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1. � INTRODUCTION

Virologists have long known that viral pathogenesis must be 
studied from the standpoint of both the virus and the host. 
Nevertheless, given its relative simplicity, studying the virus 
has always been more tractable. As outlined in the previous 
chapters, virus-centric approaches have yielded a tremen-
dous amount of information about viral genetics, viral rep-
lication cycles, and host and tissue tropisms. Along the way 
have come insights into host innate and adaptive immune 
responses and the many ways in which viruses antagonize 
these responses while exploiting other cellular processes to 
their advantage. In the last decade, however, new opportuni-
ties to study the host response have emerged. In 1990, the 
National Institutes of Health and the Department of Energy 
announced a plan to map and sequence the human genome. 
Eleven years later, the first draft of the genome was released, 
and in 2003, the project was declared complete.

The sequencing of the human genome dramatically 
changed the field of viral pathogenesis. Virologists were 
now able to move beyond virus-centric or single-gene 
approaches and instead investigate the host response to 
infection on a genome-wide scale. With the human genome 

sequence in hand, it became possible to predict the complete 
constellation of human genes, their corresponding mRNA 
transcripts, and encoded protein products. This information 
spurred the development of methods to measure global gene 
expression and protein abundance, which in turn mandated 
the development of computational methods to interpret the 
resulting avalanche of data (Sidebar 1).

In this chapter, we focus on the insights into viral 
pathogenesis that are provided by examining the host 
transcriptional response, including the dynamics of innate 
and acquired immunity, diagnostic signatures, and the 
identification of targets for antiviral drugs. We also touch 
briefly on data interpretation and on protein and metab-
olite profiling. Although the methods used to measure  
protein and metabolite abundance (i.e., chromatography 
and mass spectrometry) differ from those used to measure 
gene expression, downstream data analysis approaches 
are similar, and the integration of gene expression and 
protein and metabolite abundance data brings us closer to 
a true systems level understanding of virus–host interac-
tions. The use of large-scale genetic and protein–protein 
interaction screens to identify host proteins that promote 
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or inhibit viral survival is the subject of Chapter 12, The 
Virus–Host Interactome.

2. � USING GENOMICS TO STUDY VIRAL 
PATHOGENESIS

On the most basic level, profiling the host transcriptional 
response to viral infection entails measuring changes 
in the level of mRNA transcripts present in a cell pop-
ulation in the presence or absence of virus. Indeed, the 
first published application of large-scale genomic pro-
filing in virology was essentially this simple; the study 
examined the transcriptional response of primary human 
fibroblasts at three time points following infection with 
human cytomegalovirus (Zhu et al., 1998). Yet even this 
simple experimental plan, which monitored the expres-
sion of approximately 6000 genes, revealed not only the 
complexity of the host response, but also the complexity 
of data interpretation. Changes in transcript abundance 
can be due to changes in synthesis, stability, or degra-
dation and such changes may or may not correspond to 
changes in protein abundance or activity. The transcrip-
tional response is dependent upon time, cell type, virus, 
and other parameters. Even today, the biological func-
tion of many genes is unknown. And with the number of 
transcripts profiled by current technologies numbering in 
the tens of thousands, the computational requirements for 
data analysis are considerable.

The initial study of the host response to human cytomega-
lovirus identified 258 mRNA transcripts that changed by a 
factor of four or more, including transcripts encoding major 
histocompatibility complex I surface receptors and multiple 
components of the pathway that produces prostaglandin E2 
(an inflammatory mediator). The authors concluded: “The 
global analysis of changes in mRNA levels provides a catalog 
of genes that are modulated as a result of the host–pathogen 
interaction and therefore deserve further scrutiny.” To a large 
extent, this forward-looking statement also sums up what is 
perhaps the main challenge associated with genomic profil-
ing. The global analysis of transcription produces a catalog 
of differentially expressed genes, and oftentimes this catalog 
is extremely large. Investigators must devise strategies to sift 
through these catalogs and determine which genes deserve 
further scrutiny. Ideally, genomic profiling should also do 
more than produce lists; it should reveal interrelationships 
between genes, the structure and activity of gene networks, 
and the function of genes for which no role has been pre-
viously ascribed. There is also meaning to be gained from 
patterns within the data. As described later, this information 
can be used for predictive or diagnostic purposes or for com-
putational screens for new antiviral drugs.

2.1 � Transcriptional Profiling

The earliest assays for large-scale transcriptional profil-
ing consisted of cDNAs or oligonucleotides spotted onto 

Sidebar 1  The evolution of systems biology
The sequencing of the human genome and the advent of high-
throughput molecular profiling are widely credited with giving 
rise to systems biology. In one sense this may be true. The con-
vergence of genome sequence information, profiling technolo-
gies, and computational advances made it possible to examine 
biological systems on a scale never before possible. However, 
the concepts underlying systems biology, and an understand-
ing of the need to comprehend complete systems, have deeper 
roots. The notion of emergent properties–properties or out-
comes that cannot be predicted by an understanding of the 
individual parts of a system alone—dates back at least to the 
time of Aristotle (384–322 BC), who stated: “the whole is some-
thing over and above its parts and not just a sum of them all.” 
Nevertheless, reductionism—the idea that complex systems 
can be analyzed and understood by reducing them to manage-
able pieces—held sway through much of modern history. In 
the early 1900s, views began to change. It became apparent, 
for example, that biological systems have hierarchies of orga-
nization, and that components of a system behave differently 
in isolation than when in the intact system (Trewavas, 2006).

