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Abstract

Iterated prisoner’s dilemma (IPD) researchers have shown that strong positive reputations plus an efficient reputation
evaluation system encourages both sides to pursue long-term collaboration and to avoid falling into mutual defection
cycles. In agent-based environments with reliable reputation rating systems, agents interested in maximizing their private
interests must show concern for other agents as well as their own self-reputations–an important capability that standard
IPD game agents lack. Here we present a novel learning agent model possessing self-reputation awareness. Agents in our
proposed model are capable of evaluating self-behaviors based on a mix of public and private interest considerations, and
of testing various solutions aimed at meeting social standards. Simulation results indicate multiple outcomes from the
addition of a small percentage of self-reputation awareness agents: faster cooperation, faster movement toward stability in
an agent society, a higher level of public interest in the agent society, the resolution of common conflicts between public
and private interests, and a lower potential for rational individual behavior to transform into irrational group behavior.
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Introduction

Reputation provides a foundation for game theorists to analyze

ways that past behaviors of social participants affect the behaviors

and strategies of iterated prisoner’s dilemma (IPD) game

opponents. According to Nowak [1], the five mechanisms that

promote cooperative behaviors are kin selection, direct reciprocity,

indirect reciprocity, network reciprocity, and group selection.

Reputation can be analyzed as a common form of indirect

reciprocity based on knowing a player’s history with other players.

It is a well-studied mechanism that sustains cooperation in

evolutionary IPD games. For other examples see Fu et al. [2]

and Wang et al. [3]. Using the game as a social interaction model,

participants who always choose to cooperate with opponents can

be described as having good reputations, but participants who

always defect are viewed as having damaged reputations.

Participants who establish good reputations tend to receive trust,

praise, and other positive feedback from their partners; those with

poor reputations do not. We believe that the combination of a

positive reputation and accurate reputation evaluation system can

encourage two parties to pursue long-term collaboration and to

avoid falling into mutual defection cycles, even when faced with

short-term sacrifices.

Reputation-related behaviors and strategies have meaning for

online commerce. Web 3.0 is supporting a growing number of

Internet platforms and commercial applications that use intelligent

agent architectures in support of complex online tasks such as

auto-bidding on auction websites, placing Internet stock transac-

tion orders, and shopping for cheaper e-commerce products and

services [4–6]. Web 3.0 researchers are therefore experimenting

with artificial intelligence (AI) techniques to help intelligent agents

‘‘live’’ in Internet communities in ways that resemble how humans

live in real-world communities [7–10]. However, because of

Internet agent properties such as anonymity, mobility, and

multiple identities [11,12], the use of intelligent agents raises

serious game-based and theoretical issues involving cooperation

and defection scenarios and conflicts between public and private

interests [13–15]. In their current form, intelligent agents do not

have to worry about maintaining positive self-images, saving face,

or being victims of acts of vengeance associated with fraudulent

and defective behaviors commonly found in Web 3.0 e-commerce

activities. Since they only care about private interests, they are

unlikely to cooperate with other intelligent agents in support of

group interests, thus increasing the potential for falling into cycles

of never-ending mutual defection [16].

Several agent-based computational simulation researchers have

shown that determining game strategies and behaviors based on

an opponent’s reputation is an effective solution that may increase

the desire to cooperate [2,15,17–26]. When one intelligent agent is

required to cooperate with an unfamiliar agent to complete a task,

a reputation rating system can have great utility in determining the

unfamiliar agent’s trustworthiness [27,28]. However, a clustering

effect resulting in decreased public interest may occur if all agents

in a system simultaneously search for other agents with good

reputations. This seems inevitable, since agents with good
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reputations only want to work with other reputable agents. In

contrast, agents lacking good reputations must spend a great deal

of time performing partner searches because they are in the

awkward position of being rejected by ideal partners, in many

cases without self-knowledge of their poor or unspecified

reputations [13,29–34]. Further, if a reputable agent only cares

about other agents’ reputations but lacks self-knowledge of its own

reputation, it may try to maximize its private interests using

behaviors that end up harming other agents, thus causing damage

to its existing reputation. Accordingly, any multi-agent system with

a reputation-rating scheme must contain a method so that agents

interested in maximizing their private interests can exhibit concern

for other agents as well as their own reputations.

