dBþ xbðtÞ

ð36Þ

respectively, where GA
a , G

A
d , G

B
a and G

B
d are the reaction rates as defined in Eq (3), and ξa and ξb

are the Gaussian white noise with hξai = hξbi = 0 and hξi(t)ξj(t0)i = Dij δ(t − t0), (i, j = a, b). The
noise strength D = {Dij} can be derived from the property of Poisson process in individual reac-

tions [38, 41]. Thus, Dij are given by Daa ¼ 2GA
d A � B, Dbb ¼ 2GB

d B, and Dab = Dba = 0.

Appendix B
Here, we show the explicit forms of the linear coefficients K, γ and D in the linearized Langevin
equations Eq (16). For iFFL, the liner coefficients K in Eq 35 are given by

K ¼

VSAKSAS

ðKSA þ NA � A�Þ2 þ
VBAKBAB

�

ðKBA þ A�Þ2
VBAA

�

KBA þ A�

0
VSBKSBS

ðKSB þ NB � B�Þ2 þ
VBKB

ðKB þ B�Þ2

0
BBB@

1
CCCA ð37Þ

The coupling coefficients γ with the input S also are obtained in the above step, which are given
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by

ga
gb

 !
¼

VSAðNA � A�Þ
KSA þ NA � A�

VSBðNB � B�Þ
KSB þ ðNB � B�Þ

0
BBB@

1
CCCA ð38Þ

For the nFBL, using the Eq (35), K is given as

K ¼

VSAKSAS

ðKSA þ NA � A�Þ2 þ
VBAKBAB

�

ðKBA þ A�Þ2
VBAA

�

KBA þ A�

VABðNB � B�Þ
KAB þ NB � B�

VABKAB

ðKAB þ NB � B�Þ2 þ
VBKB

ðKB þ B�Þ2

0
BBB@

1
CCCA ð39Þ

The coupling coefficient γ with the input S is obtained and given by:

ga
gb

 !
¼

VSAðNA � A�Þ
KSA þ NA � A�

0

0
B@

1
CA ð40Þ

The noise strength D can be obtained by the linear noise approximation [38].

D ¼ 2GA
d A

�B� 0

0 2GB
dB

�

 !
¼

2
VBAB

�A�

KBA þ A� 0

0 2
VBB

�

KB þ B�

0
BBB@

1
CCCA ð41Þ
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