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The Dual-Wavelength Echidna Lidar (DWEL), a full waveform terrestrial

laser scanner (TLS), has been used to scan a variety of forested and agricul-

tural environments. From these scanning campaigns, we summarize the

benefits and challenges given by DWEL’s novel coaxial dual-wavelength

scanning technology, particularly for the three-dimensional (3D) classifi-

cation of vegetation elements. Simultaneous scanning at both 1064 nm and

1548 nm by DWEL instruments provides a new spectral dimension to TLS

data that joins the 3D spatial dimension of lidar as an information source.

Our point cloud classification algorithm explores the utilization of both spec-

tral and spatial attributes of individual points from DWEL scans and

highlights the strengths and weaknesses of each attribute domain. The spec-

tral and spatial attributes for vegetation element classification each perform

better in different parts of vegetation (canopy interior, fine branches, coarse

trunks, etc.) and under different vegetation conditions (dead or live, leaf-on

or leaf-off, water content, etc.). These environmental characteristics of veg-

etation, convolved with the lidar instrument specifications and lidar data

quality, result in the actual capabilities of spectral and spatial attributes to

classify vegetation elements in 3D space. The spectral and spatial infor-

mation domains thus complement each other in the classification process.

The joint use of both not only enhances the classification accuracy but also

reduces its variance across the multiple vegetation types we have examined,

highlighting the value of the DWEL as a new source of 3D spectral

information. Wider deployment of the DWEL instruments is in practice cur-

rently held back by challenges in instrument development and the demands

of data processing required by coaxial dual- or multi-wavelength scanning.

But the simultaneous 3D acquisition of both spectral and spatial features,

offered by new multispectral scanning instruments such as the DWEL,

opens doors to study biophysical and biochemical properties of forested

and agricultural ecosystems at more detailed scales.
1. Introduction
Light detection and ranging (lidar) is an active remote sensing technique using

an instrument that emits coherent laser light to measure the distance to a target.

The outgoing laser pulse interrogates targets along the transmission path, these

targets induce scattering events, and light is scattered back towards the lidar

instrument. In its simplest form, the lidar instrument records the travel time

and intensity of the scattered light as it is received by its detector, allowing

the distance to the target to be calculated. The travel time can be measured

using either pulse ranging or continuous wave ranging techniques. Pulse
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ranging lidar is more commonly used for applications to

vegetation [1], which is the subject of interest in this paper.

Thus, we will confine our discussion here to pulsing lidar

unless otherwise noted.

A recent application of lidar is the quantification of forest

structure, and, in particular, measures of the physical dimen-

sions of trees, the amount and location of leaves, and gaps

between and within tree canopies, as well as secondary mea-

surements such as tree volume. All of these measurements

can be determined through the three-dimensional (3D) infor-

mation acquired by lidar instruments on different platforms,

including space-borne satellites, aircraft and on-ground mobile

systems, as well as stationary terrestrial laser scanning (TLS)

platforms.

In general, lidar return signals are recorded by two types

of technologies, discrete-return and full-waveform. Discrete-

return lidars record one to several laser returns as the laser

beam passes through the canopy. Collecting multiple returns

throughout a vegetation canopy is based on the intensity of

the laser energy returned to the sensor [2]. By contrast, wave-

form lidars digitize the total amount of energy returned to

the sensor at fixed time (and so distance) intervals, providing

a continuous distribution of laser energy for each laser pulse

[2]. In practice, this means that all scattering events, as well as

the shape of the return pulses, within a plant canopy will be

fully recorded for both full and partial-hit returns.

The focus of this paper is a full-waveform instrument, the

Dual-Wavelength Echidnaw Lidar (DWEL) [3,4]. DWEL is a

research instrument developed jointly by Boston University in

the USA and CSIRO in Australia. It is a novel terrestrial lidar

that uses two coaxial lasers at 1064 nm and 1548 nm wave-

lengths to collect simultaneous dual-wavelength scans. This

unique design adds a new spectral domain to the TLS data

by associating 3D ‘clouds’ of lidar points from scanned tar-

gets with their reflectance at the two wavelengths, which

opens doors to 3D mapping of biophysical and biochemical

properties of forests and other new applications. A few studies

have demonstrated the value of this new spectral domain of

lidar data for estimating vegetation biochemical properties

[5,6]. A better interpretation and understanding of these

forthcoming new 3D retrievals of vegetation properties pre-

sents the need to classify vegetation elements in 3D space

for the differentiation of leaves, the primary photosynthetic

component of vegetation, from the non-photosynthetic com-

ponent, mainly woody materials. An advantage of DWEL

scans for 3D classification is that the contrast of well-

calibrated dual-wavelength lidar returns reduces or cancels

out the effects of ranges, optics, electronics and vegetation

structure on the return signals and thus provides a mechanism

for the discrimination of different vegetation element types

based on their instrinsic bispectral reflectance contrast [7].

