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In countries where malaria transmission has decreased substantially, thanks to the scale-up of control interven-
tions, malaria elimination may be feasible. Nevertheless, this goal requires new strategies such as the active
detection and treatment of infected individuals. As the detection threshold for the currently used diagnostic
methods is 100 parasites/mL, most low-density, asymptomatic infections able to maintain transmission cannot
be detected. Identifying them by molecular methods such as PCR is a possible option but the field deployment of
these tests is problematic. Isothermal amplification of nucleic acids (at a constant temperature) offers the oppor-
tunity of addressing some of the challenges related to the field deployment of molecular diagnostic methods.
One of the novel isothermal amplification methods for which a substantial amount of work has been done is the
loop-mediated isothermal amplification (LAMP) assay. The present review describes LAMP and several other iso-
thermal nucleic acid amplification methods, such as thermophilic helicase-dependent amplification, strand dis-
placement amplification, recombinase polymerase amplification and nucleic acid sequence-based amplification,
and explores their potential use as high-throughput, field-based molecular tests for malaria diagnosis.
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Introduction
Detecting Plasmodium parasites in peripheral blood, in both febrile
patients and asymptomatic carriers, is essential for any malaria
control programme aiming at decreasing local transmission and
achieving the pre-elimination status.1 The WHO recently launched
a global initiative known as T3 (‘Test. Treat. Track.’), aimed at sup-
porting malaria-endemic countries in their efforts to achieve uni-
versal coverage with diagnostic testing, antimalarial treatment
and surveillance.2 Though malaria has been eliminated from
Europe and North America with no other diagnostic tool than
microscopy,3 this seems more difficult in tropical countries,
including sub-Saharan Africa, because of the substantial number
of individuals harbouring a malaria infection at extremely low
densities, undetectable by microscopy.4 The currently available
tools for diagnosing malaria include microscopy, parasite anti-
gen/enzyme detection kits [commonly referred to as rapid diag-
nostic tests (RDTs)] and molecular tools (discussed in Cordray
and Richards-Kortum5), each of them with specific advantages
and limitations and with the potential of being deployed at differ-
ent levels of the health system (microscopy and RDTs more per-
ipherally than molecular tools).5,6 Indeed, microscopy and RDTs
remain the only feasible options at health facility or lower level,
e.g. community case management of malaria.6 These two diag-
nostic tools have limitations. For example, the absence of the
pfhrp-2 gene (encoding the HRP-2 protein, to which most antigen

detection tests are directed) in Plasmodium falciparum popula-
tions from some endemic areas resulted in a substantial propor-
tion of false negatives.7 Moreover, both microscopy and RDTs
cannot detect parasite densities ,100 parasites/mL, particularly
in field conditions, while asymptomatic carriers have a much
lower parasite density.8 The latter can be identified by nucleic
acid amplification tests (NAATs), often by PCR, one of the most
widely used molecular methods for the detection and identifica-
tion of infectious diseases. The detection limit of PCR, which is
�1 parasite/mL depending on the assay type,9,10 is lower than
either RDTs or microscopy and PCR is therefore able to detect
asymptomatic malaria carriers who may be targeted for treat-
ment.11 In some settings, asymptomatic sexual and asexual
stages of P. falciparum infections may persist and sustain trans-
mission at very low parasite densities, below the threshold of
detection by microscopy or RDTs and in reach only of molecular
methods such as PCR.12 – 14 However, PCR-based assays are the
least feasible to perform in field settings as they are prone to con-
tamination, heavily influenced by the purity of the sample nucleic
acid content thus relying on purified extracts and requiring cold
storage facilities for reagents.5,15,16 Therefore, until recently,
molecular diagnostic methods required specialized equipment
and personnel and could not be carried out outside reference
facilities. The possibility of amplifying DNA at isothermal tempera-
tures without the need of a thermocycling apparatus has created
the opportunity of performing molecular diagnostic tests at a
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more peripheral level17 and thus of improving the management of
infectious diseases, especially in resource-limited settings.15,16,18

Recent guidelines published by WHO recommend that diagnostic
devices for resource-limited settings should be ASSURED:
Affordable, Sensitive, Specific, User-friendly, Rapid and robust,
Equipment-free and Deliverable to end users.19,20 This paper
reviews some molecular isothermal amplification techniques
(with the ASSURED criteria in mind) with the aim of determining
their possible deployment for high-throughput detection of
asymptomatic P. falciparum carriers in the field, e.g. in mass
screening and treatment campaigns.

