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Ferroptosis is a novel form of regulated cell death trigged by various biological

processes, and p53 is involved in different ferroptosis regulations and functions

as a crucial regulator. Both DNA and RNA can fold into G-quadruplex in GC-rich

regions and increasing shreds of evidence demonstrate that G-quadruplexes

have been associated with some important cellular events. Investigation of

G-quadruplexes is thus vital to revealing their biological functions. Specific

G-quadruplexes are investigated to discover new effective anticancer drugs.

Multiple modulations have been discovered between the secondary structure

G-quadruplex and p53, probably further influencing the ferroptosis in cancer.

G-quadruplex binds to ferric iron-related structures directly and may affect the

p53 pathways as well as ferroptosis in cancer. In addition, G-quadruplex also

interacts with p53 indirectly, including iron-sulfur cluster metabolism, telomere

homeostasis, lipid peroxidation, and glycolysis. In this review, we summarized

the latent interplay between G-quadruplex and p53 which focused mainly on

ferroptosis in cancer to provide the potential understanding and encourage

future studies.
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Introduction

Ferroptosis is a newly identified type of regulated cell death that has attracted

considerable attention in explaining the signaling pathways and defined effector

mechanisms. Triggering cell death is one of the principal approaches to killing cancer

cells. Emerging evidence shows cancer cells exhibit an increased iron demand compared

with normal, non-cancer cells. This iron dependency can make cancer cells more

vulnerable to ferroptosis. Therefore, exploiting how the ferroptosis are modulated

could open new therapeutic avenues for eliminating cancer cells.

Although the precise molecular mechanism of ferroptosis has not been fully

understood, many different genes involved in iron metabolism and lipid peroxidation,
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such as GSH peroxidase 4 (GPX4) and solute carrier family

7 member 11 (SLC7A11), have been shown to be the key

regulators in ferroptosis (Chen X. et al., 2021). Recently,

studies have demonstrated that p53 regulates ferroptosis

through transcription-dependent and -independent

mechanisms (Kang et al., 2019; Liu et al., 2019; Liu J. et al.,

2020; Liu and Gu, 2022). P53 was discovered to bind to the

promoter region of SLC7A11 to repress its expression (Jiang

et al., 2015; Ou et al., 2016). The binding of p53 to dipeptidyl-

peptidase-4 (DPP4) protein decreased lipid peroxidation and

ferroptosis (Xie et al., 2017). PTGS2 expression was

demonstrated to be upregulated by ferroptosis in a p53-

dependent manner (Jiang et al., 2015). Conversely, p53 acts as

a positive regulator of ferroptosis via regulation of cytochrome c

oxidase 2 (SCO2), glucose transporter (GLUT)1, GLUT4 and

glutaminase 2 (GLS2) (Schwartzenberg-Bar-Yoseph et al., 2004;

Zhang et al., 2018). Besides, p53 suppresses the expression of

RNA-binding protein ELAV-like RNA-binding protein 1

(ELAVL1), leading to impaired ELAVL1-LINC00336

interaction and further promoting ferroptosis (Wang et al.,

2019).

Furthermore, p53’s role in the regulation of genes involved in

metabolism has been implicated in its ability to regulate

ferroptosis (Tarangelo et al., 2018; Liu and Gu, 2021; Yu

et al., 2021). Arachidonate 12-lipooxygenase (ALOX12), a

member of the lipoxygenase family that oxygenates

polyunsaturated fatty acids (PUFAs), was identified as an

important positive regulator for p53-mediated ferroptosis

(Chu et al., 2019). The p53 suppresses ferroptosis through the

induction of cyclin-dependent kinase inhibitor 1A (CDKN1A/

p21) expression by suppressing the metabolic stress-induced

ferroptosis (Tarangelo et al., 2018). The iPLA2β controls p53-

driven ferroptosis by mediation detoxification of peroxidized

lipids (Chen D. et al., 2021). Spermidine/spermine N1-

acetyltransferase (SAT1) was also a direct p53 target that

induced lipid peroxidation and sensitizes cells to undergo

ferroptosis (Ou et al., 2016). Therefore, p53 represents a novel

regulator of ferroptosis, an iron-catalyzed form of regulated

necrosis that occurs through excessive peroxidation of PUFAs

(Dixon et al., 2012) (Figure 1). An improved understanding of

the molecular mechanisms and cellular factors of p53 in

ferroptosis regulation will yield new therapeutic strategies for

cancer.