Previous studies have addressed the separation of leaves

from woody matter, by using ground-based optical remote

sensing data for more accurate retrieval of leaf area index

(LAI), foliage profiles and other structures. The woody-to-

total area ratio derived from labour-intensive destructive

sampling is widely used to correct the contribution of

scattering by woody materials to LAI measurements by

optical instruments [8]. Kucharik et al. [9] developed a

multi-wavelength camera to separate leaves from woody

materials to study the woody-to-total area ratio of a forest

stand and improve the indirect measurements of LAI with opti-

cal instruments. These efforts to separate photosynthetic and
non-photosynthetic materials remained in two-dimensional

space with the aim to improve the LAI of a whole forest stand.

Several studies have also attempted the leaf-wood differ-

entiation in 3D lidar point clouds of single wavelengths.

Some early studies tried the manual extraction of trunks

against leaves from lidar scans [8] and finer discrimination

of leaves from both trunks and branches through the

manual comparison between leaf-on and leaf-off scans [9].

Later studies attempted automatic 3D classification of the

two components using point clouds from single-wavelength

TLS operating at shortwave-infrared (SWIR) bands

(1550 nm or similar) [10,11] or green band (532 nm) [12] by

simply thresholding lidar return intensities. But the selection

of intensity thresholds is subjective or needs adjustment from

scan to scan. A recent study by Béland et al. [13] pushed the

3D point classification of leaves and woody materials further

by developing a geometric-based automatic point classifi-

cation algorithm using spatial distribution patterns of

points for preliminary separation and a series of post-processing

filters to achieve the final classifications.

Despite the long history of studies on separating leaves

from woody materials, the 3D classification of these two veg-

etation components has only been possible because the

application of TLS to forest studies and remains a challenging

task. The primary aim of this paper is to demonstrate the

strengths of the new spectral domain from our recently

built novel dual-wavelength TLS for the 3D classification of

vegetation elements. We used two nearly identical DWEL

systems, the Oz-DWEL based in Australia and the National

Science Foundation (NSF) DWEL based in the USA over six

forest sites and an agricultural site. In this study, we examine

the quality of spectral information from DWEL bispectral

scans, compare its effectiveness for 3D classification with

the traditional spatial information from lidar and present a

synergy between spectral and spatial information to improve

the 3D classification, paving the way for the study of biophy-

sical and biochemical properties of forested and agricultural

ecosystems at more detailed scales.
2. Material and methods
2.1. Study sites
To evaluate the bispectral information from DWEL scans and its

application to 3D classification, we chose to test it on seven differ-

ent locations that had been scanned using either of the two DWEL

instruments. Each of these locations had a unique vegetation

type, structure and form, varying from (table 1) temperate

mixed forest in Massachusetts, USA, to tall eucalypt forests in

Tasmania, Australia, through to vineyards in South Australia.

Although these sites presented different challenges for scanning

with the DWEL instruments due to factors such as access to the

site, different vegetation types or the surrounding terrain, a

standard scanning methodology was followed at each location.

2.2. DWEL scanning details
The two DWEL instruments have been deployed in many different

vegetation ecosystem types and environments in the USA and

Australia. For this study, we scanned at the Harvard Forest

during both the leaf-on and leaf-off conditions of the deciduous

trees (table 1), while at the other locations forests are evergreen.

The scanning protocol took the form of five scans, one located at

the centre of the study plot, and four surrounding scans located

around the centre at each of the cardinal points.



Table 1. List of point classification test sites representing a variety of different vegetation ecosystems.

site location forest type
scanning
date

canopy
condition

scanning
instrument

Harvard Forest, MA, USA temperate mixed deciduous and evergreen forest 20140503 leaf-off NSF-DWEL

20140919 leaf-on NSF-DWEL

Karawatha Forest, QLD, Aus Eucalyptus 20140924 evergreen Oz-DWEL

Brisbane Forest Park, QLD, Aus Eucalyptus 20140925 evergreen Oz-DWEL

Tumbarumba Forest, NSW, Aus temperate wet sclerophyll eucalypt forest 20140807 evergreen Oz-DWEL

Warra Forest, TAS, Aus tall eucalypt forest 20150204 evergreen Oz-DWEL

National Canberra Arboretum, ACT, Aus urban forest plantation 20150818 evergreen Oz-DWEL

Nuriootpa Vineyard, SA, Aus agriculture 20160324 mixed Oz-DWEL
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The DWEL is designed to operate in three different scanning

resolutions of 1, 2 and 4 mrad, paired with laser beam divergences

of 1.25, 2.5 and 5.0 mrad, respectively, using different sets of opti-

cal lenses to provide gapless coverages of the hemisphere [3,4].