The first known use of the term systems biology, and its pro-
posal as a distinct discipline, is attributed to Mihajlo Mesarovic 
in his 1968 book Systems Theory and Biology. Then, as now, 
systems biology was met with some skepticism. A reviewer of 

the book noted: “There is no doubt that system-theoretic ideas 
seem somewhat strange, and perhaps just a little frightening, 
to the present generation of structurally-oriented biologists” 
(Rosen, 1968). The current concept of systems biology—driven 
by genome-based technologies and mathematics—is most 
often associated with Leroy Hood, founder of the Institute for 
Systems Biology. Hood proposed that biological systems are 
composed of two types of information, genes and networks 
of regulatory interactions, and that biology be viewed as an 
informational science (Ideker et al., 2001). In this view, study-
ing biological systems requires detailed knowledge of the com-
ponents of the system, systematic perturbation of the system, 
monitoring of gene, protein, and pathway responses, and the 
formulation of mathematical models to describe the system 
and its response to perturbation (viral infection being an exam-
ple of such a perturbation). Today, systems biology has become 
a driving force in biology and medicine, although it is still often 
criticized for being too focused on data acquisition. As put by 
Nobel Laureate Sidney Brenner: “Everybody wants to measure 
everything, you’ll never get anything out of it.” Such criticisms 
may eventually be muted, however, as systems biology contin-
ues to evolve, driven currently by rapid advances in computing, 
mathematics, and network modeling, which will be essential to 
making complex systems comprehensible.
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nitrocellulose membranes. These first “arrays” have since 
been replaced by commercially available platforms in 
which tens of thousands of oligonucleotides are arrayed 
at high density on glass slides or other solid supports. 
(Protein microarrays and protein–protein interaction 
profiling are discussed in Chapter 12, The Virus–Host 
Interactome.) Yet even the wealth of information avail-
able through the use of microarrays cannot compare to the 
level of information obtained through the direct sequenc-
ing of RNA transcripts (RNA-seq). Next-generation 
sequencing, a sequencing-by-synthesis approach that has 
replaced the first-generation Sanger sequencing method, 
is capable of yielding a truly comprehensive view of the 
transcriptome (discussed in more detail in Section 6 of 
this chapter; Sidebar 2).

Whether generated by microarray analysis or RNA-seq, 
a transcriptional profile is the pattern of gene expression 
that is observed in a biological system. Most often, a com-
parison is made between a normal or resting state and one 
or more time points following perturbation of the system. 
The simpler the biological system, the easier it is to manipu-
late and to generate and interpret transcriptional data. For 
virology, a simple system means infecting cultured cells. 
Cell culture experiments facilitate the rapid examination 
of multiple time points or viruses, and they are useful for 

examining and modeling intracellular signaling in response 
to infection. However, the limited phenotypic parameters 
that can be studied using cultured cells—viral replication 
or cytopathic effect—makes it difficult to study viral patho-
genesis. In contrast, with an animal model, it is possible to 
measure a variety of disease parameters—e.g., virus yields, 
clinical signs, gross pathology, histopathology, and time to 
recovery or death—and the cells or tissues that are exam-
ined come from their natural environment. Of course, these 
benefits are balanced by the cost, ethics, and complexity of 
animal models.

2.2 � Interpreting Transcriptional Profiles

The interpretation of the transcriptional profiles associated 
with viral infection, or other perturbation, can take a vari-
ety of forms. In all cases, it begins with the computational 
determination of genes that are differentially expressed 
between conditions (or time points) to a statistically sig-
nificant degree. This information alone can yield important 
scientific insights. For example, transcriptional profiling 
of interferon-treated cultured cells, or tissues from whole  
animals, has been used to define the hundreds of genes that 
are induced by this innate immune cytokine, many of which 
are important players in the innate antiviral response. With 

Sidebar 2  Microarrays

DNA microarrays can trace their ancestry to the Southern blot, 
in which genomic DNA, digested into fragments by restric-
tion enzymes, is immobilized on a permeable membrane fil-
ter for subsequent detection by labeled DNA hybridization. 
The Southern blot gave rise to the “reverse” dot blot, in which 
synthetic oligonucleotides of known sequence (called probes) 
were immobilized on permeable membrane supports. The col-
lection of DNA sequences to be analyzed (called targets) were 

then labeled and applied to the membrane under hybridization 
conditions. The use of permeable membranes, however, made 
it difficult to control the size and shapes of the spotted DNA 
and limited miniaturization. These limitations were overcome 
by the introduction of solid supports, which provided the ability 
to accurately control the size, shape, and location of the spots. 
The robotic spotting of cDNAs onto glass slides—the first of 
what we now know as microarrays—was pioneered by Patrick 
Brown at Stanford University (Schena et al., 1995). In an inter-
view with Discover magazine, Brown explained that when he 
applied for a grant to develop the technology: “The microarray 
part was thoroughly rejected…but I just decided that I would 
make one anyway.” Importantly, the use of solid supports also 
facilitated the development of methods for the in situ synthesis 
of nucleic acids on the surface using approaches such as ink 
jet fabrication (spotting droplets of nucleotide reagents instead 
of droplets of ink) or photolithographic methods (similar to 
those used in the semiconductor industry). Today, major com-
mercial providers of microarrays include Affymetrix, Agilent 
Technologies, Illumina, and NimbleGen, with platforms vary-
ing in the length of oligonucleotide used, the number of oli-
gonucleotides representing each gene, and the methods used 
for oligonucleotide synthesis and attachment to solid supports. 
Microarray technology has also been adapted for the profiling 
of noncoding RNA expression, DNA methylation, and single 
nucleotide polymorphisms, as well as for promoter analysis 
and the detection of genome-wide DNA copy number variation.
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an understanding of interferon-induced gene expression 
in hand, it is then possible to evaluate the extent to which 
a virus may induce interferon signaling, or alternatively, 
encode mechanisms to counteract the interferon response.

Similarly, transcriptional profiling of gene knockout 
cells or animals can be used to evaluate the role of spe-
cific genes in the host response to infection. These studies 
reveal both the changes in gene expression that occur as 
a result of the gene knockout as well as the effect of the 
knockout on the host response. Often, these studies also 
reveal the existence of compensatory signaling mecha-
nisms, which can complicate data interpretation. A slight 
twist on this approach has been used to study Mx1, an inter-
feron-induced gene that confers resistance to influenza 
virus infection. Mx1 is lacking in most laboratory strains 
of mice, and these animals are highly susceptible to many 

