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Increasing antibiotic resistance in bacteria causing endogenous infections has entailed a

need for innovative approaches to therapy and prophylaxis of these infections and raised

a new interest in vaccines for prevention of colonization and infection by typically antibiotic

resistant pathogens. Nevertheless, there has been a long history of failures in late

stage clinical development of this type of vaccines, which remains not fully understood.

This article provides an overview on present and past vaccine developments targeting

nosocomial bacterial pathogens; it further highlights the specific challenges associated

with demonstrating clinical efficacy of these vaccines and the facts to be considered

in future study designs. Notably, these vaccines are mainly applied to subjects with

preexistent immunity to the target pathogen, transient or chronic immunosuppression

and ill-definedmicrobiome status. Unpredictable attack rates and changing epidemiology

as well as highly variable genetic and immunological strain characteristics complicate

the development. In views of the clinical need, re-thinking of the study designs and

expectations seems warranted: first of all, vaccine development needs to be footed on a

clear rationale for choosing the immunological mechanism of action and the optimal time

point for vaccination, e.g., (1) prevention (or reduction) of colonization vs. prevention of

infection and (2) boosting of a preexistent immune response vs. altering the quality of the

immune response. Furthermore, there are different, probably redundant, immunological

and microbiological defense mechanisms that provide protection from infection. Their

interplay is not well-understood but as a consequence their effect might superimpose

vaccine-mediated resolution of infection and lead to failure to demonstrate efficacy.

This implies that improved characterization of patient subpopulations within the trial

population should be obtained by pro- and retrospective analyses of trial data on subject

level. Statistical and systems biology approaches could help to define immune and

microbiological biomarkers that discern populations that benefit from vaccination from

those where vaccines might not be effective.
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INTRODUCTION

The increasing inefficacy of antibiotics due to antibiotic
resistance of bacterial pathogens has triggered the desperate
search for alternative therapies. While the discovery of new
antibiotics is frequently halted by concerns about toxicity or
metabolism or insufficient bioavailability and tissue penetration
(1, 2), the development of phage therapies has been limited
by concerns about the narrow host spectrum, which requires
sophisticated susceptibility testing, and the induction of
neutralizing antibodies upon repeated use (3). Obviously, this
situation has raised a new interest to explore the potential of
vaccines for prevention of colonization and infection by typically
antibiotic resistant pathogens that typically acquire antibiotic
resistance. However, despite a multitude of early developments
and publications there has been a long history of failures in
clinical development of this type of vaccines (4–6). This review
will set its emphasis on providing insight into the reasons that
led to discontinuation of vaccine development programs and the
consequences for clinical trial design.

TARGET PATHOGENS FOR
VACCINE-BASED APPROACHES AGAINST
NOSOCOMIAL BACTERIAL INFECTIONS

Classical vaccine development has mainly focused on bacterial
infections caused by toxin production (Tetanus, Diphtheria,
Pertussis) or bacteria such as meningococci, pneumococci and
Mycobacterium tuberculosis that cause severe, sometimes lethal
infections and easily spread among the population. In the
former category, disease is limited to the presence of toxins,
e.g., it occurs upon infestation of Tetanus toxin in wounds or
secretion of Diphtheria and Pertussis toxins by Corynebacteria
and Bordetella species in the respiratory tract. The presence of
toxin-neutralizing antibodies (induced by vaccination) mediates
protection and can, thus, be quantified in international units
(absolute correlate of protection) (7). It is further important to
note that both these upper respiratory tract infections as well
as the infections caused by meningococci, pneumococci, and M.
tuberculosis are transmitted from human-to-human via droplets
from nasal and respiratory secretions. Notably, the human is
the main reservoir for transmission of these pathogens and,
thus, vaccination has proven to be an efficient measure for
protection on a population basis and containment of spread of
these diseases.

In the context of antibiotic resistance, clinicians highlighted
the importance of the ESKAPE pathogens, e.g., Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and
Enterobacter species (8, 9). This acronym summarized the most
frequently encountered pathogens in hospital-acquired bacterial
infections ranging from wound infections and ventilator-
associated pneumonia to sepsis. Nevertheless, other infections
such as those caused by Clostridioidales difficile have increased
in frequency and antibiotic resistance rates (10) and have,
thus, been added to the list of nosocomial pathogens and

potential bacterial targets for vaccine development. They are
now frequently referred to as ESCAPE pathogens (Enterococcus
faecium, Staphylococcus aureus, C. difficile, Acinetobacter
baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae).