Our proposed agent model is equipped with a self-reputation

awareness component (SRAC) that learns and evolves during

spatial IPD games involving two-dimensional social interaction

networks. The SRAC agents in our model are capable of

evaluating their behaviors based on a mix of public and private

interest considerations, and of testing various solutions aimed at

meeting and maintaining social standards. Self-reputation aware-

ness helps new agents quickly learn that private interest

maximization is best achieved via long-term cooperation with

partners, which also serves to enhance their own reputations and

to support their wishes for ideal partners in the future. In other

words, agents with self-reputation awareness that show concern for

their reputations are more likely to be self-adaptive, to evaluate

their reputations based on their partners’ evaluations, and to

determine the best strategies and behaviors for achieving both

long- and short-term goals. According to our IPD simulation

experiment results, as long as an artificial society has a small

percentage of agents with this capability for self-reputation

awareness, there will be faster cooperation, faster movement

Table 1. IPD game payoff matrix.

Player B

Cooperation (C) Defection (D)

Player A Cooperation (C) R = 3, R = 3 T = 5, S = 0

Defection (D) S = 0, T = 5 P = 1, P = 1

Numbers in each cell are payoffs for both players, with player A’s payoff listed first in each pair.
doi:10.1371/journal.pone.0099841.t001

Figure 1. Agent fitness scores plotted against a self-reputation index matrix.
doi:10.1371/journal.pone.0099841.g001
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toward stability in an agent society, greater public interest in the

agent society, resolutions of common conflicts between public and

private interests, and decreased potential for rational individual

behavior to change into irrational group behavior.

Related Works
Self-awareness, a psychological process in which attention is

directed at oneself [35], is a foundation for personality develop-

ment and modification that affects all human behaviors. Accord-

ing to theorists, when humans achieve strong states of self-

awareness, they tend to consider whether characteristics and

behaviors such as personality, abilities, desires, needs, comport-

ment, and values are appropriate [31,36,37]. Subsequent actions

are thought to be more likely to reduce self-discrepancies and to

meet inner identity standards established by important others, as

well as societal and cultural values [38]. In other words, an intact

sense of self-awareness supports a complete understanding of one’s

own behavior in terms of right/wrong, good/bad, and value based

on societal standards [39]. This capability is helpful for learning

skills and adjusting strategies for interacting with others. Internally,

one can recognize emotions, motivations, interests, and desires,

increase self-identification, and achieve self-realization. Without

this capability, one’s behaviors will often be triggered by strong

momentary emotions without considering potential consequences

[31]. Those individuals who are incapable of understanding the

emotions and ideas of others are much more likely to expose their

own shortcomings or to show off their strengths without

contemplating the appropriateness of doing so.

In contrast to human models, the focus of learning and attention

for intelligent agents has always been the external environment

[40]. The world model gradually established during an agent’s

learning process is a miniature of its external environment. The

purpose of such a model is to maintain relationships between

stimulation signals from external environments and behavioral

reactions [41]. Based on physical environment and the presence of

other agents, and using specific learning methods such as artificial

neural networks, genetic algorithms, and fuzzy rule-based systems,

agents continuously adjust their internal strategies, learn various

skills [42,43], and find problem solutions that satisfy user needs or

fulfill assigned tasks [44,45].

There are at least five advantages to equipping intelligent agents

with a self-awareness capability: (a) compatibility with previous AI

agent-learning frameworks, thereby supporting the expansion of

existing cognitive structures so as to enhance agent learning

outcomes and support searches for fast problem-solving strategies;

(b) the introduction of self-consciousness so that agents, using

mechanisms that connect external stimulation signals with

behavioral reactions, can consider and integrate the mutual needs

of or feedback from other agents that they interact with; (c) agent

use of private and public self-consciousness for detecting its own

behavioral reactions, differences, and discrepancies between

internal and external standards, and for exploring means for

improvement that may decrease such discrepancies, increase

learning performance, and satisfy such standards; (d) support for

understanding and recording the dynamic characteristics of their

external environments, and in revising and adjusting internal

standards or states accordingly; and (e) support for establishing

artificial societies and agent cognitive and learning models that are

similar to the ways that real societies operate [44,46,47].