The finer resolution scans need longer scanning time. To balance

the scanning resolution and time, we have chosen 2 mrad scan-

ning resolution with 2.5 mrad beam divergence for both

instruments throughout all the scans used in this study. Once

set up and running, each scan takes approximately 45 min to

complete and the processed data results in a full dual-wavelength

3D representation of the environment surrounding the scan

location. Some other key technical specifications of the DWEL

instruments are given in table 2 and more details can be found

in [3,4]. Of particular importance to and unique to the DWEL

instruments among those specifications is the laser beam align-

ment error. Unlike most terrestrial lidars using only a single

laser, the DWEL design requires two coaxial lasers to scan targets

simultaneously. To ensure the two lasers interrogate the same

target at the same time, it is important to minimize the coaxial

laser alignment error to reduce artefacts in the contrast of lidar

returns at the wavelengths of the two lasers. The current assess-

ment of the NSF-DWEL instrument reported an alignment error

of 0.79+0.06 mrad when using the 2.5 mrad beam divergence.

This alignment error translates to about approximately 60% over-

lap between the two laser beams and carries significant

implications to the utilization of bispectral attributes of DWEL

return signals which is further discussed in the §3.
2.3. Bispectral point cloud production
Each individual DWEL scan generates a monospectral point

cloud file for each of the two laser wavelengths, 1064 and

1548 nm. Before merging these two point clouds together to gen-

erate the bispectral (dual-wavelength) point cloud, we first

convert the intensity values of points in digital numbers to

apparent reflectance rapp (unitless), a physically defined quantity

that is related to the radiative and structural characteristics of

scanned targets and independent of range and instrument

optics and electronics, using the radiometric calibration method

in [7]. This radiometric calibration uses a semi-empirical model

that combines a generalized logistic function to explicitly

model telescopic effects due to defocusing of return signals at

near range with a negative exponential function to model the

fall-off of return intensity with range [7]. After generating rapp

at both wavelengths respectively, we developed two ways of

merging two DWEL monospectral point clouds: (i) the intersec-

tion approach and (ii) the union approach. The intersection

approach finds common points in 1064 and 1548 nm point

clouds that are matched with laser shot sequence number and

ranges. To be specific, if two points have the same shot
number and their range difference is smaller than a given

threshold, then the two points are matched as returns from the

same target. These points are saved to the bispectral point

cloud with both 1064 and 1548 nm apparent reflectance values.

Besides the common points found by the above intersection

approach, the union approach further takes into account the

fact that points at one wavelength may not have corresponding

points at the other wavelength. This mismatch can happen

when a target has different reflectance values at the two wave-

lengths resulting in a low return signal, below the instrument’s

detectability at one wavelength, but not the other wavelength.

The union approach synthesizes the rapp value of a point that

is missing at a wavelength from the rapp value of the other

laser wavelength with the help of a synthesized normalized

difference index value (NDI, equation (2.1)) of the laser shot.

The NDI value for this laser shot could be from average rapp

values at the two wavelengths in the same shot or interpolated

from neighbouring shots if this shot does not have any matched

point pairs between the two wavelengths. In the following

equation of the NDI calculation, the superscripts nir and swir
denote the near-infrared (NIR) band of 1064 nm and the

shortwave-infrared (SWIR) band of 1548 nm, respectively.

NDI ¼
rnir

app � rswir
app

rnir
app þ rswir

app

: ð2:1Þ

For the classification procedure developed in this paper, we use

the union approach as it maximizes the number of points in the

bispectral point cloud that are available for spectral and spatial

classification.

2.4. Classification methods
The 3D classification algorithm exploits the spectral attributes of

individual points from the DWEL scans in a supervised classi-

fier, the random forest classifier (RFC) [14] implemented in an

open source Python package Scikit-learn [15]. The spectral attri-

butes of a point that our classification algorithm uses here

include rnir
app and rswir

app , the two apparent reflectance values at

both 1064 and 1548 nm, and the NDI value. We also apply the

same classifier to spatial attributes of points as well as to the

combination of spectral and spatial attributes to investigate

their respective strengths and weaknesses for 3D classification.

The spatial attributes of a point used here refer to the multiscale

characteristics of the local 3D organization of a point and its

neighbouring points within spheres of different diameters

(scales). The 3D spatial organization of points in a local sphere,

which we will call dimensionality here, is quantified by the pro-

portion of each eigenvalue of the principal components of the

recentred Cartesian coordinates of the points in this local

sphere [16], and thus varies from 1D (points set along a line,



Table 2. Key technical specifications of DWEL instruments [3,4].