CHARACTERISTIC FEATURES OF
NOSOCOMIAL BACTERIAL INFECTIONS

Nosocomial infections are caused by bacterial pathogens either
transmitted in the hospital environment or from commensals
that were already present prior to hospitalization (endogenous
infection). On an individual patient level, it is often cumbersome
to follow up, which of these sources was causative, unless
there is evidence for spread of a specific strain among patients.
Moreover, the species causing hospital-acquired infections
behave as facultative pathogens, indicating that they cause
infections only in a subgroup of patients, under specific
circumstances that are also hard to assess in the patient:
a coincidence of transient (or chronic) immune suppression
associated with age, co-morbidities and medical treatment,
selection of resistant strains and dysbiosis caused by antibacterial
therapies, transient (or chronic) disturbance of cutaneous and
epithelial barriers, and possible displacement to other body
areas (urinary tract infection or pneumonia caused by enteric
bacteria). Lastly, the specific immune defense mechanisms
and the ambiguous role of preexisting immune memory to
microbiota are poorly understood.

EXPECTATIONS AND CONCERNS WITH
VACCINATION AGAINST NOSOCOMIAL
BACTERIAL PATHOGENS

One of the major drivers for development of vaccines against
nosocomial bacterial pathogens is that antibiotics are no longer
effective in all patients. Notably, for most of the ESCAPE
pathogens the reservoirs include zoonotic and environmental
habitats such as animal husbandry and wastewater, where they
are subject to continuous antibiotic selection pressure. It is,
therefore, nearly impossible to eradicate these pathogens or
revert their resistance by immunization programs in humans.
More comprehensive One Health strategies are needed to reduce
the antimicrobial resistance burden arising from these sources
(11). Nevertheless, vaccine-mediated prevention of nosocomial
infections in patients could reduce antibiotic usage and resistance
development in hospitals.

Thus, the expectation is to prevent transmission and infection,
avoid antibiotic therapy and reduce development of or revert
antibiotic resistance [reviewed in (12)]. Two examples may
highlight that along with other antibiotic stewardship measures
vaccine-based prevention of infections could have the potential
to reduce antibiotic usage and—at least transiently—positively
influence resistance trends:

1. An indirect effect is postulated in relation to the seasonal
influenza burden: reduced antibiotic usage due to vaccine-
induced protection against influenza (13) could result in
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reduced rates of C. difficile infection, which shows seasonal
co-incidence with influenza (14, 15). However, this intriguing
hypothesis remains to be confirmed.

2. The introduction of pneumococcal conjugate vaccines re-
shaped the epidemiological representation of pneumococcal
serotypes. Initially, the reduction in infections with
antibiotic resistant serotypes suggested that vaccines
could reduce antimicrobial resistance. However, long-term
analyses revealed that the beneficial effects on antibiotic
susceptibility profiles could not be maintained after serotype
replacement (16–19).

One repeated concern has been that eradication of specific
commensals might negatively affect the resident microbiota
composition and the local immune response. On the one hand,
absence of a previously colonizing pathogen and concomitant
loss of continuous exposure of the immune system to
this pathogen could weaken immune defense and increase
susceptibility for infection with this pathogen (20). On the
other hand, manipulation of the microbiome creates niches for
replacement by foreign strains or other species as exemplified for
S. aureus (21, 22), which can potentially affect susceptibility to
infection. It can only be speculated whether these effects might
have contributed to the clinical failure of V710 (Merck), the only
vaccine formulation, so far, that was specifically targeting nasal
colonization with S. aureus (23). Dedicated research is needed to
provide a better understanding of the complex interrelationships
of microbiota and the immune system as well as to ensure safety
of future developments.

NEW PARADIGMS IN VACCINE
DEVELOPMENT TARGETING
NOSOCOMIAL BACTERIAL PATHOGENS

One of the most obvious challenges for vaccine development is
the high genetic diversity of strains typical of the commensal
pathogens. The genetic heterogeneity translates into differences
in chemical structure of variable proteins and polysaccharides
and alters their immunogenicity. Immunological strain
variability limits cross-reactivity of the immune response to
variable surface proteins and polysaccharides and undermines
vaccine-mediated cross-protection against strains not included
in the vaccine design.

The lack of cross-protectivity has hindered the development
of vaccines against several ESCAPE pathogens:

1. P. aeruginosa is an ubiquitously encountered environmental
pathogen that favors humid environments. It can colonize
the human mucosa in predisposed patients with altered
or damaged epithelial barriers due to cystic fibrosis,
ventilation (burn), wounds, and chemotherapy. Vaccines
against P. aeruginosa were developed for three different
target populations, e.g., cystic fibrosis, burn wounds and
ventilator-associated pneumonia [reviewed in (5, 24)]. So
far, the majority of vaccines that reached the clinical
development stage targeted the lipopolysaccharide (LPS)
and flagellar compounds with and without conjugation to

protein carriers. These are highly immunogenic structures
and antibodies against these compounds form part of the
natural immune response in humans. Induction of LPS- and
flagella-specific antibodies conferred protection in preclinical
infection models. However, in the clinical trials, failure to
prove efficacy was attributed to strain-dependent variability
of LPS, Flagella and whole cell vaccines and insufficient
coverage of the arsenal of different strains encountered in the
patient population.