Four guanines bind together through eight Hoogsteen

hydrogen bonds to form G-quartet, and two or more

G-quartets stack to become G-quadruplex (Yuan et al., 2011).

Both DNA and RNA can fold into G-quadruplex in GC-rich

regions, such as protomer regions, telomere regions, or UTR

regions, and increasing shreds of evidence demonstrate the

involvement of G-quadruplexes in different biological pathways

(Spiegel et al., 2020; Varshney et al., 2020). The correction

between G-quadruplex and cancer can be mainly described in

the following three aspects. First, the promoter regions contain

numerous G-rich sequences which can form G-quadruplexes

(Shen et al., 2021). The G-quadruplex on the coding strand

blocks the transcription complex and inhibits transcription,

while the G-quadruplex on the non-coding strand helps to

unwind the duplex and facilitate the transcription (Hänsel-

Hertsch et al., 2016), hence the G-quadruplex functions in

oncogene promoters have been well studied as well as ligands

investigation (Siddiqui-Jain et al., 2002; Nasiri et al., 2014; Zhang

et al., 2017). Second, as nucleoprotein complexes at the ends of

chromosomes, the telomere is essential for chromosome stability

and genome integrity. The repetitive G-rich sequences in telomere

fold into G-quadruplex and block the telomeric elongation in

cancer cells, thus the G-quadruplex is an effective target for tumor

suppression and different G-quadruplex ligands are being

developed to inhibit telomerase activity in cancer (Tauchi

et al., 2003; Zhu et al., 2012; Beniaminov et al., 2016). Third,

the genome instability is regulated by G-quadruplex through

DNA replication (Rhodes and Lipps, 2015), leading to

apoptosis and autophagy of cancer cells, and the ligand study

in this area has been well-developed (Bywater et al., 2012; Xu et al.,

2017; Beauvarlet et al., 2019). All these regulations support

G-quadruplex as the anti-cancer target using G-quadruplex

binding ligands as a tool. Although the primary sequences of

G-quadruplexes are all G-riched with similar lengths, the

secondary structures in three-dimensional reveal diverse

topologies, providing possibilities for targeting.

FIGURE 1
Regulation of ferroptosis by p53. Various proteins involved in
iron metabolism and lipid peroxidation are modulated by p53.

Frontiers in Molecular Biosciences frontiersin.org02

Zhang et al. 10.3389/fmolb.2022.965924

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.965924


The p53 has been found to bind telomeric G-quadruplex

directly through DNA binding domains (Adámik et al., 2016).

Both full-length and C-terminal regions of p53 display strong

binding with myc G-quadruplex in the NHEIII1 region (Petr

et al., 2016). The binding between p53 and G-quadruplex

participates in gene regulation, in addition, the G-quadruplex

can in return modulate the p53 function. The p53 RNA

G-quadruplex structure close to the poly(A) site recruits

DHX36, RNA helicase maintaining pre-mRNA 3′-end
processing after UV damage (Newman et al., 2017), and the

G-quadruplex structures formed in the GC-riched region of

p53 intron 3 can regulate the splicing of p53 intron 2 (Marcel

et al., 2010). Moreover, as part of the non-B DNA structure

suppression system, the defection of p53 promotes the influence

of genetic instability by G-quadruplex and i-motif (AMPARO

et al., 2020), and the G-quadruplex structure impairs the

transactivation of the target genes of p53α isoform

(Porubiaková et al., 2019). The regulation network of p53 and

G-quadruplex suggests potential modulation in more fields and

this paper summarized their roles in the regulation of ferroptosis

in cancer (Table 1).

G-quadruplex interacts with ferric
iron or heme

A mononuclear Fe (III) complex stabilizes G-quadruplex

through π-π stacking and inhibits DNA amplification (Ebrahimi

et al., 2015). As an essential regulatory factor, heme is originally

considered as ferric ions storage and release pool (Daher et al.,

2017; Fiorito et al., 2020), and in recent decades more studies

display the heme function in cancer area (Gamage et al., 2021).