1064 nm 1548 nm

beam divergence (mrad) 1.25/2.5/5.0

scanning resolution (mrad) 1.0/2.0/4.0

outgoing pulse length (ns) 5.0+ 0.1

pulse repetition frequency (kHz) 2

azimuth scanning range (8) 0 – 360

zenith scanning range (8) 0 – 117

laser beam alignment errora,b (mrad) 0.79+ 0.06

single-target range resolutiona (1s, cm) 4.752+ 0.006 2.333+ 0.001

leaf-likec SNRd at 100 m (70 m)a (unitless) 4(10) 3(10)
aThis specification is from the assessment of NSF-DWEL instrument using 2.5 mrad beam divergence.
bIt was termed interimage alignment in [4].
cLeaf-like reflectance that was used in the assessment: 0.431 at 1064 nm and 0.239 at 1548 nm.
dSignal-to-noise ratio.
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one dominant eigenvalue and two diminutive eigenvalues), to

2D (points set on the surface of a plane, two similarly large eigen-

values and one diminutive eigenvalue) and 3D (points located

freely in a 3D volume, three similar eigenvalues). The dimension-

ality may also change with the scale at which we view a cluster of

points, and, therefore, the dimensionality metrics at multiple

scales are included for the classification. We select the scales con-

sidering the minimum space between points given the scanning

resolution for the minimum scale and the approximate distance

between stems for the maximum scale.

To train the random RFC, we identify clusters of points as the

training sets of woody and leaf matter using open source point

cloud analysis software, such as CloudCompare or Meshlab, by

visually inspecting the colour and shapes of point clusters that

are rendered in composite colour with rswir
app of a point as red,

rnir
app as green and a dark constant as blue. Selecting point clusters

of pure classes, particularly pure leaves, is very difficult, if not

impossible, as most leaves except those really close to the scanner

are usually smaller than the laser spot sizes at the target ranges

given our scanning resolution of 2 mrad. As a result, our training

point samples inevitably include mislabelled points. The super-

vised classifier RFC, however, is known to be robust to noise in

the training data thanks to its strategy of growing multiple classi-

fication trees [14]. These training points are used to train the RFC

before it is applied to classify a whole point cloud. A separate

ground point filtering process [17] is then performed on the

point cloud to separate the ground from the rest of the ‘vegetation’

returns (figure 1).

The classification outputs of this algorithm are threefold

in that we produce a spectral classification using only spectral

attributes, a spatial one using only spatial attributes, and a

spectral–spatial one using both types of attributes. The generation

and comparison of the three outputs identifies the strengths and

weaknesses of spectral and spatial attributes on 3D classifica-

tion of vegetation elements and elucidates the causes of their

qualities, especially the new bispectral attributes.
3. Results and discussion
3.1. Strengths of spectral and spatial attributes from

classification comparison
The comparison between the three point classification results,

i.e. spectral, spatial and spectral–spatial, reveals that the
spectral and spatial attributes generally complement each

other’s strengths (although not always), in differentiating

leaves and woody matter in the 3D space. Figure 2 displays

the overview of the colour-composite scanning image and

the three classification results of the centre scan at Tumbar-

umba Forest site, NSW, Australia, as an example (from top

row to bottom as the colour-composite scan and the spectral,

spatial and spectral–spatial classifications). It is difficult to

visually see the details of a whole 3D point cloud in still

pictures. Therefore, we project the 3D classified points in the

right column of figure 2 to a 2D equal-angle projection in

the left column where the X-axis of the projection is azimuth

and the Y-axis is zenith for a better display. However, it is

stressed that our classifications of vegetation elements are

carried out in 3D space rather than the 2D. From the overview

of the projection images, overall the spectral classification

resolves more fine branches, especially those inside the

upper canopy, than the spatial classification. Conversely, the

spatial classification method produces cleaner identification

of trunk points, which is especially evident at the trunk edges.

Additionally, the spatial classification method helps classify

targets with unusual spectral responses, particularly trunks

and branches with atypically high water content.

The spectral and spatial attributes for vegetation element

classification are suitable for different parts of vegetation

(canopy interior, fine branches, coarse trunks, etc.) and

under different vegetation conditions (dead or live, leaf-on

or leaf-off, water content, etc.). These environmental charac-

teristics of vegetation are convolved with lidar instrument

specifications and lidar data quality, which results in the

actual capabilities of spectral and spatial attributes to classify

vegetation elements in 3D space. The point classification

results from our seven test sites suggest the following typical

cases where the application of either spectral or spatial attri-

butes performs better than the other, while using them

together could improve the classification. Generally the spec-

tral attributes are better at the classification of leaves and

woody matter for the following cases.
(1) Clusters of trunks and branches. Points in such clusters will

display the dimensionality metric of near 3D volume



ground filtering 

random forest classifier

spatial attributes

— dimensionality 

metrics at 

multiple scales 

spectral attributes 

— apparent 

reflectance 

— NDI wood

training samples

leaf

Figure 1. Diagram of the 3D classification method using the RFC and ground filtering algorithms.

(a) (b)

Figure 2. Overview of the classification of one example scan at Tumbarumba Forest, NSW, Australia. From the first row to the fourth: (1) colour-composite images,
(2) spectral classification, (3) spatial classification and (4) spectral – spatial classification. (a) Equal-angle projection image and (b) is the point cloud. In the classi-
fication images, colours represent different elements; red, ground; green, leaves; blue, woody matter. The white areas in the equal-angle projection images are gaps
without returns.
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shape that mostly indicates leaf points according to our

training samples. Hence spatial classification is likely to

fail while the spectral attributes differentiate these woody

points from leaf points, e.g. figure 3a (box i), noticing the

misclassified leaf patch (green) on the trunk (blue) in the

spatial classification but correctly identified by spectral

and spectral–spatial classifications.