2. K. pneumoniae is a high-risk pathogen because it accumulates
genetic resistance elements and easily spreads among
patients, two features that favor the global spread of some
highly virulent carbapenem-resistant strains. The species is
characterized by the formation of a polysaccharide capsule,
which acts as an important virulence factor. Early vaccines
developments were, therefore, based on combinations of
unconjugated and, later, conjugated capsular polysaccharide
(CPS) antigens (5, 25). However, there are more than 70
serotypes with varying distribution worldwide. Although
a multivalent vaccine covering 24 CPS was tested in a
clinical trial (26). Although this vaccine was later tested in
combination with 8-valent LPS vaccine against P. aeruginosa
(27), development was later abandoned because it did not
seem feasible to achieve protection against the multitude of
different serotypes on a global level.

As an answer to the previous failures and the eminent clinical
need, we have recently witnessed a change in paradigm: new
vaccine developments no longer focus on broad coverage of
strains but narrow the spectrum to individual, epidemiologically
relevant strains known to harbor resistance to carbapenems.
These developments include

1. Targeting of the capsule of K. pneumoniae based on a recently
described semi-synthetic hexasaccharide-glycoconjugate
(with CRM197 as protein carrier). The glyoconjugate was
shown to induce antibodies with opsonophagocytic activity
against carbapenem-resistant K. pneumoniae strains in vitro
(28) and monoclonal antibodies derived thereof promoted
protection against the K. pneumoniae ST258 strain in
vivo (29).

2. Strain-specific LPS (O-glycan)-based developments of
monoclonal antibodies targeting K. pneumoniae strains
such as ST258 and E. coli strains ST131 (30–32) have
been developed to protect from epidemic strains with high
transmission potential, antibiotic resistance and severe disease
manifestation. Notably, serotype-specific vaccines have also
been proposed for targeting O111 E. coli due to this serotype’s
high representation in toxin producing E. coli (EHEC, STEC,
EPEC, and EAEC) (33, 34). To avoid toxicity in these vaccines
O111 LPS was conjugated to carrier proteins.

3. Recent data further highlighted that small glycan motifs
detected in a broad range of strains (and species) are natural
antibody targets and could have the potential to serve as
vaccine antigens (35–38).

Altogether, this development suggests that in light of global
spread of antibiotic resistant strains exploring strain-specific
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vaccines may be worthwhile and abandoning the concept of
broad strain coverage by vaccines may facilitate targeted vaccine
development in the AMR field.

THE IMMUNOLOGICAL MECHANISM OF
ACTION

The immunological mechanism of action of a vaccine usually
refers to a known immune correlate of protection. The
identification of this parameter requires investigation of the
natural immune responses leading to the resolution of infection
and vaccine-related immune protection. The currently licensed
vaccines for prevention of bacterial infections either generate
toxin-neutralizing antibodies, or enable clearance of bacteria
via formation of bacterial immune complexes and subsequent
phagocytosis. The studies sometimes use “immunological
surrogates of protection” to correlate immunogenicity with
protection and to provide an absolute quantifiable value for
protection by measuring specific serum antibody titers and
defining threshold levels (7). However, for bacterial pathogens
causing nosocomial infections the correlates of protection remain
unknown. Additionally, for most pathogens it is unclear whether
the preexisting, natural immune response is protective.

For vaccine development it is of primary importance to
understand, which type of immune response is needed to achieve
the intended effect, e.g., prevention (or reduction) of colonization
vs. prevention of infection and disease. However, there is a
current lack of understanding of the immune response to most
of the nosocomial bacterial pathogens.

Immunization with endogenous S. aureus and E. coli strains
in parallel to the initiation of an antibiotic therapy prevented
recolonization with these strains inmice, highlighting the efficacy
of a systemic immune response in targeting these pathogens (39).
However, at present it is unclear to which degree preformed
natural immune responses are protective and whether Th2-
dominated responses should considered as tolerogenic due to
their failure to clear the commensal pathogens from the mucosal
surfaces. It is, thus, very relevant to establish whether vaccine-
mediated boosting of preexisting immune responses is sufficient
for protective action of a vaccine or whether vaccines need to
re-shape the immune response. While a Th2 response, which is
linked to antibody production, may be effective in promoting
protection against toxin-mediated diseases such as tetanus
and diphtheria, this may be insufficient for infections where
inflammatory T cell-mediated immunity (Th1/Th17) is required
for immune defense. This could imply that de novo formation
of immune memory or re-education of an established immune
response by a vaccine could be required to induce protection.