Spatial IPD Simulator and SRAC Agent Model
Our adaptive agent model contains a self-reputation awareness

component (SRAC) based on a mix of social expectation strategies

and a reputation evaluation procedure for resolving ongoing

conflicts between public and individual private interests in an

agent society. It is our belief that an awareness capability that

allows agents to reflect on their self-reputations will result in more

and faster collaborative behaviors and social benefits. To assess the

effects of mixing SRAC and non-SRAC agents on the evolution-

ary dynamics of IPD games, we used the Java programming

language to develop a general-purpose and extendable evolution-

ary spatial IPD simulator suitable for detailed numerical exper-

imentation and classroom demonstrations. As shown in the screen-

shot of Appendix S1, the IPD simulator is suitable for all common

operating systems containing the Java virtual machine, including

Linux, Mac OS X, and Windows. Executable files are available in

a shared Google drive folder (https://drive.google.com/folderview?

id = 0B2C9hdWHlsqHbzNadVdGMGZxZkk&usp = sharing); for

source code that matches specific research requirements, contact

the corresponding author.

The simulation flow consists of four steps:

main procedure evolutionary spatial IPD simulation is

1: Reset all parameters and evolutionary computation

operators to their default or user� required settings:

2: Use experimental requirements to generate a

two� dimensional social interaction G(V ,E) network in

which total number of nodes v~ Vj j and total number

of edges e~ Ej j:

3: Set generation g to 0:

4: when (gvMAX G) do the following loop :

a: Based on network connection patterns, have nodes at

the ends of edges Ai and Aj play q IPD game rounds

during each generation g:; Using the payoff matrix

shown in Table 1, calculate scores for Ai (asi) and

Aj (asj): Use these scores as fitness value for agents

Ai (afi) and Aj (af j), with afi/asi and afj/asj :

b: Agents calculate their relative fitness (Fitnessi) and

self � reputation (Reputationi) levels, which represent

all opponent evaluations:

c: Each agent determines whether or not to make strategy

adjustments: � The current strategy is considered

inappropriate when Fitnessi~LOW or Reputationi~

LOW: � Agents needing to adjust their strategies

use evolutionary computation crossover operator to

combine their original strategies with those used by

opponents with high fitness or high reputation levels: �

Agents use evolutionary computation mutation operator

to change strategies according to probability Pm:

d: Add 1 to g:
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In Step 1, all parameters and evolutionary computation

operators must be reset to default or user-required settings. The

default settings allow first-time simulation users to quickly execute

simple and understandable demonstrations. We categorized

individual parameters as IPD game, social interaction network,

or evolutionary computation. The first category includes the total

number of interactions between an agent and its opponent (q),

agent memory capacity (c), and agent strategy length (l). The social

interaction network category includes the width (W) and height (H)

of a two-dimensional social network, total number of nodes (v) and

edges (e), neighborhood pattern (P), network type (T), and edge

rewiring probability (r). The evolutionary computation category

includes crossover rate (Pc), mutation rate (Pm), and total number of

generations for each experiment (MAX_G). We used the following

default values: q = 100, c = 1, l = 4, W = 50, H = 50, v = 2500,

e = 10,000, P = Moore neighborhood and periodic boundary

condition, Pc = 0.7, Pm = 0.01, and MAX_G = 100. The default

configuration of the P neighborhood pattern parameter ensures

that all nodes have equal numbers of neighboring nodes, and that

each node establishes connections with its eight surrounding nodes

to form tightly clustered groups.

Following initialization and parameter setting according to

experimental requirements, a specific two-dimensional W6H

social interaction network consisting of v nodes and e edges can

be established according to the T parameter value. Each social

interaction network node represents an IPD agent that is assigned

a randomly generated memory-c deterministic strategy. Each edge

represents a single IPD interaction relationship between two

agents that are labeled as neighbors. Each IPD agent has an

average of 2e/v neighbor opponents.