(2) Intersection between trunks and ground. The spatial attri-

butes suffer the same problem with classifying the

points of these cases as the last case of cluster trunks

and branches, e.g. figure 3a (box ii) and figure 3c
(box i), noticing the larger leaf patch (green) in the spatial

classification neary the trunk bases than in the spectral

and spectral–spatial classifications.

(3) Interior of canopy. Point clusters inside canopy generally

mix returns from both leaves and woody matter together

and thus bear similar multiscale dimensionality metrics.

Therefore, it is difficult for the spatial classification to

work well for interiors of canopies, e.g. as to identify a

stem inside the dense canopy of an evergreen tree as

shown in figure 3b. However, noticing the thin blue

dots highlighted by the black box in spectral classification



(1) 

colour-composite 

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

(2) 

spectral 

(3) 

spatial 

(4) 

spectral–spatial 
(a) 

(b) 

(c) 

(d) 

Figure 3. Zoom-in images of point clouds from the left column to the right in composite colour and spectral, spatial, and spectral – spatial classification results for
different scans at (a) Harvard Forest north scan, leaf-off; (b) National Canberra Arboretum; (c) Harvard Forest north scan, leaf-on; (d ) Warra Forest. In the classified
point clouds, colours represent different elements; red ¼ ground, green ¼ leaves and blue ¼ woody matter. The black boxes highlight the difference between the
three classifications as described in the §3.1.
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(second column), it is the stem captured by its distinct

spectral attributes than surrounding leaves.

On the other hand, the spatial attributes are better at the

classification generally for the following cases.

(1) Unusual spectral response of vegetation elements. The stronger

spectral contrast of leaves than woody matter at the two

wavelength of DWEL lasers has been observed by spectro-

scopic measurements of various forest objects [18] and our

early pilot DWEL scans [3]. However, we have discovered

outliers, particularly some peculiar woody matter from

our scanning campaigns. Some woody matter shows

much lower reflectance at the SWIR band than the NIR

just as leaves do, for example, the right greenish trunk

marked by box ii of figure 3d (first column). This greenish

trunk appears to have higher water content than usual.

Indeed, it is known that some tree stems do have

photosynthetic capacity with living cells at the surface

[19,20]. The lidar returns of these woody matter with

leaf-like spectral reflectance are labelled incorrectly by

spectral classification (figure 3d, second column). These

spectrally peculiar woody materials, however, are

identified correctly by their spatial attributes (figure 3d,

third column).

(2) Trunk edges. The misclassification of trunk edges by spec-

tral attributes results from the misalignment of the two

lasers at the two wavelengths that causes the two lasers

to illuminate different spots on the trunks. This mismatch

between two illuminated spots may not matter for the
classification as long as the two spots cover similar trunk

surface. However, at trunk edges where laser beams may

be only partially intercepted, the area intercepted by one

laser can differ in size from the other if the two lasers are

not aligned. The contrast in the bispectral attributes for

such cases is not caused by the instrinsic spectral features

of woody matter but artefact from the laser misalignment.

As a result, we note these misclassification of trunk edges

by the spectral classifications (figure 3c, second column,

box ii, but hard to see them without using point cloud

visualization softwares because they are usually narrow

strips of points along trunks in the point cloud). The spatial

attributes do not suffer from this laser misalignment and

thus helps improve the classification of trunk edges in

such cases.

Furthermore, there are a few cases where neither spectral

nor spatial attributes yield a robust classification or using

them together does not always improve the result.

(1) Targets at far ranges. The uncertainty in the apparent

reflectance, i.e. spectral attributes, may be quite large at

far ranges due to a low signal-to-noise ratio of weak

returns [7]. This results in poor quality of spectral attri-

butes in terms of rapp at each wavelength and the

spectral contrast between wavelengths. Meanwhile, tar-

gets at far ranges return low-density points, which

induce considerable uncertainty in the calculation of mul-

tiscale dimensionality metrics. The resulting low quality

of spatial attributes then misclassifies these targets.
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(2) Compounds of the above cases. The natural environment can

be complicated and compounding of the above cases is

not uncommon. Under such circumstances, the strengths

of spectral or spatial attributes may be compromised by

strong weaknesses of the other when using both types

of attributes in the classification.

The above examination of the strengths and weaknesses

of spectral and spatial attributes primarily concerns the

quality of the identification of woody material. After all, it

is easier to visually discern pure woody matter such as

trunks and branches in scans (either projected images or as

point clouds) for the classification assessments, due to their

distinctive shapes and relatively large sizes as compared to

laser beam spots even at far ranges. In contrast, identifying

pure leaf points by visual examination is much more difficult.