Tumor cells employ heme to promote mitochondrial oxidative

phosphorylation (OXPHOS) through the electron transport

chain (ETC) (Hooda et al., 2013; Sugiyama et al., 2014; Alam

et al., 2016; Fukuda et al., 2017; Ghosh et al., 2020). Heme binds

to almost all parallel G-quadruplex structures to form a stable

heme-G-quadruplex complex (Nakajima et al., 2022). Labile

heme binds to the G-quadruplex in the myc promoter region

and blocks the transcription, as well as the expression of myc

downstream genes (Canesin et al., 2020). The G-quadruplexes

formed in human ribosomes regulate heme bioavailability

through binding to heme or releasing heme through a

competitive ligand, PhenDC3 (Mestre-Fos et al., 2020), and

further regulating genes related to ferroptosis (Gray et al.,

2019). Moreover, G-quadruplex displays the function to be

the labile heme pool in vivo (Kawai et al., 2022). Through

dye-loaded hemin/G-quadruplex modification, the UiO-66

metal-organic framework nanoparticles can be used to detect

microRNAs or genes including p53 and BRCA1 (Zhang et al.,

2021). An extension of this study is the detection of more genes

or RNAs based on sequence specificity. In brief, the

G-quadruplex exhibits regulatory function through direct

interaction with ferric ion or heme.

G-quadruplex and p53 in ferroptosis

G-quadruplex and iron-sulfur cluster
biosynthesis in p53-regulated ferroptosis

The p53 participates in iron metabolism by regulating the

transcriptional process of iron-sulfur cluster assembly enzyme

(ISCU), and ISCU is critical for the biogenesis of iron-sulfur (Fe-

S) cluster (Funauchi et al., 2015). The structure of the Fe-S cluster

is first determined in the last century (Iwata et al., 1996) and it

plays important role in cancer. In lung cancer, the overexpression

of NFS1, one kind of iron-sulfur cluster biosynthetic enzyme, will

sustain the iron-sulfur cluster expression, and inhibition of

NFS1 leads to iron starvation and result in ferroptosis

(Alvarez et al., 2017). In addition, sulfur transfer pathways

also participate in the occurrence of ferroptosis (Yu et al.,

2017). Fe-S cluster is involved in intracellular reduction/

oxidation (REDOX) processes, FANCJ is one of the Fe-S

cluster helicases, and the conserved Fe-S domain containing

four cysteine residues is important for the cluster regulation

(Bharti et al., 2013). Mutations in this FANCJ Fe-S domain would

influence the cancer susceptibility (Paulo et al., 2018).

FANCJ is likely to be the only Fe-S cluster helicase to open

the G-quadruplex structures to this day (Bharti et al., 2013).

Human cells with FANCJ defection exhibit increased sensitivity

to the G-quadruplex specific ligand (Wu et al., 2008), and FANCJ

mutated cells derived from patients enrich in genome regions

FIGURE 2
Schematic diagram of the regulation network of
G-quadruplex and p53 in ferroptosis (Created with
BioRender.com).
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along with G-quadruplex structures (London et al., 2008). A

series of mutation designs demonstrate that FANCJ unwinds

G-quadruplex in the genome through the Fe-S domain,

correlating with the ability of ferric iron incorporation and

metabolism. Therefore, based on ferric iron regulation and

ferroptosis, drugs targeting G-quadruplexes should be

reconsidered in clinical use in cancer patients with FANCJ

deficiency (Odermatt et al., 2020).

In a word, the Fe-S cluster helicase FANCJ utilizes the Fe-S

domain to regulate G-quadruplex and likely further influence

p53-related iron metabolism and ferroptosis, as well as affect

genomic instability by unwinding G-quadruplexes in cancer.

The p53-regulated telomere and the
G-quadruplex function in ferroptosis

The regulatory relationship between telomere and p53 is

complex. For example, telomere inactivation can activate p53,

which leads to DNA damage and DNA repair at the end of

chromosomes (Sahin et al., 2011), meanwhile, the

p53–p21–DREAM–E2F/CHR pathway, in turn, down-

regulates telomere maintenance and influence telomere

homeostasis in cancer (Engeland, 2018; Vodicka et al., 2021).

As a signature of ferroptosis, ROS plays a crucial role in

cancer. ROS could generate 8-oxoguanine through in situ

oxidation of guanine in telomere, and this oxidative telomeric

DNA damage, as well as the increased TERT expression, appears

to be one of the most important causes of telomere shortening,

resulting in increased mortality and cancer recurrence (Ko et al.,

2018; Kordowitzki, 2021). RSL3-mediated oxidative stress in

ferroptosis drives a series of histone modifications, and

H3K79me3/H2A.Z could regulate the telomeric regions (Logie

et al., 2021). Telomerase reverse transcriptase (TERT) is involved

in ferroptosis-related differential expression genes, indicating

potential regulation between telomere and ferroptosis (Liu H.-

J. et al., 2020).

Telomeres are found to form G-quadruplex structures to

inhibit DNA repair and sustain genome integrity. The ROS in

ferroptosis will cause the replacement of guanine by 8-oxo-

guanine and destroy the G-quadruplex structure, influencing

genome instability and telomere homeostasis in cancer, which is

also regulated by p53 pathways.