The T parameter can be set as either a cellular automata with

high degrees of local clustering and separation, or a small-world

network with a high degree of local clustering and low degree of

separation. Cellular automata are widely used computational

social science investigations of the large-scale outcomes of millions

of small-scale events, and for creating visually striking patterns.

Small-world networks, which are considered similar to human

social networks, serve as the underlying foundations of social

simulation models that are said to have high levels of reliability. To

compare simulation results for the two network types, we

stipulated that the numbers of nodes and edges in each must be

equal. To satisfy this condition, if the T parameter is designated as

small-world, the simulation is programmed to initially generate a

two-dimensional cellular automata according to the P (neighbor-

hood pattern) parameter configuration, and then to use a

predetermined edge rewiring probability r (default: 1%) to

determine whether or not individual edges must be rewired. If

rewiring is necessary, either one of the two original nodes (one on

each side of an edge) is discarded and replaced with a new,

randomly selected node.

In Step 4a, for the sake of simplicity but without loss of

generality, we used three IPD agent assumptions: (a) Agent Ai has n

opponents, meaning that opponents Oi = (oi,0, oi,1, …, oi,n21)g

during generation g, with oi,j representing the jth opponent of Ai. (b)

Agent Ai plays q IPD game rounds with each opponent during

each generation. (c) The afi fitness value of agent Ai equals the

average of all payoffs received by that agent during rounds played

within one generation. This value serves as an indication of its

performance compared to others in the same agent population.

The IPD game payoff matrix used in Step 4a is shown in

Table 1. As indicated, R = 3 represents the reward for mutual

cooperation, T = 5 one party’s temptation to defect, S = 0 the

‘‘sucker’s payoff’’, and P = 1 the punishment for mutual defection.

Two conditions for generating a prisoner’s dilemma are T.R.

P.S and 2R.T+S. The first guarantees that two rational agents

will simultaneously betray each other after understanding that T.

R and P.S, and therefore follow the second best choice, which is

mutual defection (P, P). According to the second condition,

prisoners cannot escape the same predicament by taking turns

betraying each other–in other words, benefits for mutual betrayal

are not as good as for mutual cooperation. Accordingly, each

agent must rely on past behaviors to formulate strategies that

optimize long-term benefits.

The default strategy in our model is memory-1 deterministic,

with agents remembering the behaviors of their opponents in

preceding rounds. There are only four possible combinations: both

cooperate (expressed as CC), one cooperates and the other defects

Figure 2. Average payoffs for all agents in cellular automata without adding SRAC agents.
doi:10.1371/journal.pone.0099841.g002
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(CD), one defects and the other cooperates (DC), and both defect

(DD). Thus, the memory-1 deterministic strategy can be expressed

as the four-value tuple (Scc, Scd, Sdc, Sdd): if an agent’s memory of the

preceding round is CC, then it will choose Scc when responding to

an opponent. Since responses are limited to either cooperation (C)

or defection (D), a memory-1 deterministic strategy consists of 16

(24) possible combinations of moves. Among these, S0 = (C, C, C,

C) is known as the ‘‘yes-man’’ (YM) strategy, S5 = (C, D, C, D) the

‘‘tit-for-tat’’ (TFT) strategy, S6 = (C, D, D, C) the ‘‘win-stay, lose-

shift’’ (WS/LS) strategy, and S15 = (D, D, D, D) the ‘‘scoundrel’’

(S) strategy. These four strategies have attracted considerable

research interest. The WS/LS strategy applies Pavlovian psycho-

logical theory in proposing that an agent will adhere to one

strategy until its income goes below a threshold, after which it

switches to the opposite strategy [48]. In the TFT strategy, an

agent always chooses cooperation during the first round of a game,

and then imitates its opponent’s strategy in subsequent rounds.

In Step 4b, each agent initially uses the evaluation algorithm

described in Appendix S2 to give its opponent a relative reputation

score at the end of each generation, based on the mean and

standard deviation of the number of cooperative moves made by

its opponents during one generation. By applying this relative

reputation evaluation algorithm, the two algorithms proposed in

Appendix S3 can be used to respectively compute an agent’s

relative fitness and self-reputation levels in the contexts of its

opponents.