There are three fundamental mechanisms responsible for
vaccine-mediated protection:

1. Neutralization of toxins as drivers of disease: In the attempt
to develop vaccines against nosocomial bacterial infections,
many different strategies have been evaluated. Prominent
examples for toxin-based vaccination strategies are vaccines
targeting C. difficile toxins tcdA and tcdB to prevent
manifestation of C. difficile infection (CDI). Additionally,

some vaccine prototypes (and monoclonal antibodies) are
targeting S. aureus toxins such as alpha toxin (hemolysin A),
staphylococcal eneterotoxin B (SEB) and other secreted toxins
such as leukocidins [reviewed in (4, 5, 40–42)]. The general
assumption is that raising the level of neutralizing antibodies
against toxins prevents invasive disease and lowers disease
severity. It can further be speculated that immunization
with C. difficile or S. aureus inactivated toxin antigens relies
on a preexisting humoral immune response to the natural
toxins and acts as a booster vaccination. Similarly, anti-
toxin antibodies can be generated by immunization against
toxins from toxigenic E. coli (43) while this approach is
not feasible for protection against non-toxigenic E. coli
such as extraintestinal E. coli harboring extended spectrum
betalactamases (ESBL), which are often referred to as ExPEC.

2. Opsonophagocytosis of infecting pathogens: vaccines
targeting bacterial surface molecules usually act by promoting
opsonophagocytosis through antibodies and subsequent
intracellular lysis of the bacterial pathogens. This mechanism
is exploited by nearly all vaccine developments ranging from
whole cells to formulations consisting of single or combined
antigens. Multiple targets have been described for most
ESCAPE pathogens [reviewed in (4, 5, 24, 41, 44)]. These
include polysaccharides such as LPS, CPS, conserved glycan
motifs and highly conserved immunogenic surface proteins
such as outer membrane proteins (OMP). Nevertheless,
only few vaccines targeting bacterial surface antigens from
nosocomial bacterial pathogens have reached the stage of
clinical development, among these mainly S. aureus vaccines
(5, 40, 41, 45).

3. Shaping T cell immunity: the role of T cell-mediated immunity
in defense against extracellular bacteria has been neglected
although some of these pathogens, e.g., A. baumanii and S.
aureus, reside intracellularly (46–50). Furthermore, different
types of T cell responses might be required depending on
the body compartment (51, 52). For example, Th17 responses
are relevant in the skin and mucosal surfaces in defense
against S. aureus (53, 54), and have also been found to
be important for clearance of ESCAPE pathogens such as
Klebsiella spp., P. aeruginosa and A. baumanii (55–64). Thus,
vaccine formulations targeting colonizing pathogens might
need to be optimized to induce Th17 responses (24, 58, 65).
However, due to the paucity of data, further investigation is
needed to identify the specific T cell responses required for
protection, and understand, whether vaccine-induced long-
term immunity is preferable to acute induction of immune
memory in short interval to infection.

Although initially, the LPS content in outer membrane vesicles

(OMV) was regarded a safety issue, OMV have gained acceptance

as vaccine components after licensing of the MenB vaccine

Bexsero (66). These vesicles are physiologically released by

Gram negative bacteria and embed several surface antigens in

a lipophilic vesicular structure. They resemble bacterial cells

because they combine protein antigens, polysaccharides and
molecules with innate immune stimulatory properties such as
LPS, lipopeptides, lipoteichoic acid and peptidoglycan. Next to
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OMV 

• derived from 
multidrug 
resistant  A. 
baumannii (ATCC 
19606)

• derived from 
multidrug 
resistant  A. 
baumannii 

• E. coli-derived 
OMV with A. 
baumannii 
Omp22 

• LPS-free OMV 
derived from A. 
baumannii (lpxD 
mutant) 

OMC 

• Proteins from 
outer membrane 
of A. baumannii 

• LPS-free OMC 
derived from A. 
baumannii (lpxD 
mutant) 

Whole cells 

• Ghost cells from 
A. baumannii 
Ali190.  

• LPS-deficient 
whole cells of A. 
baumanii (lpxD 
mutant and ATCC 
19606) 

LPS-adjuvanted 
Omp 

• OmpK/Omp22 
adjuvanted with 
MF59 

Vaccination: subcutaneous, intramuscular, intraperitoneal and oral routes.  