strains of influenza virus, including the reconstructed 1918 
pandemic virus. Transcriptional profiling of the lungs of 
1918 virus-infected wild-type BALB/c mice (which lack a 
functional Mx1), and knock-in mice carrying a functional 
Mx1, demonstrates profound differences in gene expres-
sion, which correlate with reduced mortality in Mx1+/+ 
mice (Cilloniz et al., 2012). Treatment of Mx1+/+ mice with 
interferon prior to infection increases survival to 100% and 
is associated with an increase in the expression of genes 
related to intercellular signaling or cellular movement and 
a decrease in the expression of inflammatory cytokine and 
chemokine genes (Figure 1). Here, transcriptional profil-
ing, attached to a relatively straightforward study design, 
yielded information on the function of Mx1 in mediating 
resistance to influenza virus and on the role of interferon 
signaling in this process.
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FIGURE 1  Interferon-treated Mx1+/+ mice are resistant to lethal 1918 pandemic influenza virus infection. (A) Survival plot of a total of 18 mice  
(9 animals/mouse strain; BALB/c mice lack a functional Mx1 gene). (B) Heat map illustrating 2071 differentially expressed genes associated with com-
plete protection of Mx1+/+ animals compared with the wild-type animals during interferon treatment; cutoff values were ≥twofold change and P ≤ 0.01 
(ANOVA), false discovery rate corrected. Red indicates up-regulation and blue indicates down-regulation. (C) Top 10 biological functions, as determined 
by using Ingenuity Pathway Analysis, assigned to the 2071 differentially expressed genes. Adapted from Cilloniz et al. (2012), with permission.
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In the example above, differentially expressed genes are 
viewed as a heat map, where relative increases or decreases 
in gene expression are depicted using color gradations, 
and genes that exhibit similar patterns of expression are 
grouped together (through the use of various clustering 
algorithms). Once differentially expressed genes are identi-
fied, it is important to know the biological or biochemical 
function of their encoded products. For many genes, this 
information can be obtained from a variety of public (e.g., 
DAVID, maintained by the National Institute of Allergy and 
Infectious Diseases) or proprietary (e.g., Ingenuity Path-
way Analysis) databases. These databases bring together 
information about individual genes from multiple sources, 
including the scientific literature and other databases. 
DAVID, for example, includes over 40 annotation catego-
ries, including gene ontology, protein–protein interactions, 
protein functional domains, disease associations, and tissue 
expression.

Bioinformatics tools are then used to sift through this 
information to deconstruct large lists of differentially 
expressed genes into functionally related groups. Again 
as seen in the example above, grouping genes in this way 
helps to interpret and understand the biological information 
available in high-throughput data. It is important to keep in 
mind, however, that many genes lack functional annotation 
or they are only poorly annotated. This means that consider-
able information may be lost if data analyses do not move 
beyond a survey of genes with already known function. 
Fortunately, one of the broader outcomes of transcriptional 
profiling studies should be an increase in functional anno-
tation. This will come in part as investigators use network 
modeling approaches (described later) to piece together the 
interactions or common expression patterns that link vari-
ous genes and which can be used to infer gene function.

2.3 � Dynamics of the Host Response  
to Influenza Virus

Evaluating how transcriptional profiles change over time 
provides insights into how the timing and magnitude of the 
host response impacts viral pathogenesis and disease out-
come. This has been particularly well studied in the case of 
influenza virus. This virus is renowned for its ability to con-
tinually generate new variants, and although most variants 
cause a relatively mild respiratory disease, others can cause 
severe and even fatal infections. The 1918 pandemic virus, 
for example, caused over 50 million deaths worldwide, mak-
ing it responsible for one of the deadliest infectious disease 
outbreaks in human history. Since the late 1990s, highly 
pathogenic avian H5N1 influenza viruses have caused spo-
radic infections in humans (popularized in the news media 
as bird flu) with a mortality rate estimated at 60%.

Transcriptional profiling of lung tissue from mice or 
macaques experimentally infected with highly pathogenic 

influenza viruses has revealed that these viruses elicit a 
rapid induction of proinflammatory cytokine and chemo-
kine genes, an event often referred to as a cytokine storm. 
These genes remain highly expressed until the death of the 
animal. In contrast, animals infected with less-pathogenic 
viruses exhibit a rapid induction of interferon and innate 
immune response genes, a response that resolves over 
time as the animals recover. In macaques, the 1918 virus 
also induces a disproportionate induction of genes asso-
ciated with the inflammasome, a group of genes that are 
thought to be part of a protective innate immune response 
to influenza viruses. Excessive activation of the inflam-
masome, however, appears to be detrimental rather than 
protective. In mice, highly pathogenic avian H5N1 viruses 
also down-regulate anti-inflammatory genes, including 
Alox5, responsible for the biogenesis of lipoxins, and 
Socs2, encoding a suppressor of cytokine signaling that 
can be induced by lipoxins to control the inflammatory 
response. This excessive and sustained inflammatory 
response appears to promote immunopathology.

An innovative study using automated image analysis, 
gene expression profiling, and flow cytometry has shed 
additional insight into the relative contributions of direct 
viral damage or immunopathology to lethal influenza viral 
infection (Brandes et al., 2013). Using what is referred to as 
a top-down systems analysis approach (the breaking down 
of a complex system into finer details), transcriptional pro-
files were first obtained from whole lung and then from 
individual immune cell populations isolated from the lungs 
of mice infected with lethal or nonlethal influenza virus. 
Rather than focusing on specific gene expression changes, 
transcriptional data were organized into 50 modules con-
sisting of genes with coordinate patterns of expression 
(Figure 2). A module of genes annotated as highly proin-
flammatory was uniquely associated with lethal infection. 
This inflammatory signature was shown to largely originate 
from neutrophils that rapidly migrate to the site of infection 
(which is poorly contained in the case of the lethal virus). 
The authors suggest that this initiates a chemokine-driven 
feed-forward pathway in which the first neutrophils at the 
scene release chemokines that attract additional neutrophils, 
resulting in a rapidly escalating inflammatory response and 
tissue damage. In support of this finding, attenuation of this 
self-amplifying process by experimental reduction (but not 
elimination) of neutrophil numbers increased survival with-
out changing viral spread.

An alternative computational methodology incorpo-
rating a geometric representation method (singular value 
decomposition-multidimensional scaling) has been used 
to visualize and quantify the kinetics of the host transcrip-
tional response to wild-type and attenuated variants of 
highly pathogenic avian H5N1 viruses (Tchitchek et  al., 
2013). This approach was used to analyze 230 transcrip-
tomic and 198 proteomic profiles derived from the lungs 
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of infected mice. The analysis revealed that the wild-type 
and mutant viruses elicit the differential expression of many 
of the same genes, but that it is the magnitude (the degree 
to which a gene is differentially expressed) and velocity of 
the initial host response (the speed at which these changes 
occur) that best correlates with pathogenic outcome.