G-quadruplex and lipid peroxidation in the
p53-regulated ferroptosis

Accumulated iron triggers ferroptosis by producing excessive

ROS and inducing lipid peroxidation (Liu et al., 2022; Ou et al., 2022;

Qiao et al., 2022). As a critical component of the cellular antioxidant

defense system, glutathione (GSH) prevents the accumulation of

TABLE 1 The regulation and mechanism in ferroptosis related to G-quadruplex and p53.

Process Regulator Targets Mechanism Reference

G-quadruplex-
heme interaction

labile heme G-quadruplex in myc
promoter region

Labile heme binds to the G-quadruplex in the
myc promoter region and blocks the
transcription

Canesin et al. (2020)

G-quadruplex heme G-quadruplex could bind or release heme in
different conditions

Mestre-Fos et al. (2020); Gray et al. (2019)

iron-sulfur cluster
biosynthesis

p53 iron-sulfur cluster assembly
enzyme (ISCU)

P53 regulates ISCU and affects the
biosynthesis of Fe-S cluster

Funauchi et al. (2015)

Fe-S cluster
helicase FANCJ

G-quadruplex FANCJ unwinds G-quadruplex through Fe-S
domain

Wu et al. (2008); London et al. (2008); Odermatt
et al. (2020)

telomere
homeostasis

telemore p53 Telomere inactivation could activate p53 Sahin et al. (2011)

p53 telemore P53–p21–DREAM–E2F/CHR pathway
down-regulates telomere maintenance

Engeland (2018); Vodicka et al. (2021)

ROS G-quadruplex ROS in ferroptosis destroies G-quadruplex
and affect telomere homeostasis

Ko et al. (2018); Kordowitzki (2021)

lipid peroxidation MDM2 p53, PPARα MDM2 promotes ferroptosis by
p53 degradation and PPARα-mediated lipid
remodeling

Bykov et al. (2018); Venkatesh et al. (2020)

G-quadruplex MDM2 G-quadruplex suppresses
MDM2 transcription

Lago et al. (2021)

Glycolysis p53 GLUT1, GLUT4, GLUT12 P53 inhibits the transcription of GLUT
family, and imposes ferroptosis

Schwartzenberg-Bar-Yoseph et al. (2004);
Zawacka-Pankau et al. (2011); Yokoyama et al.
(2014)

G-quadruplex AMPK/SnRK, NrF2-related,
and hypoxia-responsive
transcription factors

G-quadruplex regulates transcription of
target genes

Belmonte-Reche et al. (2022); Andorf et al.
(2014)
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ROS and constitutes the major cellular defense mechanism against

ferroptosis. GSH is synthesized from L-cysteine, L-glutamate, and

glycine; therefore, the cellular availability of these amino acids could

directly affect the concentration of GSH. Several studies have

developed a strategy based on G-quadruplex formation for the

detection of glutathione and cysteine in the biological sample

(Leung et al., 2013; Zhao et al., 2013). These methods were

developed to investigate G-quadruplex prevalence in human cells

and to study their biological functions, presenting the next key

challenges that need to be addressed to fully unravel their biology

and therapeutic potential. MDM2 can target and degrade p53, while

oncogene activation could prevent MDM2 from binding to p53 and

stimulate the p53 acetylation (Bykov et al., 2018). MDM2 also can

promote ferroptosis by PPARα-mediated lipid remodeling

(Venkatesh et al., 2020). G-quadruplex structures are present in

the MDM2 promoter and G-quadruplex ligands inhibit

MDM2 expression and p53 degradation in the liposarcoma

(Lago et al., 2021). Based on these published data, we have

reasons to believe that G-quadruplex could be exploited to detect

and modulate lipid peroxidation, probably reconstituting the p53-

regulated ferroptosis signal.

G-quadruplex involved in p53-regulated
glycolysis and ferroptosis

Under most circumstances, p53 inhibits glucose uptake via

direct attenuating glucose transporters glucose transporter 1

(GLUT1), GLUT4, and GLUT12 gene transcription and then

drives glycolysis inhibition (Schwartzenberg-Bar-Yoseph et al.,

2004; Zawacka-Pankau et al., 2011; Yokoyama et al., 2014).