Antibodies: antigen-specific IgM and IgG induction; IgG subclasses differ w/o LPS; opsonophagocytotic activity;  

Challenge: sepsis and pneumonia models with homologous and heterologous strains (w/o multidrug resistant 

strains); lower bacterial burden and lower secretion of proinflammatory cytokines (IL-1�, IL-6) post infection  

FIGURE 1 | OMV-based and related approaches to vaccination against A. baumannii. Four immunization strategies have been tested in preclinical models of sepsis

and pneumonia: (1) Outer Membrane Vesicles (OMV) (70–73); (2) Outer Membrane Complex (OMC) (74, 75); (3) Whole cells (76, 77); (4) LPS-adjuvanted Omp (78).

Comparison of vaccines reveals higher potency of LPS-containing vaccines. Notably, the vaccine response is characterized by antibody induction and reduced

pro-inflammatory responses after challenge, next to improved survival and lower bacterial burden post-infection.

the induction of opsonizing antibodies, OMV trigger Th1/Th17
cell responses. For ESCAPE pathogens several OMV-based
approaches to vaccination have been evaluated at the preclinical
stage (66). The diversity of these approaches to OMV-based
or related vaccines can be exemplified by summarizing those
evaluated for A. baumannii (summarized in Figure 1) [reviewed
in (67–69)].

CONSEQUENCES FOR DESIGN OF
EFFICACY STUDIES

One major factor complicating vaccine trials for nosocomial
pathogens is that the patients affected are elderly individuals.
They suffer of co-morbidities and are at risk for immune
suppression through both medical intervention and
immunosenescence. Their immune status is difficult to assess
with current diagnostic methods but it predisposes for infections
and antibiotic therapy. A study on A. baumannii pneumonia
in aged mice illustrates that mortality increases with age,
while efficacies of treatment, both antibiotics and vaccination,
decrease because both rely on functional immune responses
(79). Similarly, the human vaccine response is compromised by
the immunodeficiencies caused by aging of the immune system
[reviewed in (80, 81)].

The clinical development of vaccines for prevention of
hospital-acquired infections is linked to a history of failures.

Today, the major challenges are well-understood and variables
such as immune deficiency due to aging of the immune system
are being taken into account and reflected by new vaccine
formulations (82, 83). Nevertheless, it remains difficult for trial
design to predict some known factors that seem out of control
and hit rates are often lower than expected (84). As summarized
in Table 1 the main enemy in trial design for this type of vaccines
is time.

Controlled Human Infection Models
One alternative to obtain efficacy data is to develop controlled
human infection models (CHIM) and use these models for
evaluation of vaccines (Human Challenge Trials, HCT) (85).
Lately, this type of studies has gained more importance for proof-
of-concept studies, licensing and prequalification of vaccines. In
particular, indications where epidemiology of disease does not
allow the timely execution of the clinical efficacy trials these
studies have become relevant for decision making of regulators
and developers. However, there are significant limitations to this
type of trials that need to be considered:

• The safety of the study participants is the most important
requirement: infection has to be controlled, e.g., appropriate
treatment has to be available and clearance of the
pathogen guaranteed.

• Clinical endpoints must be clinically relevant and reflect the
natural course of disease
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TABLE 1 | Challenges in clinical trial design for vaccine development to prevent hospital-acquired infections.

Study parameter Problem statement Implications and potential solutions

Patient recruitment It is difficult to define the patients at risk long beforehand.

Hospital-acquired infections are typically associated with unplanned

events such as cardiac surgery or ICU ventilation; adding to the

difficulty, patients clearly at risk are often no longer able to sign

informed consent

Since early involvement of future patients is key to success,

multi-stakeholder cooperation is need and a fallback on

nation-wide registries and cohorts could be very valuable

Diagnostics Precise methodology for distinguishing infection from colonization and