2.4 � Dynamics of Innate Immunity and AIDS

Transcriptional profiling studies have also shed light on the 
importance of the dynamics of immune activation in AIDS. 
This has come primarily from studies of various nonhuman 
primate species infected with simian immunodeficiency 
virus (SIV). Natural hosts for SIV, such as sooty mangabeys 
and African green monkeys, do not develop AIDS when 
naturally or experimentally infected with the virus. In con-
trast, Asian monkeys, such as rhesus or pig-tail macaques, 
develop AIDS following SIV infection. Several independent 
transcriptional profiling studies have shown that natural hosts 
for SIV exhibit an innate immune response to the virus that is 
comparable to that exhibited by Asian macaques. Initial lev-
els of viral replication are also comparable. However, in natu-
ral hosts the innate immune response is of limited duration, 
whereas in macaques the response is sustained (Figure 3)  
(Jacquelin et al., 2009). This leads to chronic immune activa-
tion, which is associated with progression to AIDS in SIV-
infected macaques and in HIV-infected individuals.

Because innate antiviral responses are often accom-
panied by inflammatory reactions, negative regulatory 
mechanisms, such as the induction of IL-10, are necessary 
to return antiviral responses to baseline to prevent the harm-
ful effects of immune activation. The question remains as 
to why natural host species are able to resolve the initial 
response to SIV, whereas macaques (or most HIV-infected 
individuals) cannot. One hypothesis, proposed as the West 
Coast Model of immune activation, suggests that the kinet-
ics of activation holds the key (Benecke et al., 2012). The 
West Coast Model likens virus infection to a wave on the 
beach, and immune activation as the mounting of a surf 
board. Mount too early or too late and bad things happen. 
If correct, the model has important implications for AIDS 
vaccine design as it suggests that the question of whether 
an adaptive immune response can be mounted against SIV 
(or HIV) could be irrelevant. Rather, it may be beneficial to 
devise strategies to modulate the timing or duration of the 
response, or to prevent chronic immune recognition of the 
virus. (Additional information on the kinetics of HIV and 
SIV infection and lessons learned from natural host species 
can be found in Chapter 9, HIV and AIDS)

3. � DIAGNOSTICS AND PROGNOSTICS

The concept of using gene expression profiles for diagnostic 
purposes was first proposed in cancer biology, when it was 
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discovered that breast tumor transcriptional profiles could 
be used for tumor classification. Because different viruses 
elicit different host transcriptional responses, it might also 
be expected that gene expression profiles can be used for 
diagnostic purposes or for making predictions about infec-
tion or therapeutic outcome. In clinical virology, most diag-
nostic tests rely on the ability to detect a particular virus in 
the bloodstream, either through detection of viral antigens or 
viral genome sequences. In contrast, host genomic signatures 
can be used to detect unknown as well as known viruses, or 
as in cancer, be used as guides for choosing therapy or as 
predictors of therapeutic or disease outcome (Sidebar 3).

3.1 � Genomic Markers of Virus-Induced 
Liver Disease

One area in which the search for host diagnostic mark-
ers has been particularly intense is in hepatitis virus-
induced liver disease and hepatocellular carcinoma. Liver 
disease caused by hepatitis C virus (HCV), for example, 
can take decades to develop and is often asymptomatic 
until disease has progressed to cirrhosis or hepatocellular 
carcinoma. At that point, transplantation may be the only 
remaining treatment option. Diagnosis is additionally 
hampered by the lack of reliable noninvasive detection 
methods as an alternative to percutaneous liver biopsy. A 
biomarker or genomic profile that could be detected in the 
blood is therefore highly desirable for early diagnosis of 
liver disease.

A variety of individual candidate blood biomarkers have 
been identified, such as aspartate and alanine aminotrans-
ferases, albumin, and alkaline phosphatase. These biomark-
ers provide information about liver function, but values 
can sometimes be normal in people with liver disease or 
damage, and these tests do not provide information about 

disease etiology. Unfortunately, diagnostic genomic signatures 
in blood have been hard to come by, and studies have there-
fore focused on the identification of such markers in liver 
tissue. Although profiling liver gene expression does not get 
around the need for a liver biopsy, the hope is that genomic 
profiles will be predictive in advance of tissue injury. There 
have been a number of reports of liver gene expression 
signatures, ranging from a half dozen to several hundred 
genes, which may be prognostic for hepatocellular carci-
noma and that may be useful for risk-adjusted surveillance 
approaches (Hannivoort et al., 2012).

Progress in identifying genomic markers for the diag-
nosis and prognosis of HCV-induced liver disease has been 
hampered by the length of time from infection to disease, 
which makes prospective studies difficult. There is a group 
of patients, however, in which this time period is com-
pressed. When individuals receive a liver transplant because 
of end-stage liver disease caused by HCV infection, the 
transplanted liver quickly becomes infected. While many 
transplant recipients show no biochemical or histological 
evidence of liver injury in the first 10 years after transplan-
tation, approximately one-third develop rapidly progressive 
fibrosis, with the onset of cirrhosis occurring in as little as 
5 years after transplantation.

Liver transplant recipients therefore represent a unique 
study population for discovering gene expression changes 
that may be predictive of disease progression. In what is per-
haps the largest study focused on this population, advanced 
computational approaches, such as singular value decompo-
sition-multidimensional scaling, were used to analyze tran-
scriptional data obtained from serial liver biopsies from 57 
patients (Rasmussen et al., 2012). This study revealed that 
within 3 months of transplantation over 400 genes were dif-
ferentially expressed between progressors (who developed 
adverse clinical outcomes 4–7 years after transplantation) 

Sidebar 3  Systems biology in cancer research
Many of the systems approaches that are being used in virol-
ogy were pioneered in the field of cancer research. Cancer 
biologists were quick to embrace systems biology as a way to 
understand how genetic and epigenetic aberrations perturb 
intracellular signaling networks thereby leading to carcinogen-
esis. Systems approaches have already yielded clinical benefits 
to patients, for example, by giving rise to new classification 
schemes for breast and pancreatic cancer, which in turn allow 
clinicians to identify patients most likely to benefit from a par-
ticular therapy. The cancer research field has been aggressive 
in developing large-scale systems biology resources, such as 
The Cancer Genome Atlas (TCGA), the International Cancer 
Genome Consortium, and The Cancer Proteome Atlas. The 
field is also driving the development of new mathematical and 
modeling methods for studying the relationship between intra-
cellular signaling and the behavior of cells at the tissue level, 

and for the imaging of cells to determine how their spatial ori-
entation and interactions with the environment interplay with 
gene expression patterns and tumor behavior. Many of these 
new approaches will no doubt make their way into virology 
research.