As shown in Figure 1 and Step 4c of the pseudo-code of our IPD

simulation, fitness and self-reputation levels are categorized as

Figure 3. Evolutionary dynamics and average payoffs for four IPD strategies in cellular automata without adding SRAC agents.
doi:10.1371/journal.pone.0099841.g003

PLOS ONE | www.plosone.org 5 June 2014 | Volume 9 | Issue 6 | e99841

Agents with a Self-Reputation Awareness Component in an IPD Game



Figure 4. Spatial distributions of 16 memory-1 deterministic IPD strategies in cellular automata without adding SRAC agents.
doi:10.1371/journal.pone.0099841.g004
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high, medium, or low, resulting in nine possible interaction types

between an SRAC agent and its opponent. As an example, a

SRAC agent with a high degree of fitness and low degree of self-

reputation usually adheres to an always-betray or similar ‘‘villain’’

strategy that cannot produce a higher public good value, since it

diminishes the ability of other agents to pursue their own interests.

Therefore, SRAC agents must be taught that an always-betray

strategy will negatively affect their reputations. By referring to and

learning from their opponents’ positive performance strategies that

conform to social expectations, SRAC agents can achieve higher

levels of fitness and self-reputation.

Results and Discussion

Our first task was to analyze the results of IPD game simulations

using cellular automata and without adding any SRAC agents

(Figs. 2, 3 and 4). The first 99 generations can be divided into five

stages based on the evolutionary dynamics and spatial distributions

of agent-adopted strategies. During the first stage (generations 0–

3), our proposed model starts with a pool of randomly generated

strategies adopted by individual agents being evenly distributed

throughout the cellular automata (Fig. 4a). During the second

stage (4–10), agents tend to give in to the temptations of

maximizing their private interests and use the S strategy. As

stated earlier, when a majority of agents adopt that strategy, the

entire community eventually enters a cycle in which overall and

Figure 5. Comparisons of (a) average payoffs and (b) spatial distributions of 16 memory-1 deterministic game strategies at the
twenty-first generation triggered by the addition of different percentages of SRAC agents in cellular automata.
doi:10.1371/journal.pone.0099841.g005
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individual private benefits rapidly decrease (Figs. 2 and 3b). In

cellular automata, if the majority of an agent’s adjacent neighbors

adopt the S strategy, then the agent in the center is forced to adopt

the same strategy in order to survive (Figs. 4b and 4c).

During the third stage (11–20), agents wanting to move away

from the S strategy are likely to move toward a TFT strategy

(Fig. 3a). In addition to confronting S strategy agents, this action

also supports cooperation with agents who adopt either the YM or

TFT strategies. The spatial clustering effect is also known as

network reciprocity [1,49]. Network reciprocity is receiving

attention from physics researchers [24–26,50–54]. Figures 4c

and 4d illustrate a scenario in which TFT strategy agents gradually

increase in number and cluster in a manner that surrounds and

restricts agents who adopt the S strategy.

The number of TFT strategy agents declines during the fourth

stage (21–40). Due to an asymmetry problem involving memories

of previous encounters, these agents start to defect and stop

trusting each other, resulting in less clustering over large areas.

However, as shown in Figures 4d and 4e, some TFT strategy

agents continue to surround S strategy agents to ensure that the

latter do not expand to the point of overwhelming the former.

Note also that as clusters of TFT strategy agents start to break up

and decrease in size, the number of agents that adopt the WS/LS

strategy increases (Fig. 3a) [1]. Since WS/LS strategy agents do

not have asymmetric memory problems regarding previous

Figure 6. Comparisons of (a) average payoffs and (b) spatial distributions of 16 memory-1 deterministic game strategies at the
twenty-first generation triggered by the addition of different percentages of SRAC agents to small-world networks.
doi:10.1371/journal.pone.0099841.g006
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encounters (which increases the potential for breaking promises),

and since those same agents generally move toward mutual

collaboration, their numbers and tendency to cooperate gradually

increase.