for detection of potential co-infections as important variables is

frequently not in place and, thus, delays diagnosis or its accuracy. This

further has impact on the precision of inclusion and exclusion criteria

and clinical endpoints. Additionally, diagnosis of immune status and

microbiome composition are not routinely collected

Diagnostic method development should be fostered to make

rapid, comprehensive and precise diagnostics available. The

value of immune status and microbiome assessment needs

to be evaluated

Vaccination

schedule

Late recruitment bears the risk that time between vaccination and

disease manifestation is too short for establishment of stable immune

memory and required booster vaccination

Vaccination schedules will vary depending on the proposed

immunological mechanism of action. Boostering of an

existing immune response is different from reshaping or de

novo formation of an immune response. Induction of T cell

immunity vs. antibody responses will require different

approaches

Unpredictability of

infection

Infection is unpredictable in regards to the time point of disease

manifestation and the patients affected in the cohort. Manifestation of

infection might not fall within the duration of the study. Examples

highlighting this issue are bloodstream and prosthesis infections where

infection rates vary strongly

Pre-established clinical trial networks with the flexibility to

recruit patients from many different trial sites may have a great

advantage to recruit a sufficiently high amount of subjects

Choice of clinical

trial sites

Epidemiology is subject to change. Global spread of strains with

antibiotic resistance and high transmission potential and environmental

fitness changes the representation of strains over longer periods. Even

more important for a clinical study, the local epidemiology varies. These

changes are sometimes hard to track because they depend on multiple

factors, e.g., regional representation of strains, infection control

measures and antibiotic regimens. Consequently, hit rates at a study

site can be unexpectedly low, thus diminishing the statistical power of

the studies. One prominent example is that incidence of

ventilator-associated pneumonia with P. aeruginosa on ICUs has

declined, which might be attributed to the introduction of more rigorous

infection control measures and standardized procedures

Pre-established clinical trial networks with well-characterized

sites and information on local epidemiology and updates on

changes in routine antibiotic regimens and infection control

measures may be detrimental in commissioning of suitable

sites and recruitment of study subjects. The network

structure could facilitate and speed up the process

Clinical endpoints Clinical endpoints such as survival or pneumonia on an ICU are often

too broad and ambitious in their scope

Clinical endpoints should be based on the precise diagnosis

and prevention of an infection with a specific target pathogen

and co-infections excluded

• The choice of infectious dose, the virulence of the challenge
pathogen and severity of disease manifestation should
resemble natural course of infection without compromising
the safety of the study participant.

• The number of study participants is typically small.
• 100% colonization rates or 100% infection rates may be

required to obtain significant results but may be difficult to
achieve in practice.

• The studies have limited value if the challenge agent does
not reflect the epidemiologically relevant spectrum of strains
encountered in real life.

• Standardization of procedures (administration and
manufacturing of the challenge agent, the challenge agent
itself, disease severity scores, primary and secondary
endpoints) is essential for comparability of the studies and
vaccines but often not in place.

In vaccine development HCT studies are well-established for
many indications. For bacteria, CHIM have mainly been used
in the development of vaccines against enteric pathogens among

them enterotoxigenic E. coli (ETEC), Shigella spp. and V.
cholera. The learnings included that HCT results do not predict
vaccine effectiveness in field studies (86). Substantial efforts for
standardization have been made to achieve high quality and
reliability of results in ETEC and Shigella studies (87–89).

To date, no human challenge models have been published for

evaluation of vaccines for hospital-acquired bacterial infections.

A few studies addressed the colonization potential of S. aureus

(ST398) (90) and non-toxigenic C. difficile (91, 92). Although

proof-of-concept studies could be supportive, accounting for

the heterogeneity of strains, patients (immune status, dysbiosis,

barrier function of epithelia) and disease course would not

be feasible in this setting. This questions the relevance of
data collected in HCT and, in this context, limits utility to
CHIM studies related to understanding of the role of the
immune response and microbiota in prevention and resolution
of infection and, potentially, very specific research questions
such as decolonization of patients colonized with multidrug
resistant pathogens.
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SYNERGIES AND REDUNDANCIES OF
MICROBIOLOGICAL AND
IMMUNOLOGICAL DEFENSE
MECHANISMS

Another aspect that influences clinical trials to a so far unknown
extent is that host defense is prepared to fight infections
with two different strategies: next to the host immune system
reconstitution and resilience of the host microbiome limits
spread and promotes clearance of the infecting pathogen (93).
Although many studies have addressed the interplay of both
of these systems in the healthy setting the synergies and
redundancies are is not well-understood in the context of an
infection and is even less controllable in the clinical trial setting.
These functionally distinct, but redundant, immunological and
microbiological defense mechanisms have evolved to secure
protection from infection. Their presence, absence or resurgence
(resilience of the microbiome, recovery of the immune response)
could superimpose vaccine-mediated resolution of infection
resulting in failure to demonstrate efficacy in the clinical trial.