It should be noted, however, that cancer research also draws 
on virology. A good example is the use of DNA tumor virus pro-
teins for cancer gene discovery (Rozenblatt-Rosen et al., 2012). 
In this study, proteins from four types of tumor viruses, papil-
lomavirus, Epstein–Barr virus, adenovirus, and polyomavirus, 
were tested for their ability to interact with 13,000 human 
gene products. The effect of expressing individual viral genes 
in cell culture was also assessed by microarray analysis. These 
data were used to build a virus–host perturbation network that 
reveals genes and pathways commonly affected by the tumor 
virus proteins and that are likely to contribute to cancer.
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and nonprogressors. This included the down-regulation of 
genes associated with immune and inflammatory responses, 
cell cycle progression, and metabolic functions in patients 
who progressed to severe liver disease. A companion study 
identified a proteomic signature, indicative of oxidative 
stress, which could also distinguish progressors from non-
progressors (Diamond et  al., 2012). Significantly, these 
studies showed that transcriptional or proteomic markers 
of disease progression can be detected prior to histological 
evidence of severe liver injury. Such markers may therefore 
eventually be the basis for a diagnostic test that can identify 
patients at high risk of disease progression after transplan-
tation, and perhaps more broadly outside of the transplant 
setting.

3.2 � Discrimination between Viral and 
Bacterial Respiratory Infection

The etiologic diagnosis of respiratory infections is chal-
lenging. Moreover, because many of these infections are 
caused by bacterial pathogens, physicians will often treat 
patients with antibiotics even without a confirmed diagnosis 
in an attempt to provide speedy resolution of symptoms. It 
is therefore important to develop a means to rapidly dis-
tinguish between viral and bacterial infections as well as 
to identify the specific etiologic agent. Even though respi-
ratory pathogens are typically confined to the respiratory 
tract, there is growing evidence that different immune cell 
types induce gene expression signatures in the blood that 
may be used to accurately diagnose acute respiratory viral 
infection.

In an initial study aimed at identifying such signatures, 
volunteers were experimentally infected with rhinovirus, 
respiratory syncytial virus, or influenza virus and blood sam-
ples were taken at set intervals following challenge (Zaas 
et al., 2009). Microarray analysis of blood gene expression 
patterns identified a 30-gene “acute respiratory viral” signa-
ture that was common to symptomatic individuals from all 
three viral challenges and which could distinguish between 
symptomatic individuals and uninfected controls. The 
signature could also accurately distinguish persons with 
influenza A virus infection from healthy controls in an inde-
pendent community-based cohort. In addition, when used 
to analyze publicly available gene expression data from the 
blood of patients with bacterial respiratory infection, the 
signature can accurately distinguish viral from bacterial 
infection.

More recently, this same 30-gene set has been incorpo-
rated into a reverse transcription polymerase chain reaction 
(RT-PCR) assay (Zaas et  al., 2013). RT-PCR is an estab-
lished diagnostic platform, and moving the acute respira-
tory signature to this platform represents an important step 
toward eventual clinical use. The assay was tested in a 
cohort of 102 individuals arriving at an emergency room 

with fever, and who were confirmed by standard microbi-
ological assays to have a viral or bacterial infection. The 
RT-PCR assay showed 94% accuracy in distinguishing viral 
from bacterial infections, suggesting that measuring the 
expression of a small set of genes in blood samples can be 
used to classify viral respiratory illness in a real-world set-
ting (Figure 4).

The stage is therefore set for using patient gene expres-
sion signatures in viral diagnostics and prognostics. How-
ever, there is still work to be done in terms of identifying 
the most appropriate and minimal set of signatures for 
these assays, and for improving specificity to provide diag-
nosis of specific viral agents. Nevertheless, because these 
approaches provide additional and complementary infor-
mation to that provided by microbiological assays, gene 
expression profiling does not need to be considered as a 
substitute for current diagnostic methods. Instead, a com-
bined approach is likely to yield benefits in terms of rapid 
triage, the evaluation of febrile illnesses without clear etiol-
ogy, and for understanding disease pathogenesis.

Unfortunately, in addition to scientific challenges, the use 
of genomic profiles in clinical settings is facing increased 
regulatory hurdles as well. This comes primarily in response 
to the use of faulty (possibly fraudulent) genomic markers to 
select therapy for patients enrolled in a clinical trial to test 
alternative chemotherapy approaches to treat nonsmall-cell 
lung cancer (Kurzrock et al., 2014). In the aftermath to this 
trial, the Institute of Medicine (an arm of the National Acad-
emy of Sciences that provides advice to policy makers) has 
recommended that diagnostic tests that use genomic data 
be viewed as devices rather than as laboratory-based tests. 
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FIGURE 4  A reverse transcription polymerase chain reaction gene 
expression classifier accurately classifies individuals presenting to the 
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of detection. Adapted from Zass et al. (2013), with permission.
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This designation requires that genomic-based diagnostics be 
subject to additional regulatory controls and be overseen by 
the Food and Drug Administration (FDA). These increased 
regulatory burdens are likely to result in increased develop-
ment costs and delays in testing and implementation.

4. � HOST-RESPONSE NETWORKS

Diagnostics and prognostics can be developed on the basis 
of gene expression signatures. So long as such signatures 
are accurate predictors, they do not necessarily have to 
impart any insight into the underlying mechanisms of viral 
pathogenesis (though often they do). Similarly, an examina-
tion of heat maps and functional annotations can on their 
own yield considerable information about the host response 
to infection. To use large-scale transcriptional information 
to gain insight into how things work at a molecular level, 
or to identify regulatory or drug targets, it is necessary to 
organize this information in different ways to look for inter-
relationships among the data. One of the most useful ways 
to visualize these relationships is in the form of biological 
networks. Such networks can be built using gene coexpres-
sion, the direct interaction of encoded proteins, or shared 
regulatory mechanisms, such as the binding of transcription 
factors to target genes.

4.1 � Network Hubs and Bottlenecks

Biological networks are typically represented by graphs 
that contain nodes (genes or proteins) and lines (referred 
to as edges) connecting the nodes. In a gene coexpression 
network, for example, the edges are determined using sta-
tistical measures of expression correlation. The resulting 
network can then be analyzed using various computational 
methods to link network topology—the arrangement and 
connections of the components of a network—with biologi-
cal properties.