However, our classification simply discriminates between

two classes—leaves and woody matter. This binary classifi-

cation scheme implies a better identification of one class

(woody matter), which to some extent also indicates a

better identification of the other class (leaves). Therefore,

the examination of the classification results here is not com-

pletely infallible, but still informative for the classification

performances of both woody matter and leaves.

The examination of the classification results is qualitative

due to the lack of ground truth datasets in 3D space. A quan-

titative assessment of point classification accuracy is certainly

needed, but generally calls for an independent data source

of 3D truth labels of each point. It is difficult to obtain 3D

pointwise ground truth data independent of lidar scans.

Destructive sampling, while providing the overall volume

or weight of leaves versus woody materials, is extremely dif-

ficult and rarely performed. While 2D photos taken by some

lidar instruments in tandem with scanning can aid classifi-

cation assessments, not every point can be registered to

available photo pixels, especially for multiple returns along

laser beams. Therefore, using such 2D photography for 3D

classification accuracy assessement needs further develop-

ment. The common practice to acquire ground truth data

for 2D remote sensing image classification relies on reference

data of higher quality than the data used for classification, or

if using the same source, requires a more accurate process of

creating the reference classification than the classification to

be assessed [21]. Such practices cannot be direclty transferred

to the 3D point classification assessment, and new approaches

and techniques need to be developed for the quantitative

accuracy asssessment of 3D point classification.

Nonetheless, we compared the performances of the three

classifications based on the training data using a cross-vali-

dation technique. We took 75% of the points from the

training data of a scan using stratified random sampling to

train the RFC and used the remaining 25% points with

known labels to validate the classification result and calculate

the overall accuracy. As noted earlier in the §2.4, our training

data inevitably includes mislabelled points and thus the over-

all accuracy obtained in this way is flawed. However, we can

assess the relative performance of the three classifications by

comparing the mean and median of the overall, producer’s,

and user’s accuracies of all the scans from this cross vali-

dation (figure 4). The spectral–spatial classification has the

highest cross-validation overall accuracy, followed by the

spatial classification and then the spectral one, although all

the three report more than 90% overall accuracies, and are
thus on a par with each other. But using both spectral and

spatial attributes for the classification, the variance of the

accuracies across all the scans is signficantly reduced, endor-

sing the important values of both atttributes for a robust

classification across different vegetative environments. The

producer’s accuracy (or omission error) and user’s accuracy

(or commission error) also demonstrate the reduction of

accuracy variance from the synergy between these two

types of attributes. The effectiveness of and sources of uncer-

tainty from the spectral and spatial attributes result in the

different performances provided by the spectral and spatial

classifications, which are discussed in the next section.

3.2. Effectiveness and sources of uncertainty of spectral
and spatial attributes

Both spectral and spatial attributes contribute to the 3D

classification according to their feature importance scores

(FIS) from the RFC in the three classification types, using

spectral attributes only (figure 5, upper right panel), using

spatial attributes only (figure 5, lower right panel) and jointly

using both types of attributes (figure 5, left panel). For the

spectral attributes, the rswir
app ranks the most important, fol-

lowed by the NDI and the rnir
app the least important, for both

spectral classification and spectral–spatial classification.

Leaves and woody matter share similar reflectance at the

NIR band and thus the rnir
app has the lowest FIS in the RFC.

However, the lower FIS of the NDI than the rswir
app is not

expected. The NDI, in theory, characterizes the intrinsic spec-

tral difference between leaves and woody materials better

than the rswir
app because the dual-wavelength-based NDI can-

cels out the effect of vegetation structural characteristics on

the apparent reflectance, while the single-wavelength rswir
app

does not. In this case, the misalignment of the two laser

beams may reduce the fidelity of the bispectral difference sig-

nals from the NDI. The unexpected FIS of the NDI, lower

than the rswir
app , suggests that the laser misalignment may be

affecting the quality of spectral information from dual-

wavelength scans. The current laser beam alignment error of

0.79+ 0.06 mrad using 2.5 mrad beam divergence (table 2)
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Figure 5. Boxplot of feature importance to RFC from all the scans in the three classification types: spectral – spatial, left panel; spectral, upper right panel; spatial,
lower right panel. Each line is for a feature from spectral or spatial attributes. The purple represents spectral attributes. The orange and the green represent the
spatial attributes at different scales, where pc1 and pc2 are the proportions of the first and second eigenvalues from the PCA on the recentred Cartesian coordinates
of a local point cluster (see §2.4 for more details). The suffix from ‘s01’ to ‘s16’ represent the scales at which the spatial attributes are calculated, from 1 m (s01) to
0.05 m (s16). The dots are mean FIS and the short vertical lines are median values. The gaps between two whisks (horizontal lines) are the quartiles and the extent
of the whisks are 5 and 95 percentiles. The numbers on the right side of each panel are the CV of importance scores. (Online version in colour.)
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results only in 60% overlap of different laser beam spots

between the two wavelengths [4]. As a worst case example,

for a leaf cluster with reflectance of 0.431 at 1064 and 0.239

at 1548 nm (table 2), this spot difference could alter the true

NDI of 0.287 to 0.154, an error of almost 50%, assuming

that 40% (the non-overlap part) of the 1548 nm laser inter-

cepts branches with reflectance 0.431 at both wavelengths

but the 1064 nm all intercepts leaves.