Recent reports indicate that the microbiota influence the
vaccine response. From studies in low income countries we
learned that many factors including the microbiota composition
can influence the response to oral vaccination (94). It is further
well-known that the microbiota are essential for the development
of the intestinal immune system. Among them, segmented
filamentous bacteria have been associated with recruitment of
Th17 cells to the gut (95). Furthermore, the abundance of
specific microbiota correlated with higher immunogenicity, e.g.,
Actinobacteria, in particular the Bifidobacteria genus, were found
to increase immunogenicity of OPV in Bangladesh and low
representation of Bacteroidetes and high abundance of Bacilli
(Streptococcus bovis) correlated with better vaccine response and
seroconversion in rural Ghana (96, 97). Additionally, treatment
of mice with antibiotics reduced the polio replication and
infectivity in mice, a phenomenon well in line with previous
findings that the microbiota enhance uptake and replication
of enteric viruses (98, 99). However, this was not observed
in a trial using azithromycin in children (100). Similarly to
Polio vaccine virus, shedding of the Rota virus was increased
if subjects were treated with antibiotics before vaccination but
no differences in IgA levels were observed (101, 102). By
contrast, pretreatment with antibiotics reduced the neutralizing
antibody response to influenza vaccination, indicating that
systemic immune responses are also affected by the lack of
microbiota (103).

The pathogens causing nosocomial infections usually reside

on the mucosal surfaces. On the one hand, microbiota colonizing

the mucosa constantly stimulate epithelia and innate immune

cells, trigger the production of antimicrobial peptides and IgA

and shape the T and B cell repertoires [reviewed in (104)]. On

the other hand, these factors play an important role in regulating

the quantity and composition of the local microbiome as well as

the defense against invading pathogens (105, 106). Notably, the
presence of IgA protects mice fromDSS colitis and polymicrobial
sepsis (107, 108).

Recent evidence suggests that administration of antibiotics
leads to loss of IgA secretion. This was demonstrated in
the respiratory tract where IgA-deficiency was associated with
increased susceptibility to infection with P. aeruginosa (109).
Similarly, in a humanized mouse model of IgA nephropathy
treatment with antibiotics prevented renal deposition of IgA
complexes, which was proposed to be due to a reduction of the
intestinal microbiota and the concomitant loss of the microbiota-
specific IgA (110).

MICROBIOLOGICAL AND
IMMUNOLOGICAL SUSCEPTIBILITY TO C.

DIFFICILE INFECTION

Colonization with C. difficile occurs at very early age and is
detectable in 80% of newborns in their first month of life. It
decreases to colonization rates of 3% (comparable with adults)
by the end of the first year of life (111). Thus, trained innate
immunity is probably established during this early phase of life
and shapes the tolerogenic immune response to the colonizing
pathogen. As for other hospital-acquired infections in the
elderly the risk for CDI is increased, which might be attributed
to both immunosenescence (112) and age-related changes in
the gut microbiota (113). However, the relative contribution
to susceptibility remains ill-defined for both factors and is
complicated by the reciprocal regulation of intestinal microbiota
and mucosal immunity. Figure 2 summarizes the major events
contributing to CDI susceptibility.

Based on the findings described above it can be speculated
that an antibiotic-induced IgA-deficiency could account for
susceptibility to C. difficile infection (CDI) (114). High titers
of toxin (TcdA and TcdB)-specific antibodies, in particular
IgA in serum and feces, correlate with protection against
CDI, while low titers or absence of toxin-specific IgG and
IgA were found in patients with acute or recurrent CDI and
in non-colonized individuals (115–118). These data indicated
that patients with transient deficiency in IgA might be more
susceptible for infection. Well in line with this observation
Bezlotoxumab, a monoclonal antibodies directed against TcdB,
prevented recurrence of CDI, highlighting the value of antibody-
mediated toxin neutralization (119, 120).

The role of cellular immunity in CDI is less well-understood.
Notably, HIV+ individuals with low CD4+ T cell counts and
homozygotes with a Q223R mutation in the leptin receptor,
which abrogates synthesis of IL-23, a cytokine that induces
formation of Th17 cells, have an increased risk for CDI (121,
122). It is further known that high levels of T cell-derived
cytokines (IFNγ and IL-5) in peripheral blood correlate with
less severe disease manifestation (123). IL-23 is elevated in
feces and intestinal biopsies of CDI patients (124, 125) and
patients with recurrent CDI display increased numbers of Th1
and Th17 cells in peripheral blood (126). The role of these
inflammatory T cell subsets is, however, controversial. Recent
data highlight their contribution to immune pathology of CDI
rather than a protective role (127). It has further been suggested
that microbiota induce Treg and regulate the balance between
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FIGURE 2 | Microbiological and immunological defense against CDI. (Left): Colonization is established in early infancy but regresses in the first year of life with both

the maturation of the immune system and the development of the full microbiome. (Middle): In children and young adults the immune system is balanced and the

microbiome intact. Both factors control growth of C. diffcile and toxin production. (Right): In the elderly population the microbiome and the immune system are both

subject to age-related changes, which leads to increased susceptibility for CDI. Treatment with antibiotics results in reduction of microbiota and dysbiosis and enables

growth of C. difficile. Loss of microbiota-mediated stimulation of immune cells leads to loss of IgA secretion and Treg and thereby facilitates CDI and the associated

inflammatory processes. Therapeutic options are provided below the panels.