Sample preparation for field-deployable
molecular assays
Preparing the sample for molecular assays is a bottleneck for
NAATs because it involves lengthy processes, often performed
manually.18,21,22 DNA extraction for molecular assays is a critical
step, with different methods resulting in different yield and quality
of the nucleic acid.23,24 One of the major problems, particularly
when processing large quantities of samples, is the inhibition of
the PCR by the haem (from red blood cells) obtained from the
crude DNA extraction.25 Ideally, the DNA extraction method
should have the following characteristics: rapid preparation and
high throughput; high reliability; production of good-quality DNA
for long-term storage; avoidance of cross-contamination; and
reasonable costs.23

Several isothermal technologies may fulfil these requirements
as they appear less affected by the inhibitory effect of blood pro-
ducts and have similar sensitivity and specificity as standard PCR
when DNA is extracted using crude methods such as heat
treatment.18,26,27

PCR adaptations for detection of malaria
parasites in the field
New approaches for simplifying PCR for field settings, including
assays that are less prone to inhibition, have been explored.28– 30

The palm-held PCR device by Ahram Biosystems31 features three
stages of specially structured heat blocks that are maintained at
temperatures suitable for each of the three PCR steps and the sam-
ple is circulated across the high- and low-temperature zones inside
the sample tube. Field PCR units and portable real-time PCR sys-
tems with freeze-dried reagents have been developed by Biofire
Diagnostics for mobile analytical laboratories and field hospitals
for pathogen detection.32 Lab-on-chip, point-of-care diagnostic
assays are also being designed for the diagnosis of disease patho-
gens.33 However, these assays are still relatively expensive for
resource-limited settings and are not entirely infrastructure-free.
Post-amplification detection is also being simplified with the devel-
opment of PCR–nucleic acid lateral-flow immune assays.34

Isothermal amplification of nucleic acids
Based on new findings on DNA/RNA synthesis, non-PCR-based
methods of nucleic acid amplification involving the use of acces-
sory proteins and mimicking in vitro nucleic acid amplification
have been developed.35 Isothermal approaches can facilitate
rapid target amplification through single-temperature incubation,

reducing the system complexity compared with PCR-based meth-
ods. Established isothermal amplification methods have different
degrees of complexity (multiple enzymes or primers) and also
varying sensitivity and specificity.36 A major advantage of isother-
mal amplification methods is the simplicity of endpoint determin-
ation, often by visual observation, which allows assays to be run in
a closed system, thus reducing the risk of post-amplification con-
tamination.20,37,38 The choice of which reaction to use is primarily
driven by the target of interest to be amplified. Amplification time,
reaction temperature, tolerance to substances in biological sam-
ples, length of the target, initial heat denaturation and complexity
(i.e. the number of enzymes and primers required) are all factors
to be considered when choosing an appropriate method.39 In the
past two decades, several isothermal amplification methods for
detecting pathogens, including malaria parasites, have been
used (Table 1).

Isothermal amplification methods currently
used in malaria diagnosis

Loop-mediated isothermal amplification (LAMP)

LAMP, first described in 2000,40 can be performed with simplified
and inexpensive specimen processing, under isothermal condi-
tions in a simple heating block or water bath. Furthermore, it
can be formatted for visual detection without the need for instru-
mentation, which is a major advantage for its field deploy-
ment.41,42 LAMP is a one-step amplification reaction that
employs self-recurring strand-displacement synthesis primed by
a specially designed set of primers identifying six distinct
sequences on the target DNA.40 Detailed reviews (principles, pri-
mer set-up and design) are available elsewhere.37,38,41 – 43 At
costs ranging from USD ,1.00/test (using ready-made reaction
mixture prepared with individual reagents) to USD 5.31/test
(using commercially available reaction mixture),38 LAMP assays
proffer to be cheaper than PCR assays. However, one major short-
fall of the LAMP assay is the complexity in primer and assay design
and optimization (Table 2).