One of the most common methods used to identify 
important elements of a network is centrality analysis. 
Many of the concepts of centrality analysis were first devel-
oped for analyzing social networks, and indeed, biological 
and social networks have many similarities. When analyz-
ing a social network, centrality analysis might be used to 
determine the most influential person in the network. When 
analyzing a biological network, the same types of analyses 
can be used to identify key players in biological processes.

Centrality analysis is used to look for nodes in the net-
work that are highly interconnected or that regulate (or 
restrict) the flow of information. In biological networks, 
genes that are highly interconnected—referred to as 
hubs—are often functionally important. Similarly, genes 
that connect or bridge multiple subnetworks—referred to 
as bottleneck genes—are positioned to play powerful roles 
in regulating network signaling even though they may have 

fewer connections than hub genes. Hub and bottleneck 
genes have both been shown to be significantly more likely 
to be essential for microbial virulence than their nonbottle-
neck or nonhub counterparts.

These same methods can be used to analyze networks 
derived from proteomic and lipidomic profiling. In such an 
analysis of HCV-infected hepatoma cells, two mitochondrial 
fatty acid oxidation enzymes, DCI (Enoyl-CoA Delta Isomer-
ase 1)and HADHB (Hydroxyacyl-CoA Dehydrogenase/3-
Ketoacyl-CoA Thiolase/Enoyl-CoA Hydratase), were 
identified as network bottlenecks and possible points of con-
trol through which HCV disrupts cellular metabolic homeo-
stasis (Figure 5) (Diamond et al., 2010). Targeting DCI for 
knockdown by siRNA techniques subsequently showed that 
DCI is required for productive HCV infection in cultured 
cells. In this case, network analysis provided the informa-
tion needed to sort through large numbers of proteins and 
to focus in on a specific target for further scrutiny. Changes 
in fatty acid oxidation have also been more broadly linked 
to inflammatory processes, dendritic cell maturation, and 
regulation of the immune response, suggesting that modula-
tion of fatty acid oxidation may represent a target for anti-
viral therapy.

4.2 � Targets for Host-Directed Antiviral 
Therapies

An understanding of network topology therefore provides 
the opportunity to identify potential host targets for thera-
peutic intervention. Most current antiviral drugs are directed 
against specific viral protein targets. Such drugs are narrow 
in spectrum, meaning they are effective only against a spe-
cific virus, and they are vulnerable to the emergence of viral 
resistance (through mutation of the viral genome). More-
over, most medically important viruses have small genomes, 
so the number of potential targets is limited. In contrast, 
treating viral infection by targeting the host increases the 
number of targets and decreases the likelihood that resis-
tant viruses will emerge. Targeting host factors may also 
increase the likelihood that the drug will be effective against 
a wider spectrum of viral pathogens.

The analysis of coexpression networks using approaches 
such as centrality analysis is one way to identify potential 
host targets (such as DCI in the example above). However, 
combining network analysis with other information, such 
as protein–protein interaction data, may improve target 
identification. This was demonstrated using proteomic data 
derived from HCV-infected hepatoma cells and from liver 
tissue obtained from HCV-infected patients (McDermott 
et  al., 2012). When protein–protein interaction data (e.g., 
host proteins known to interact with HCV proteins) 
were integrated into protein coabundance networks, net-
work topology analysis of the integrated network provided 
improved discrimination of bottleneck and hub proteins.
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A similar analysis looked directly at host factors that 
interact with the HCV-encoded NS5A protein (Tripathi 
et al., 2013). Through its interaction with other HCV pro-
teins and host factors, NS5A plays an important role in HCV 
infection, including regulating viral replication, the produc-
tion of viral particles, and interferon resistance. NS5A has 
therefore become an attractive target for antiviral therapy. 
However, rather than targeting NS5A directly, it may be 
possible to target one or more host factors that interact with 
NS5A. To identify such host targets, NS5A-interacting pro-
teins were identified through literature mining and by using 
a yeast two-hybrid approach (a molecular biology technique 
used to discover protein–protein interactions). The resulting 
132 host proteins were used to build an interaction network, 
which was further expanded by incorporating protein– 
protein interactions for the proteins targeted by NS5A 
(resulting in 1442 proteins with 6263 interactions between 
them). Topological analysis was then used to identify bot-
tleneck and hub proteins.

Intriguingly, these analyses suggest that NS5A prefer-
entially interacts with highly central proteins in the host 
protein interaction network. These proteins have functions 
in a variety of cellular processes, including innate immu-
nity, chemokine signaling, cell-to-cell communication, and 
cellular transport. Among the bottleneck proteins identi-
fied were two endoplasmic reticulum proteins, RTN1 and 

RTN3. These proteins are present in very low density lipo-
protein transport vesicles, which have been reported to play 
a role in the production and release of infectious HCV. In 
cell culture assays, knockdown of RTN1 and RTN3 using 
siRNA has no effect on viral RNA levels, but significantly 
reduces viral titer. As regulators of viral propagation, RTN1 
and RTN3 may be novel targets for anti-HCV therapy 
and perhaps more broadly as therapeutic targets for other 
viruses that depend upon lipoprotein vesicles for the release 
of infectious virus.

5. � DRUG REPURPOSING

Developing new drugs takes an enormous amount of 
time, averaging 14 years from target discovery to FDA 
approval. Failure rates and costs are also extraordinarily 
high. So even once targets are identified and validated, a 
long road to drug development remains. One strategy to 
reduce the time and expense of drug development is to 
determine whether a drug approved to treat one disease 
might be repurposed to treat another. Similarly, many 
partially developed drug candidates could potentially be 
repurposed for new indications. Global transcriptomic 
methods have become central to drug repurposing efforts 
(Hurle et al., 2013), and the paradigm is finding its way 
into antiviral drug research.

HCV E2 protein

HCV CORE protein

HCV NS5A protein

DCI
HADHB

HCV NS3 protein

FIGURE 5  The integrated network surrounding several key bottlenecks identified by computational modeling. The neighbors of bottlenecks in the inte-
grated network are shown. Relationships between the proteins and lipid species are gray for proteomics correlation, purple for lipidomics–proteomics corre-
lation, black for protein–protein interactions, and red for interactions with viral proteins. Lipid species are indicated as yellow diamonds, HCV proteins are 
red, mitochondrial proteins are squares, and proteins involved in fatty acid β-oxidation are in black. Adapted from Diamond et al. (2010), with permission.