Treg and Th17 cells (128). In analogy to IgA, the reduction of
microbiota by antibiotics could, thus, increase susceptibility to
CDI and, in particular, contribute to inflammation and immune
pathology by relaxing Treg-mediated suppression and allowing
increased formation of Th17 cells.

Although these data argue for an important contribution of
both T and B lymphocytes to the immune response in CDI, Leslie
et al. recently demonstrated in a mouse model that clearance
of C. difficile due to resilience of the microbiome occurs in the
absence of adaptive immune responses (129), arguing for a non-
essential role of immune defense in this context. Furthermore,
colonization with non-toxigenic strains can prevent colonization
with toxigenic strains of C. difficile and, thus, prevent disease,
which was demonstrated in the hamster and in recurrent
human CDI (92, 130). Similarly, fecal microbiota transplantation
(FMT) has become a success story in treatment of CDI (131).
Nevertheless, recent studies indicate that non-immune, soluble
factors such as such as butyrate and bile salts or bacteriophages
might play an underestimated role in reconstitution of the
microbiota after CDI (131–134). However, the model developed
by Leslie et al. did not consider the effects of aging of the
microbiome (113). It is, therefore, likely that age-related changes
in the immune system and the microbiota facilitate colonization
with C. diffcile and development of CDI and that regeneration of
one or both systems drives resolution if infection (Figure 2).

CONCLUSIONS AND PERSPECTIVES

These multiple findings highlight the complexity behind
the endeavor to develop vaccines for nosocomial bacterial
infections. The heterogeneity of patients, bacterial strains, disease
course and hospital epidemiology have complicated vaccine
development in this area and have led to discontinuation of
vaccine development programs. However, the power of vaccine
prevention has been demonstrated in many occasions. Thus, re-
thinking the strategies may be warranted but failures should
not be accepted without further refurbishing on available and
new scientific data. For new developments, the definition of
pathogen-specific clinical endpoints and the suitability of the
immunological mechanism of action are key to success. Figure 3
summarizes the interconnection of the relevant parameters,
which influence the trail design and final indication.

For vaccines targeting K. pneumoniae and E. coli there is

a trend to focus on epidemiologically relevant strains. A next

step could be the development vaccine formulations that trigger

specific, protective T cell responses such as Th17 cells in the
mucosa. However, future research will need to define the type
of T cell responses required and the route of immunization
needed to establish protection in different body compartments.
Next to the quality of the T cell response it will be relevant to
understand the optimal time point for vaccination: (1) whether
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FIGURE 3 | Interconnection of parameters relevant to design the vaccination strategy against nosocomial bacterial pathogens. It is crucial to define the desired

preventive action (1), which defines the immunological mechanism of action (2) when set in context with the available knowledge of pathophysiology, e.g., intra- and

extracellular survival, correlate of protection (or a surrogate, if unknown). In the specific case of hospital-acquired infections, colonization in youth or in elderly patients

at risk precedes infection and vaccine design needs to take into account that natural immune responses to colonizing pathogens might not be protective. Thus, they

might need refurbishing with the immunological scope (3) of strengthening preexistent immune responses (“booster”), establishing long-term protective immune

memory or promoting immunity by acute intervention. All considerations generate the indication (4), e.g., all details on administration (e.g., vaccination scheme and

dosage) and indication for defined patient populations (age indication, immune status, microbiome).

it is preferable that vaccines build on establishment of long-
term immunity, or, (2) whether immunization at short temporal
distance to onset of infection is favorable because acute formation
of T cell immunity is more effective in promoting protection
against infection, although the vaccine response in the latter case
may be short-lived.

Despite the higher cost, a more detailed characterization
of individual patients and patient subpopulations within the
trial population seems warranted to ensure that the results
obtained in the clinical trials are meaningful. One further step
could be to identify the patient population that benefits from
vaccination. Pro- and retrospective analyses of trial data on
subject level could help to define the characteristics of these
patient collectives and improve stratification in future trials. This
concept is not new but well in line with the current understanding
of personalized medicine and individualized treatment concepts
that have recently been introduced to the field of infectious

diseases, antibiotics and vaccination (135–137). In light of the
interdependency of immune status and microbiome resilience,
the influence of these factors on clinical trial success needs to be
investigated more thoroughly.
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