The use of LAMP for the diagnosis of various diseases, including
human malaria, has been investigated extensively.6,25,26,44 – 57 A
lower limit of detection in the range of 5–10 parasites/mL has
been reported,25,46 while sensitivity and specificity, when com-
pared with an 18S rRNA gene PCR assay using crude DNA extracts,
were 95% and 99%, respectively (Table 1).26 However, a subse-
quent study using the same PCR and LAMP protocols reported
much lower estimates of sensitivity and specificity, i.e. 76% and
90%, respectively.45 Taking microscopy as the gold standard
and with different primer sets targeting the same gene, the sen-
sitivity and specificity were 96% and 94%, respectively.46 In 130
field samples collected in Thailand and using a composite refer-
ence diagnosis for each sample, i.e. two out of three tests [micros-
copy, nested PCR (nPCR) and LAMP] giving the same result, LAMP
had 100% sensitivity and specificity for P. falciparum infection.58

With primers targeting the mitochondrial genome and nPCR
assay as the reference test, the sensitivity and specificity were
93% and 100%, respectively.25 In a recent study in Uganda, the
sensitivity and specificity of LAMP P. falciparum primers were
98% and 98%, respectively, and 97% and 99% for the genus pri-
mers.59 In a recent comparison of an optimized LAMP protocol
against a highly sensitive three-well nPCR reference assay (in
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Table 1. Isothermal molecular-based tests for diagnosis of pathogens

Isothermal
amplification

assay Pathogen Isothermal condition Gold standard/ref test
Sensitivity or limit

of detection Specificity Reference

1 tHDA Clostridium difficile 658C for 60 min PCR 100% 100% 79
2 tHDA herpes simplex virus 648C for 60 min ELVIS shell vial assay 100% 96.30% 78
3 tHDA H. pylori 958C for 2 min; 608C for 1 h culture; histology 90%; 96.6% 95.7%; 96.8% 74
4 tHDA H. pylori 958C for 2 min; 608C for 1 h culture; histology 92.5%; 100% 95.4%; 98.8% 75
5 tHDA Staphylococcus aureus; MRSA 958C for 5 min; 608C for 1 h biochemical and genotyping methods 100%; 100% 100%; 98% 76
6 tHDA Ebola virus 658C for 120 min ND 0.2 pg of total human

RNA for GAPDH
detection; 3.2 copies
of Ebola virus-
armoured RNA

ND 73

7 tHDA HIV 658C for 75 min ND 50 copies/assay ND 77
8 tHDA N. gonorrhoeae 658C for 60 min Abbott CT/GC kit 100% 100% 115
9 tHDA Plasmodium spp.;

P. falciparum; P. vivax
648C for 90 min microscopy/NASBAMT 97% 100% 81

10 LAMP P. falciparum 608C for 120 min PCR 95% 99% 26
11 LAMP P. falciparum 658C for 120 min PCR 76%–79% 58%–89% 45
12 LAMP Plasmodium spp. 608C for 100 min; inactivation

808C for 2 min
microscopy 98.50% 94.30% 46

13 LAMP P. falciparum 638C for 90 min microscopy 97.80% 85.70% 44
14 LAMP Plasmodium spp. 638C for 90 min microscopy; PCR 96.7%; 98.9% 91.7%; 100% 6
15 LAMP Plasmodium spp. 608C for 100 min; inactivation

808C for 2 min
microscopy 98.30% 100% 116

16 LAMP Plasmodium spp.; P. falciparum 658C for 40 min; inactivation
808C for 5 min

PCR 93.9%; 93.3% 100%; 100% 25

17 LAMP P. falciparum; P. vivax 608C for 60 min composite ref (LAMP, Mx, PCR) 100%; 100% 100%; 100% 58
18 LAMP Plasmodium spp.; P. falciparum 658C for 40 min; inactivation

808C for 5 min
nPCR 98.4%; 97% 98.1%; 99.2% 59

19 LAMP P. falciparum 658C for 90 min; inactivation
808C for 5 min

RT–PCR 100%; 100% 98.1%; 100% 47

20 NASBA Trypanosoma brucei 658C for 2 min; 418C for 92 min microscopy 10 parasites/mL 100% 117
21 NASBA Leishmania 658C for 2 min; 418C for 92 min microscopy 93.3%; 98.6% 100%; 100% 118
22 NASBA Plasmodium spp. 658C for 4 min; 418C for 2 h microscopy 97.40% 80.90% 67
23 NASBA Plasmodium spp. 658C for 4 min; 418C for 2 h microscopy 100% 94% 68
24 NASBA astrovirus 658C for 5 min; 418C for 95 min RT–PCR 66
25 NASBA P. falciparum 658C for 4 min; 418C for 2 h microscopy 119
26 NASBA P. falciparum 658C for 4 min; 418C for 2 h real-time QT-PCR 69
27 NASBA M. tuberculosis 428C for 1 h culture 85.70% 95.50% 120
28 NASBA hepatitis A virus 658C for 5 min; 40+18C for