The spatial attributes, presented in figure 5 as (pc1_s01-

pc1_s16) and (pc2_s01-pc2_s16), are the proportions of the

first and second eigenvalues from the PCA on the recentred

Cartesian coordinates of a local point cluster (see §2.4 for

more details) at the 16 scales from 1 m (s01) to 0.05 m (s16).

The larger ‘pc1’ at a given scale, the more likely a point clus-

ter at this scale forms a 1D line shape. Similarly, the larger
‘pc2’, the more likely a point cluster forms a 2D plane

shape at a scale. The FIS of the spatial attributes are not domi-

nated by any single scale but similar between several scales

(at least scale _1 to _3 in figure 5), which confirms the need of

multiple scales to capture the spatial features of objects from

point clouds. The proportions of the first eigenvalues from

PCA (pc1 in figure 5) at larger scales are more important.

When viewed at larger scales, the most distinct difference

between leaves and woody materials is likely due to the 1D

line shapes of trunks and branches versus the 3D volume

shapes of leaf clusters. Therefore, the pc1, indicating the simi-

larity to a 1D line shape, dominate the contribution to the

classifications. At smaller scales, the point density is probably

insufficient for the PCA to capture the spatial shapes of

objects. Finer beam divergence can increase point densities
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at far ranges but imposes more demanding requirements of

laser coalignment accuracy (see §3.3).

Comparing FIS distributions between the spectral and

spatial classifications (right two panels in figure 5), the spec-

tral attributes show smaller relative variations (coefficient of

variation, CV) in FIS than the spatial attributes. The spectral

domain of the DWEL scans carries the intrinsic spectral con-

trast of vegetation elements and thus contributes to the

classification more consistently while varying spatial arrange-

ments and sizes of vegetation elements across sites result in

different effectiveness of spatial attributes to the classification.

This site variation in the spatial attributes also explains the

larger CV of FIS of spectral attributes in the spectral–spatial

classification than in the spectral classification. Different

effectiveness of spatial attributes to the classification across

sites induces assimilating different levels of additional

spectral contribution to the synergistic spectral–spatial classi-

fication. Comparing within the spectral–spatial classification,

while the mean and median FIS of the spectral attributes are

similar to the spatial attributes at several scales, the larger

upper percentiles of spectral FIS suggest the great potential

of spectral attributes in 3D classification. However, warrant-

ing this potential needs further improvements of spectral

lidar manufacturing and data processing for better robustness

in the quality of spectral attributes.

3.3. Potential improvements in utilization of spectral
and spatial information

The aforementioned examination and analysis of our classifi-

cation results reveal the quality issues associated with both

spectral and spatial attributes and offer several potential

improvements in the utilization of the spectral and spatial

information from the novel spectral TLS for forest ecology,

such as DWEL. First, the efficacy of spectral attributes relies

on the accuracy of both the radiometric calibration and

laser beam alignment. A better radiometric calibration gives

more accurate apparent reflectance at each wavelength, i.e.

the individual spectral attributes. Points at far ranges none-

theless will have less accurate apparent reflectance values,

due to the fall off of SNR with range. It is possible to take

into account this uncertainty of spectral attributes for a

better spectral–spatial classification or other applications,

by, for example, using smaller weights on spectral attributes

for points at far ranges. The quality of spectral information

also requires an accurate laser beam coalignment to minimize

artefacts in the spectral contrast and provide better presenta-

tions of instrinsic spectral features of vegetation elements in

3D space. Analogous to multispectral imaging sensors, we

cannot really use the spectral bands unless these bands are

well registered in order to ensure the pixels from all the

bands represents the same target. Although a single super-

continuum laser (while laser) has been prototyped for

indoor laboratory test of a spectral scanning lidar to avoid

multilaser coalignment [22], there seems a much longer

path to achieve its operational scanning due to the high

cost of white lasers and technical difficulties of balancing

the safety of white laser powers and detectabilty of splitted

return energy at each wavelength.

Second, for the spatial attributes, a good selection of

scales is important, but there are no good scales universal

for every part of a scan or different sites. It is possible to

select a set of reasonable scales for most parts of a scan
according to scanning resolutions and general distances

between tree trunks. However, several common cases, such

as varying point densities with ranges and branch sizes, clus-

ters of trunks and/or branches, etc., call for different scales to

better capture the spatial shapes of targets for classification.