Glucose-metabolism imbalance would activate the LKB1/AMPK

regulatory axis to cause the phosphorylation of acetyl-CoA

carboxylase (ACC) to inhibit its activity and impose a regulatory

effect on tumor cell ferroptosis (Lee et al., 2020; Li et al., 2020).

Glycosyl conjugation to drugs is a strategy being used to take

advantage of GLUT overexpression in cancer cells in comparison

with non-cancerous cells. Efres et.al have synthesized thiosugar

naphthalene diimide conjugates as G-quadruplex ligand and

proved their antiproliferative activity in colon cancer cells

(Belmonte-Reche et al., 2022). Furthermore, G-quadruplex motifs

are found in numerous genes encoding members of the AMPK/

SnRK, NrF2-realated, and hypoxia-responsive transcription factors

(Andorf et al., 2014). Collectively, G-quadruplex may aid in energy

status gene responses and provide a mechanistic basis for linking

Glycolysis signals to ferroptosis.

Conclusion and perspectives

Ferroptosis is a new regulated cell death form and the

mechanisms in cancer are still under exploration. As

important regulatory elements, both G-quadruplex and

p53 are involved in various ferroptosis-related processes, and

the potential diversified interplay provides more understanding

of ferric ion/heme, Fe-S cluster biosynthesis, telomere

homeostasis, lipid peroxidation, and glucose metabolism.

The classic regulatory mode of p53 contains stabilization,

antirepression, and promoter-specific activation (Kruse and Gu,

2009), and recent research has highlighted the importance of the

posttranslational modifications (Liu et al., 2019; Zhang L. et al.,

2022). The p53 participates in regulating iron-sulfur cluster

assembly enzyme activity, interacts with telomere, is involved

in lipid peroxidation, and regulates glycolysis. The complicated

models are tightly involved in p53-mediated ferroptosis.

Targeting p53 pathways is a promising strategy for anticancer

therapy, and various inhibitors are being developed, including

ZNF498 (Zhang X. et al., 2022), and Eupaformosanin (Wei et al.,

2022).

G-quadruplex acts as a vital regulator for gene activity based on

its biological function thus attracting great enthusiasm from

researchers in the field of drug discovery. G-quadruplex binding

ligands, mostly small molecules, change the stabilization of this kind

of secondary structure and further affect the gene activity, telomeric

function, and genome instability in multiple cancers. Many small

molecules have been discovered and several molecules have

progressed to clinical trials, such as Quarfloxin/CX-3534 (Phase

I/II) targeting different cancers (NCT00780663, NCT00955786)

(Papadopoulos et al., 2007; Drygin et al., 2009), and CX-5461

(Phase I) targeting BRCA1/2 deficient cancer (NCT02719977)

(Xu et al., 2017; Khot et al., 2019; Hilton et al., 2022).

However, the G-quadruplex regulation in cancer still remains

unsolved problems. Many G-quadruplex ligands don’t exhibit

selectivity between different G-quadruplexes (Chen J. et al., 2021;

Galati et al., 2021), generating potential side effects or low efficiency.

The binding affinity of some ligands still needs to be improved (Kosiol

et al., 2021) to benefit clinical usage. The regulation of G-quadruplex

and ligand function in cancer is yet not clear. Therefore it is necessary

to explore new modulations, such as the direct/indirect interactions

with p53 in ferroptosis regulation. Here we show that p53might be an

important regulator or target of the G-quadruplex, especially in

ferroptosis of cancer research (Figure 2). It is still a challenge to

figure out howp53 andG-quadruplex interplay inmore stages such as

posttranslational modifications or DNA binding, and if the crosstalk

functions in other processes like cell cycle/apoptosis. More potential

interactions need to be characterized with high resolution, thus

methodologies including computational simulation and

experimental tools are also required for robust molecular

exploration. In addition, it will be interesting and crucial to study

the direct interactions between p53 and G-quadruplex in the

regulation of ferroptosis in cancer to achieve a clearer mechanism.

Besides, diverse studies regarding p53 and G-quadruplex in

ferroptosis are operated in vitro, and more in vivo validations are

essential for future therapeutic investigations. Furthermore, more

specific targeting strategies are required to evolve based on the

potential interplay between p53 and G-quadruplex.
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In conclusion, the G-quadruplex and p53 regulation network

might be a potential target for cancer research in the future and the

mechanisms will be better understood as the research attention

increases, hopefully benefiting the clinical cancer treatment.
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