150 min
ND 1 pfu ND 121

29 RPA MRSA 378C for 60 min ND 2 copies/rxn ND 87
30 RPA MRSA 398C for 1 h ND ND 88
31 RPA RVFV 428C for 20 min ND 102
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which amplification in any well of three replicates per sample was
counted as positive), LAMP showed a sensitivity of 90% compared
with 51% for microscopy.60 LAMP has also been reported for the
detection of other Plasmodium species including Plasmodium
vivax,46,61 Plasmodium malariae, Plasmodium ovale,46 human
Plasmodium knowlesi infection62,63 and gametocytes by reverse
transcription (RT–LAMP),47 showing the ease of adaptability of
this method.

Nucleic acid sequence-based amplification (NASBA)

NASBA, first described by Kievits et al.64 in 1991, is a homoge-
neous, isothermal nucleic acid amplification method that is par-
ticularly suited to RNA targets in a double-stranded DNA
background. A cocktail of three enzymes (reverse transcriptase,
T7 RNA polymerase and RNase H) acting in concert allows the
rapid amplification of target sequences by .108-fold without
the use of expensive thermal-cycling equipment, the end product
being a single-stranded RNA antisense to the original RNA tem-
plate.65 Since there is no DNA denaturation step in NASBA, con-
taminating genomic or proviral DNA (the precursor or latent
form of a virus integrated into the genetic material of a host
cell) is not amplified. However, the extent of the reaction cannot
be controlled by adjusting the number of cycles and the likelihood
of non-specific interactions is increased because the amplification
temperature cannot exceed 418C without the risk of enzymatic
denaturation.66

The reliability of the NASBA process has been tested by sequen-
cing the RNA product directly from a NASBA reaction, with 90% of
the sequences readable, an excellent result considering the AT
richness of the P. falciparum genome.65 For detection and semi-
quantification of malaria parasites and species identification,
NASBA, compared with microscopy, had a sensitivity of 97%
and specificity of 81%.67 Another study detecting products of
NASBA amplification by electrochemiluminescence reported a
sensitivity of 100% and specificity of 94%.68 Schneider et al.69

reported a significant correlation between parasite quantification
results by real-time quantitative NASBA (QT-NASBA) and real-time
quantitative PCR (QT-PCR). QT-NASBA has also been used to deter-
mine gametocyte carriage (prevalence and density) with the abil-
ity of detecting gametocyte densities as low as 0.02–0.1/mL.69,70

The cost of NASBA assays has not been determined. However,
considering that NASBA requires similar consumables and infra-
structure as PCR, it is expected that assay costs would be similar
(Table 2).

Thermophilic helicase-dependent amplification (tHDA)

In this system, which was first described in 2004,71 strands of
duplex DNA are separated by a DNA helicase and coated by single-
stranded DNA-binding proteins (SSBs). Sequence-specific primers
hybridize to each border of the target DNA and DNA polymerases
extend the primers annealed to the templates to produce a
double-stranded DNA (Figure 1). The two newly synthesized
double-stranded DNA products are subsequently used as sub-
strates by DNA helicases, entering the next round of the reaction.
Thus, a simultaneous chain reaction proceeds, resulting in the
exponential amplification of the selected target sequence.71

tHDA amplifies nucleic acid targets efficiently at 658C and requires
fewer protein components than the mesophilic HDA platform,3
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Table 2. Comparison between established PCR and novel isothermal amplification assays