During the fifth stage (41–100), strategy evolution enters a state

of ‘‘dynamic stability’’–a term we use to describe a long period of

repetition. Within clusters of WS/LS strategy agents, the number

of YM strategy agents gradually increases (Figs. 4e and 4f). Agents

who adopt either the YM or WS/LS strategies interact in ways

that benefit both sides. However, in reaction to this increase, some

agents take advantage of the situation by reverting to the S

strategy, which reduces (and in some cases eliminates) clusters of

agents that adopt the all-cooperation strategy. This scenario,

which is often found in human societies, increases the potential for

damage from internal mutation and external invasions.

Average payoff curves from our IPD simulations using 0%

(baseline), 10%, 30%, 50% and 100% SRAC agents are shown in

Figures 5 (cellular automata) and 6 (small-world network). Initial

Figure 7. Evolutionary dynamics of four IPD strategies in cellular automata (a, b, c) and small-world networks (d, e, f).
doi:10.1371/journal.pone.0099841.g007
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parameter settings were identical. As indicated by the red average

payoff curves in the two figures, the overall network community

clearly benefited when all agents possessed the capacity for self-

reputation awareness, with a state of dynamic stability achieved

within very few generations. However, since such a situation is not

possible in the real world, we focused on the effects of adding a

small number of SRAC agents to an otherwise unaltered

environment. According to the blue (10%) and green (30%)

average payoff curves, adding a small number of SRAC agents

exerted a significant influence, regardless of social interaction

network type. Specifically, they suppressed growth in the number

of agents who adopted the S strategy, prevented the initiation of a

cycle in which all agents expressed betrayal and retaliatory

behaviors, and helped resolve conflicts between society-wide

benefits and individual private interests so that cooperation gained

acceptance as mainstream behavior.

The average payoff curves in Figures 5 and 6 are similar

because small-world networks contain many random long-distance

Figure 8. Average payoffs for four IPD strategies in cellular automata (a, b, c) and small-world networks (d, e, f).
doi:10.1371/journal.pone.0099841.g008

PLOS ONE | www.plosone.org 10 June 2014 | Volume 9 | Issue 6 | e99841

Agents with a Self-Reputation Awareness Component in an IPD Game



shortcuts that reduce network separation. There are at least two

reasons for a lack of strategic clustering: these shortcuts produce

very low degrees of separation (approximately log v, with v

representing the total number of nodes), and they significantly

increase complexity in terms of agent interactions and indirect

influences. Note that the influence of a single game strategy can

result in increased evolutionary diffusion and the increased

containment of other agents. Combined, these factors accelerate

the movement toward dynamic stability.

Agents who follow a YM strategy are the most likely to be taken

advantage of by agents who use tactics associated with a S strategy.

In contrast, TFT strategy agents find it easy to cooperate with YM

and to attack S strategy agents. However, due to memory

asymmetry problems regarding previous encounters, interacting

TFT strategy agents may express negative behaviors such as

breaking promises for an extended time period. Finally, we found

that WS/LS strategy agents tended to change their behaviors as

soon as benefits from doing so became obvious.

We analyzed the evolutionary dynamics (Fig. 7) and average

payoffs (Fig. 8) of the four strategies in terms of three SRAC agent

mixes–0% (Figs. 7a, 7d, 8a, and 8d, control group), 100% (Figs. 7b

7e, 8b, and 8e), and 10% (Figs. 7c, 7f, 8c, and 8f); all other

parameter settings were identical. Using cellular automata with

0% SRAC agents resulted in roughly equal numbers of agents

adopting each of the four strategies at the beginning of every

simulation (Fig. 7a). After three generations, the number of agents

adopting the S strategy increased rapidly, and the number of

agents adopting the YM or WS/LS strategies decreased slightly.

Agents adopting the TFT strategy emerged when the number of S

strategy agents reached a certain threshold. As described earlier,

they confronted and suppressed agents adopting the S strategy,

and collaborated with agents adopting the YM and WS/LS

strategies. After twenty generations, the number of agents

adopting the TFT strategy surpassed the number of agents

adopting the S strategy, resulting in a sharp decrease in agents

adopting the S strategy. The number of agents adopting the WS/

LS strategy steadily increased after thirty generations; after sixty

generations, the number of agents adopting the TFT strategy fell

below the number of agents adopting the S strategy, and the

simulated agent society entered a state of dynamic stability. The

numbers of agents adopting the WS/LS and YM strategies did not

change, and a balance was achieved in the growth and decline of

agents adopting the S and TFT strategies.