Merging multiple scans via registration will alleviate the

impact of varying point density on the quality of spatial attri-

butes, but not completely. Separating individual trunks and

branches from a cluster may improve the quality of spatial

attributes by calculating the dimensionality metrics using

points separately from individual trunks and branches.

Therefore, point cloud segmentation algorithms (such as the

covering technique to partition points into small clusters in

the quantitative structure model [23]) can be applied to

generate 3D primitives or patches for object-based classifi-

cation. Higher point density from finer beam divergence

and scanning resolution (such as those currently offered by

commercial single-wavelength TLS) can also help resolve

the spatial shapes of vegetation elements of small sizes or at

far ranges. But for spectral lidars, this finer beam divergence

imposes even more demanding laser coalignment accuracies

for the application of new spectral information to 3D mapping

of biochemical and biophysical properties in vegetative

environments. Before achieving a low-cost building of such

high-quality and rugged spectral lidars for large-scale outdoor

forest scans, good balance between beam divergence and

laser coalignment accuracy needs to be identified for specific

applications and the combination of single-wavelength lidars

of very fine beam divergence and dual-/multi-wavelength

lidars can be explored.

A further fine-tuning of the classification can also be per-

formed using the full-waveform nature of the scans. Full-

waveform data retains return pulse shapes that prove helpful

to point cloud classification. Tree trunks that intercept laser

beams near-orthogonally return single sharp pulses, while

soft vegetative targets such as leaf clusters, or oblique sur-

faces such as trunk edges, return single/multiple elongated

pulses [24]. The contrast in return pulse widths between

tree trunks and leaf clusters can aid the classification by

examining the ratio of pulse peak intensity to pulse width

but still needs spectral and spatial attributes to reduce the

confusion between leaf clusters and trunk edges [24].
4. Conclusion
This study of vegetation element classification in 3D space

explores the values of spectral and spatial inforation simula-

taneously offered by the novel dual-wavelength lidar, the

DWEL. The analysis of three different classifications high-

lights the spectral and spatial attributes that each perform

better at identifying different parts of vegetation (canopy

interior, fine branches, coarse trunks, etc.) under different

vegetation conditions (dead or live, leaf-on or leaf-off, water

content, etc.). These environmental characteristics of veg-

etation, convolved with the lidar instrument specifications

and lidar data quality, result in the varying capabilities of

spectral and spatial attributes to classify vegetation elements

in 3D space.

We have observed that both spectral and spatial features

of the point cloud contribute to the point classification and

complement each other to provide a more robust and accu-

rate classification result. Dual-wavelength laser scanning
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allows the use of the differential response at the two wave-

lengths, which offers a presentation of intrinsic spectral

contrast of vegetation elements by reducing the range,

telescopic and electronic effects as well as the vegetative

structural influences on interpreting lidar return signals.

The bispectral response thus provides an important new

source of information that is potentially superior to single-

wavelength scanning and allows more utilizations of 3D

scanning data. At the same time, it introduces new sources

of error that may be difficult to overcome, especially in a

first-generation instrument. Better control of alignment,

coupled with optimization of other scan parameters, such

as beam divergence and angular sampling, will bring

lower variance and higher accuracy to the dual-wavelength

information.

Regarding the utilization of spatial attributes for the

classification, multiple spatial scales are needed to capture

well the spatial features of objects from point clouds. The

selection of those scales is important, but it may be difficult

to reach a consensus for different parts of a point cloud or

different sites due to the complexity of forest environments

and varying point densities. For example, at all but the

finest scales, fine branch hits are likely to be misclassified

when surrounded by leaves. To better capture spatial fea-

tures, object-based spatial attributes and consequent

classifications rather than point-based need to be investigated

in the future by segmenting the point cloud into 3D primi-

tives or patches. Finer beam divergence and scanning

resolution can also help resolve the spatial shapes of veg-

etation elements of small sizes or at far ranges, however,

for the applications of spectral lidars, on the condition of

achieving more demanding laser coalignment accuracies

imposed by finer beam divergence.

In our examples, a simple cross-validation test using the

training data shows the value of including both spectral
and spatial attributes in the classification, with the highest

accuracies observed for spectral–spatial classification, fol-

lowed closely by classifications using spatial and spectral

attributes alone. However, spatial structure is more irregular

across sites and hence contributes to the classification differ-

ently, while the bispectral domain offers an intrinsic feature

of vegetation elements, the spectral contrast in their reflec-

tance that contributes to the classification more consistently

across sites. This ability not only enhances the accuracy of

the spectral–spatial classification but also reduces its var-

iance across the multiple vegetation types we have examined.

In conclusion, the value of dual-wavelength spectral scan-

ning for the separation of leaf and woody signals is enhanced

by simultaneously utilizing 3D spectral and spatial data.

Together, the two information domains acquired by the

DWEL instrument provide a new model that shows great

promise for full exploitation of bispectral information in

studying vegetative environments.
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