PCR LAMP NASBA tHDA RPA SDA

1 sample processing prior
to amplification

nucleic acid extraction
required

amplification from crude
samples possible

nucleic acid extraction
required

amplification from crude
samples possible

nucleic acid extraction
required

amplification from
crude samples
possible

2 cost USD 7–8 per sample129 USD ,1–5.338 equivalent to PCR relatively cheaper than PCR relatively cheaper
than PCR

relatively cheaper
than PCR

3 ease of use/simplicity of
operation

complex relatively easier to set up
than PCR

relatively easier to set up
than PCR

relatively easier to set up
than PCR

relatively easier to set
up than PCR

relatively easier to set
up than PCR

4 skill/training required high moderate high moderate moderate moderate
5 stability of reagents cold chain required for

enzymes
cold chain required for

enzymes
cold chain required for

enzymes
cold chain required for

enzymes
reagents available as

dry pellets
cold chain required for

enzymes
6 amplification time �2 h 30–60 min �2 h �60 min �60 min 30–60 min
7 simplicity of design complex primer design

and assay
optimization

complex primer design
and assay
optimization

complex primer design
and assay optimization

complex primer design and
assay optimization

complex primer design
and assay
optimization

complex primer design
and assay
optimization

8 principle high temperature and
thermostable
polymerase

thermophilic strand
displacement
polymerase

reverse transcription and
strand displacement
polymerase

helicase and thermophilic
strand displacement
polymerase

recombinase–
polymerase complex

thermophilic strand
displacement
polymerase

9 test temperature varying 658C 418C 60–658C 378C 408C
10 risk of contamination potential risk minimized

by proper set up
potential risk minimized

by proper set up
potential risk minimized

by proper set up
potential risk minimized by

proper set up
potential risk

minimized by proper
set up

potential risk
minimized by proper
set up

11 quality assurance control possible possible possible possible possible possible
12 post-amplification

detection
electrophoresis;

fluorescence
detection

naked eye; turbidity
measurement;
electrophoresis

fluorescence detection lateral-flow strip;
electrophoresis;
fluorescence detection

fluorescence detection;
electrophoresis

fluorescence detection;
electrophoresis

13 sensitivity high high high high high high
14 specificity high high high high high high
15 limit of detection

(Plasmodium)
1–5 parasites/mL 1–5 parasites/mL ,1 parasite/mL unknown unknown unknown

16 Plasmodium species
identification

yes yes yes yes possible possible

17 identification of sexual
and asexual forms

yes yes yes possible possible possible

18 high throughput yes yes yes yes yes yes
19 instrumentation

requirement
thermocycler heating block or

water bath
real-time cycler heating block or water bath real-time cycler;

heating block or
water bath

real-time cycler;
heating block or
water bath

20 infrastructure
requirement

electricity electricity and
exothermal chemical
devices

electricity electricity electricity electricity

21 field tested no yes yes yes no no
22 product developer various Eiken Group, Japan Cangene Corporation,

Canada
Biohelix Corporation, USA TwistDx, USA Becton Dickinson and

Co., USA
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which is performed at 378C.72 However, because both methods
are isothermal and do not require thermocycling, they present a
relatively cheaper platform than PCR.

The tHDA platform has been successfully used for the detec-
tion of several pathogens.73 When compared with culture meth-
ods for detection of Helicobacter pylori, tHDA-ELISA had a
sensitivity and specificity of 90% and 96%, respectively, and a
higher sensitivity (97%) and specificity (97%) when compared
with histology.74 However, when using colorimetric detection
with gold nanoparticle probes, the sensitivity was higher (93%
compared with culture methods and 100% with histology) and
specificity similar or higher (95% compared with culture methods
and 99% with histology detection).75 The sensitivity and specifi-
city for the detection of different pathogens was higher when
amplified DNA was applied onto a vertical-flow strip embedded
in a disposable cassette (Table 1).76 – 80 Recently, clinical and ana-
lytical performance of tHDA for Plasmodium detection and
species-level identification in blood samples was reported, with
overall sensitivity of 97% (95% CI, 87%–99%) and specificity of
100% (95% CI, 85%–100%).81

Adaption of the tHDA on a microarray platform can be carried
out directly on the surface of a glass slide by immobilizing one pri-
mer on the glass substrate and leaving the corresponding primer
in solution. With the helicase unwinding the DNA template,
the resulting DNA single strand is able to anneal at the immobi-
lized primer and will be subsequently elongated by the DNA

polymerase. Labelling the corresponding primer with a reporter
allows successful detection of amplified targets from the micro-
array platform by laser scanning or total internal reflection fluor-
escence technologies.82

Other isothermal amplification assays with potential
for use in malaria diagnosis