152  PART | II  Systems-Level Approaches to Viral Pathogenesis

5.1 � Inverse Genomic Signatures

The inverse genomic signature approach is based on the 
proposition that a drug should have therapeutic benefit if it 
generates a gene expression profile that is the inverse of the 
signature associated with the disease (Figure 6; Peng et al., 
2014). The approach therefore requires knowledge of the gene 
expression profiles induced by large numbers of drugs. Such 
information is being generated by the Connectivity Map proj-
ect, which seeks to find connections between human diseases, 
gene expression profiles, and drug action. The Connectivity 
Map database contains over 7000 transcriptional profiles 
generated by treating cultured human cells with over 1300 
compounds, many of which are FDA-approved drugs. Ana-
lytical tools can then be used to calculate a connectivity score, 
a measure of the similarity—or inverse similarity—between 
query gene expression signatures and profiles in the database.

When this approach was first used to identify drugs that 
inhibit influenza virus replication, a common 20-gene expres-
sion signature was identified from cultured human lung epi-
thelial cells infected with different strains of human or avian 
influenza virus. This gene expression signature was then used 
to screen drug-associated profiles in the Connectivity Map 
database, and candidate antivirals were identified by their 
inverse correlation to the common signature. Eight potential 
antivirals were identified, six of which were subsequently 
determined to inhibit influenza virus replication, including 
the 2009 H1N1 pandemic influenza virus, which was not 
used to generate the 20-gene signature (Josset et al., 2010).

Because the use of genomic signatures for drug screen-
ing has the potential to dramatically reduce the time needed 

for drug development, the approach may be particularly 
beneficial when applied to emerging viral infections. 
Several recent studies have used the approach to screen 
for drugs against emerging influenza virus strains (e.g., 
H7N9 viruses), and Connectivity Map has also been used 
to identify drugs that may be effective against Middle East 
respiratory syndrome coronavirus (Josset et  al., 2013). In 
all of these studies, follow-up validation using cell culture 
has demonstrated reductions in viral replication. However, 
it remains to be seen whether and how rapidly drugs (or 
classes of drugs) identified by this method actually make 
their way into clinical use. The same can be said for the 
cancer field, in which drug repurposing approaches using 
Connectivity Map have identified drug candidates against a 
variety of cancers. Many of these drugs have been validated 
in cell culture and rodent models, but have been slow to 
move into clinical trials.

5.2 � Network-Based Approaches

As discussed earlier, networks can be used to represent 
regulatory and functional interactions between genes or 
proteins, or between combinations of genes, proteins, or 
metabolites. One goal of generating such networks is to 
identify targets for antiviral drugs. In contrast, network-
based drug repurposing strategies aim to harness the infor-
mation contained in networks to identify candidate drugs. 
Although network-based approaches can take a variety of 
forms, many are focused on understanding how diseases are 
connected to one another—through similar transcriptional 
or protein–protein interaction networks, for example—or 
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FIGURE 6  Side by side comparison of gene expression changes induced by HIV-1 infection of a human CD4+ T cell line (SUP-T1) and by treatment of 
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how drugs are connected to one another through their mech-
anism of action. For example, Connectivity Map can also be 
used to construct “drug networks” to identify connections 
between drugs on the basis of shared transcriptional effects. 
In this case, different drugs (rather than genes or proteins) 
form the nodes of the network. Drugs can also be connected 
by side-effect similarity, which can be used to infer whether 
two drugs share a target.

Various networks—transcriptional, protein–protein 
interaction, disease, or drug—can also be integrated into 
multilayer networks that can be probed for drug–disease  
relationships. For example, an integrated analysis of gene 
expression data from 54 diseases (including several viral 
diseases) and human protein–protein interaction data 
yielded a network of 138 disease relationships (Suthram 
et al., 2010). Within this integrated network, a set of com-
mon pathways was identified, and many of the proteins in 
those pathways were found to be targets of existing drugs. 
By identifying disease relationships and shared drugs, it 
was possible to make predictions about the repurposing of 
drugs from one disease to another. With the ever-increas-
ing amounts of genomic data being generated in infectious 
disease research, network-based approaches are sure to be 
increasingly exploited for the repurposing of drugs to fight 
viral infections.

6. � NEW VIEWS OF THE TRANSCRIPTIONAL 
LANDSCAPE: LONG NONCODING RNAs 
AND VIRAL INFECTION

The direct sequencing of RNA transcripts is yielding excit-
ing new views of the transcriptional landscape. The stag-
gering amount of information available through sequencing 
is exemplified by the Encyclopedia of DNA Elements 
(ENCODE) project, funded by the National Human Genome 
Research Institute. The overall goal of the project is to iden-
tify and characterize all functional elements in the human 
genome, including cataloging of the complete repertoire of 
RNAs produced by human cells. The project has revealed 
that as much as three quarters of the human genome is capa-
ble of being transcribed and that cells contain many variet-
ies of RNA transcripts (Djebali et al., 2012). These include 
polyadenylated and nonpolyadenylated transcripts, known 
and unannotated protein-coding transcripts, and long non-
coding RNAs (>200 nucleotides) such as intergenic tran-
scripts. Small noncoding RNAs (<200 nucleotides) are also 
abundant, including microRNAs (miRNAs), piwi-interact-
ing RNAs (piRNAs), small nuclear RNAs (snRNAs), small 
nucleolar RNAs (snoRNAs), and transfer RNAs. Indeed the 
transcriptional landscape is so complex that it has called 
into question the very definition of a gene!

Virologists are beginning to explore the ramifica-
tions of this newfound transcriptional complexity on viral 

pathogenesis. In one of the first studies to do so, RNA-
seq was used to profile the host response to infection with 
severe acute respiratory syndrome coronavirus (SARS-
CoV) (Peng et  al., 2010). In the lungs of mice infected 
with this virus, over 10,000-long noncoding RNAs were 
identified, and nearly 1500 were differentially expressed 
in response to infection. Comparable expression profiles 
were observed in cell lines infected with influenza virus 
or treated with type I interferon, suggesting that these 
RNAs may be involved in the innate response to a variety 
of viruses. Similar analyses that focused on the sequenc-
ing of small RNAs revealed that SARS-CoV infection also 
induces the differential expression of different classes of 
small noncoding RNAs.