As shown in Figure 7d, early evolutionary growth and decline

rates for all four strategies in two-dimensional small-world

networks with 0% SRAC agents were similar to those shown in

Figure 7a. After thirty generations, the number of agents adopting

the S strategy reached a saturation point and remained at a fixed

number that was significantly higher than that observed for the

cellular automata. Due to the small-world network’s low degree of

separation characteristic, the numbers of agents adopting each of

the four strategies reached a state of dynamic stability between the

fiftieth and sixtieth generations.

Figure 7c presents data on simulations involving cellular

automata and the 10% addition of SRAC agents. Compared to

Figure 7a (0% SRAC agents), the peak number of agents adopting

the S strategy was not as great–a 150-agent difference. Figures 7d

and 7f illustrate data for 0% and 10% additions of SRAC agents,

respectively; here the difference in the peak number of agents

adopting the S strategy was 60. Note also that following the 10%

addition of SRAC agents, the number of agents adopting a WS/

LS strategy surpassed the number of agents adopting the S or TFT

strategies during generations 47 through 80 (Fig. 7c), but after the

80th generation those agents adopting the WS/LS strategy could

not successfully resist agents adopting the S strategy, even though

their numbers had increased. As a result, the number of agents

adopting the WS/LS strategy started to decline to a stable level.

Figure 7b presents data for a cellular automata consisting of

100% SRAC agents. Since S agents quickly discovered that their

strategy was inappropriate for fulfilling social expectations, during

the early evolutionary stages they all used their self-adjustment

mechanisms to adopt other strategies to meet the expectations of

adjacent agents. Starting at the third or fourth generation, the

number of agents adopting the S strategy dropped to zero, and no

new S strategy-adopting agents emerged for the rest of the

simulation. The number of agents adopting the other three

strategies also quickly stabilized without additional changes. Again,

all parameters in Figures 7b and 7e were identical; the

evolutionary dynamics of the four strategies in the two types of

social interaction networks were also virtually identical. The only

significant difference was the presence of random long-distance

shortcuts in the two-dimensional small-world network. Due to

increased sensitivity, even small changes in a single agent’s strategy

were capable of influencing the entire network. However, due to

the low degree of separation characteristic of small-world

networks, a new state of dynamic stability was quickly reestab-

lished.

Conclusion

In this paper we described our proposal for a self-reputation

awareness model in which agents are given the ability to calculate

and interpret their self-reputation levels, and to adjust their IPD

game strategies accordingly. Our primary conclusions are (a) the

model successfully encourages strategy adjustments to achieve an

optimum balance between self-reputation and private interests,

thus increasing the likelihood that an agent will suppress its

betrayal behavior and defection strategy in order to increase

cooperation with other agents; and (b) compared to other models,

overall cooperative behavior in our proposed model is likely to

emerge much faster.

Our proposed SRAC agent model incorporates numerous

features taken from AI, cognitive psychology, economics, and the

social/behavioral sciences. AI researchers have generally over-

looked the learning processes through which individuals enact self-

awareness mechanisms. Based on our experimental results, we

believe that integrating a self-reputation awareness component

into agent architectures not only brings the behaviors and

interaction patterns of agents into closer agreement with those of

real people, but also provides a novel agent architecture to help

agent-based simulations more accurately reflect actual societal

operations. It is our hope that this self-reputation awareness

component will support the efforts of smart object researchers

interested in improving internal cognition and external learning

capability in intelligent agents. In terms of cognitive psychology,

our proposed SRAC agents can utilize personality traits to

enhance their self-understanding and self-identity, thus promoting

self-realization. The model also offers a novel approach to the IPD

game: as long as a small number of SRAC agents are added to an

IPD scenario, public good/private interest conflicts can be

resolved, agent cooperation can be increased, and overall societal

benefits can be enhanced. Finally, in terms of social/behavioral

sciences, observing clustering behaviors allows for greater under-

standing of how self-reputation awareness can influence evolu-

tionary dynamics and average payoffs in artificial agent societies.
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