In recent years, a vast array of isothermal amplification methods
targeting DNA, RNA or both have been developed or used for
the diagnosis of pathogens. These are T7 promoter-driven ampli-
fications: transcription-mediated amplification (TMA),83 single
primer isothermal amplification,84 strand displacement methods
such as strand displacement amplification (SDA) and smart amp-
lification (SmartAmp),85,86 recombinase polymerase amplifica-
tion (RPA),87,88 isothermal and chimeric primer-initiated
amplification of nucleic acids,89 self-sustained sequence replica-
tion reaction,90 exponential amplification reaction,91 cross-
priming amplification,92,93 rolling circle amplification94 and the
genome exponential amplification reaction technique.95 Table 2
summarizes the comparison of some important features
between PCR and the isothermal amplification methods
described in this review. Most of these assays require multiple
enzymes (two or more), rigorous optimization, a heat source
and post-amplification analysis.

DNA polymerase

SSBs

DNA helicase

Primers

5¢

3¢

5¢

3¢

5¢
3¢

5¢

5¢
3¢

3¢

3¢

5¢

3¢

5¢

5¢
3¢Step 1

Step 2

Step 3

Step 4

3¢

3¢
5¢

5¢

Figure 1. Schematic representation of tHDA. Steps 1 and 2: DNA helicase binds to double-stranded DNA and begins unwinding while SSBs attach to
stabilize the single strands. Step 3: sequence-specific primers bind and DNA polymerase synthesizes new DNA strands in the 5′�3′ direction. Step 4:
duplex DNA strands formed serve as a template for another round of amplification.
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Based on the WHO ASSURED criteria for diagnostic assays for
resource-limited settings, two of the isothermal amplification
methods, which are deemed more advanced towards field imple-
mentation, namely RPA and SDA, were selected for further discus-
sion. Their suitability for deployment as field-based molecular tests
for malaria parasite detection was based on assay chemistry, sim-
plicity of design and operation, cost-efficiency and robustness.

RPA

In RPA, the isothermal amplification of specific DNA fragments is
achieved by the binding of opposing oligonucleotide primers to
template DNA and their extension by a DNA polymerase. Global
melting of the template is not required for the primers to be direc-
ted to their complementary target sequences. Instead, RPA
employs recombinase–primer complexes to scan double-
stranded DNA and facilitate strand exchange at cognate
sites.96 – 98 The resulting structures are stabilized by SSBs interact-
ing with the displaced template strand, thus preventing the ejec-
tion of the primer by branch migration (Figure 2).99 Recombinase

disassembly leaves the 3′-end of the oligonucleotide accessible to
a strand-displacing DNA polymerase, in this case the large frag-
ment of Bacillus subtilis PolI (Bsu),100 and primer extension
ensues. Exponential amplification is accomplished by the cyclic
repetition of this process.

Key to RPA is the establishment of a dynamic reaction environ-
ment that balances the formation and disassembly of recombin-
ase–primer filaments.87 The reaction system is provided in a
stabilized dried format, which may permit transportation and lim-
ited storage without refrigeration even though long-term storage
under refrigeration is still recommended.101 RPA has also been
recently reported in a SlipChip microfluidic platform that enables
multistep manipulation in parallel with large numbers of small
volumes, consisting of two plates containing wells and ducts
that can be brought into contact and moved relatively to one
another to manipulate fluids by creating and breaking fluidic
paths.88 Recently, a highly sensitive isothermal RPA assay for
the detection of Rift Valley fever virus (RVFV) RNA on a mobile
device was published, though the assay is yet to be validated on
clinical samples.102
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Figure 2. Schematic representation of RPA. Step 1: primers and recombinases form a complex that targets a homologous DNA sequence. Step 2: DNA
polymerase synthesizes a new strand by displacing the complementary strand (strand exchange). SSBs help stabilize the displaced single strands. Step 3:
the parent DNA strand separates and synthesis continues to form two new duplex DNA strands. Step 4: duplex DNA strands formed serve as a template
for another round of amplification.
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SDA