Distinct patterns of noncoding RNA expression have 
now been observed in the response to many different RNA 
and DNA viruses. Moreover, long noncoding RNAs are not 
limited to cellular transcription. For example, RNA-seq has 
revealed that human cytomegalovirus (HCMV), a 240-kb 
DNA virus, produces hundreds of previously unidenti-
fied transcripts, including alternatively spliced transcripts 
and long noncoding RNAs (Gatherer et al., 2011). HCMV 
is also one of several viruses known to encode its own 
miRNAs, and RNA-seq has further revealed that HCMV 
encodes additional novel forms of small RNAs (Stark et al., 
2012). Even viral genomes are capable of producing com-
plex transcriptional profiles.

The next important step, of course, is to determine the 
biological functions of these newly found long noncod-
ing RNAs. There is already evidence that long noncoding 
RNAs play roles in transcriptional and epigenetic gene 
regulation, developmental processes, and in a variety of 
diseases, including neurological and immune disorders 
and cancer. These RNAs may function through direct 
interaction with specific genome sequences (thereby 
affecting chromatin remodeling and gene transcription), 
transcription factors, or other components of the tran-
scriptional machinery. For example, the long noncoding 
RNA, lincRNA-Cox2, has been demonstrated to interact 
with heterogeneous nuclear ribonucleoproteins to medi-
ate both the activation and repression of multiple immune 
response genes (Carpenter et  al., 2013). Similarly, 
lncRNA-CMPK2 has been reported to be a negative regu-
lator of the interferon response and is itself among over 
200 long noncoding RNAs induced by interferon (Figure 7; 
Kambara et  al., 2014). Knockdown of lncRNA-CMPK2 
expression reduces HCV replication in interferon-treated 
hepatocytes, and lncRNA-CMPK2 is up-regulated in liver 
samples from HCV-infected patients, suggesting it may 
also play a role in modulating the interferon response in 
these individuals.

Unfortunately, determining the biological functions 
of long noncoding RNAs has so far proven challenging. 
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Unlike proteins, the function of long noncoding RNAs 
cannot presently be predicted from primary sequence or 
secondary structure. And with thousands of such RNAs 
to choose from, it is difficult to know which to pursue. 
In the example above, lncRNA-CMPK2 was chosen for 
study because of its over 100-fold induction in response 
to interferon stimulation. However, long noncoding RNA 
expression can also be integrated into network models, 
which may help to provide additional information as to 
which RNAs should be the focus for follow-up studies. 
With the advent of new genome editing techniques, such 
as CRISPR-Cas9, it will also be possible to design large-
scale screens to identify long noncoding RNAs that may 
be required for viral replication or virus-induced cyto-
pathic effects (for details on CRISPR-Cas9 and large-scale 
interaction screening, see Chapter 12, The Virus–Host 
Interactome).

Unquestionably, RNA-seq and the discovery of 
long noncoding RNAs have ushered in a new era in the 
study of viral pathogenesis. It will be essential to gain 
an understanding of the role of these RNAs during viral 
infection to fully understand the mechanisms by which 
viruses cause disease. It is also likely that a better under-
standing of long noncoding RNA function will lead to 
new therapeutic options. RNA-based therapeutics—most 
of which are focused on the use of antisense oligonu-
cleotides to degrade specific mRNAs—are already in 
development. Indeed, an antiviral drug, fomivirsen (an 
antisense oligonucleotide that blocks the synthesis of a 
key cytomegalovirus protein), was the first drug of this 
type to be approved by the FDA. Antisense transcripts 
could be similarly used to deplete specific long noncod-
ing RNAs, or small molecules could be used to disrupt 

the interaction of long noncoding RNAs with their pro-
tein or DNA partners.

7. � CONCLUDING REMARKS

Ongoing advances in technology will continue to spur new 
approaches for studying the host transcriptional response 
to viral infection. While most current studies using ani-
mal models still examine the RNA profiles of whole tis-
sues, it is becoming increasingly common to augment 
this approach with the analysis of isolated cell popula-
tions. But even the analysis of isolated cell types results 
in averaging the transcriptomes of millions of cells. RNA-
seq performed on single cells is therefore emerging as a 
new frontier in transcriptional profiling. The ability to 
perform single-cell analyses has become possible through 
improvements to methods for cell isolation and the conver-
sion of miniscule amounts of cellular RNA into cDNA for 
sequencing. Although single-cell analyses are not neces-
sary (or appropriate) for all types of studies, the capability 
provides unique opportunities, such as profiling cell-to-
cell variability. Such analyses have revealed surprising 
variability in the expression of hundreds of immune genes 
across single cells, as well as variation in splicing patterns 
(Shalek et al., 2013).

Efforts are also underway to incorporate an understand-
ing of how the epigenome—the heritable, and potentially 
reversible, genome-wide chemical changes to the DNA and 
histone proteins of an organism—impact the host response 
to viral infection. Epigenetic modifications, such as DNA 
or histone methylation, result in changes in gene expression 
through alterations in chromatin structure. These modifica-
tions can occur in response to a multitude of environmental 
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changes, including viral infection. In addition, several 
viruses, such as human cytomegalovirus and Epstein–Barr 
virus, use epigenetic mechanisms in part for switching 
between latent and active infection (Ernberg et al., 2012). 
Although studying the involvement of epigenetic mecha-
nisms in viral infection is still in its infancy, such studies 
are likely to offer new clues into disease mechanisms.

Clearly, high-throughput molecular profiling has 
revealed that the host response to viral infection is more 
complicated than ever before thought possible. Moreover, 
gene expression, protein abundance, and all of their atten-
dant regulatory mechanisms are only part of the picture. 
As discussed in other chapters, consideration must also be 
given to protein–protein interactions, host metabolism, host 
genetics, and even the myriad microorganisms that form the 
human microbiome. With each new technological advance 
comes a new avalanche of data to a field that some argue 
is already suffering from information overload. Perhaps 
what is needed most are improved computational meth-
ods for integrating diverse types of data and for identifying 
new interrelationships, including cooperative or synergistic 
interactions. These may arrive in the form of new geometric 
approaches and links between geometry, information the-
ory, and probability theory (Law et al., 2013). In the mean-
time, even if the complete picture will have to wait to be 
assembled, there are plenty of discoveries to come to keep 
virologists energized well into the future.
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