SDA is based on the ability of a restriction enzyme to nick or cut the
unmodified strand of a hemiphosphorothioate form of its recog-
nition site as well as the ability of a DNA polymerase to initiate
replication at the ‘cut site’ and displace the downstream non-
template strand. Primers containing recognition sites for the

nicking restriction enzyme bind to opposite strands of target
DNA at positions flanking the sequence to be amplified. The target
fragment is exponentially amplified by coupling sense and anti-
sense reactions in which strands displaced from the sense reac-
tion serve as a target for the antisense reaction and vice
versa.103 The method consists of two parts (Figure 3): (i) a target
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Figure 3. Schematic representation of SDA. Step 1: denaturation of double-stranded DNA. Steps 2 and 3: primers bind on each strand while DNA
polymerase extends to produce double-stranded DNA with a modified (hemiphosphorodioate) recognition site. Step 4: a restriction enzyme cleaves
the unmodified strand of the newly synthesized double-stranded DNA, displacing it. Step 5: DNA polymerase synthesizes a new strand from the
cleaved DNA strand for another round of restriction digest and polymerization.
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generation process that makes copies of the target sequence
flanked by enzyme restriction sites; and (ii) the exponential amp-
lification of these modified target sequences by repeated nicking,
strand displacement and priming of displaced strands.104

Despite the seemingly complicated sequence of events, SDA
operates under a very simple protocol. Target DNA is heat dena-
tured in the presence of all reagents except the restriction enzyme
and polymerase; amplification then proceeds at 408C after cooling
and addition of the enzymes.85 Amplified products may then be
detected by a variety of methods.105 The original SDA process
was not very efficient and it has been improved by incorporating
a thermostable polymerase and a different exonuclease to
increase the yield and rate of amplification. These new conditions
allow a 1010-fold amplification of target after 15 min at
608C.106,107 SDA can also be used to detect RNA by incorporating
a reverse transcription step.108 Varying sensitivities and specifici-
ties have been reported for diagnosis of Mycobacterium tubercu-
losis, Neisseria gonorrhoeae, Chlamydia trachomatis and
enterohaemorrhagic Escherichia coli (Table 1).109 – 111

Discussion and conclusions
Isothermal amplification techniques have potential for the field
diagnosis of malaria infection. They eliminate the need for a costly
and power-intensive thermocycler, produce results in a short time
(from 30 min to 1 h), can be used to process large numbers of
samples required for active surveillance and are capable of
detecting infections of ,1 parasite/mL of blood, of both sexual
and asexual stages.25,46,69,70,112 The sensitivity and specificity of
these techniques are comparable to those of PCR-based diagnos-
tics.5,37 However, it should be noted that isothermal amplification
techniques, though relatively cheaper than PCR, are not totally
equipment- or infrastructure-free but rather have a better poten-
tial for field deployment due to their simplified amplification con-
ditions; thus, alternative heat sources are being explored.20

One major limitation for the field deployment of these isother-
mal amplification assays is the endpoint detection of amplified
products. Real-time fluorescence or turbidity measurement is
the most reliable method of post-amplification detection.18

With LAMP assays, positive samples can be visualized and identi-
fied with the naked eye as a result of the white precipitate of mag-
nesium pyrophosphate formed during the reaction.41 Adaptation
of the vertical-flow strip embedded in a disposable cassette or
lab-on-chip portable devices for endpoint detection of amplified
product with the isothermal amplification assays would be
more user-friendly and field deployable.77,81,87

The Foundation for Innovative New Diagnostics has been work-
ing with the Hospital for Tropical Diseases in London and Eiken
Chemical Company (Japan) in the development of a simplified
LAMP assay for the diagnosis of malaria. Prototypes of this test
have been compared with PCR using samples from febrile patients
in two clinical trials, one in London (travellers) and the other in an
endemic setting in Uganda.59,60,113 This places LAMP at the fore-
front of all the isothermal amplification assays with the potential
to replace PCR in the nearest future. Commercial LAMP reaction
kits have also been developed recently for numerous viral, bacter-
ial and protozoan pathogens.37 The combination of LAMP into a
‘lab on a chip’ with diagnosis performed on a single-use device
would offer a sensitive alternative to microscopy and RDTs.25,114

As the global malaria map continues to shrink and elimination
is seriously being considered in certain territories, active detection
of asymptomatic carriers may be scaled up in these regions.
Therefore, a robust field-deployable, molecular-based assay that
is able to give results comparable to laboratory-based assays,
using crude sample sources and simple end product detection,
would be the best approach to handle the large number of sam-
ples that would be generated. The development of isothermal
amplification techniques has paved the way for this.
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