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Abstract

In order to improve the classification accuracy of motion imagination, a considerate motion

imagination classification method using deep learning is proposed. Specifically, based on a

graph structure suitable for electroencephalography as input, the proposed model can accu-

rately represent the distribution of electroencephalography electrodes in non-Euclidean

space and fully consider the spatial correlation between electrodes. In addition, the spatial-

spectral-temporal multi-dimensional feature information was extracted from the spatial-tem-

poral graph representation and spatial-spectral graph representation transformed from the

original electroencephalography signal using the dual branch architecture. Finally, the atten-

tion mechanism and global feature aggregation module were designed and combined with

graph convolution to adaptively capture the dynamic correlation intensity and effective fea-

ture of electroencephalography signals in various dimensions. A series of contrast experi-

ments and ablation experiments on several different public brain-computer interface

datasets demonstrated that the excellence of proposed method. It is worth mentioning that,

the proposed model is a general framework for the classification of electroencephalography

signals, which is suitable for emotion recognition, sleep staging and other fields based on

electroencephalography research. Moreover, the model has the potential to be applied in

the medical field of motion imagination rehabilitation in real life.

Introduction

Brain-computer interface is a widely studied human-computer interaction technology that

creates a direct connection between the human brain and external devices, allowing people to

communicate with the real world or manipulate external devices solely through neural activity

in the brain [1]. Currently, there are many studies on brain-computer interfaces, such as

motion imagination [2], emotion recognition [3] and sleep staging [4], among which motion

imagination has attracted great attention in recent years. Motion imagination is the reproduc-

tion of specific actions related to human movement in the brain, but not accompanied by

actual body movements. The correct recognition of neuronal activity in different motion

imagination can lead to brain instructions that can help patients with severe motion neuron

disease to control external equipment such as wheelchairs. Also, motion imagination classifica-

tion is also an important support for rehabilitation training [5].
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The brain-computer interface system includes both invasive and non-invasive methods to

measure the neuronal activity of the brain. As one of the non-invasive methods, electroenceph-

alography (EEG) is widely used because of its safety, reliability, comfort and convenience. The

core problem in the study of motion imagination classification based on EEG signals is how to

decode the EEG signals collected based on multiple electrodes into valid features and improve

the accuracy of classification.

Many efforts have been made by scholars for the feature extraction of EEG signals. Early

EEG classification methods extracted temporal features directly from waveforms, which could

only be used for signals with significant temporal variation. Later, the recognition methods of

motion imagination EEG signals based on artificial feature extraction can be roughly divided

into two categories, namely spatial filtering method and EEG classification method based on the

conversion of time domain to frequency domain. Representative methods of the former, such as

common spatial pattern (CSP) [6], which extracted components of spatial distribution of each

category from multi-channel EEG data and classify them. Ang et al. proposed filter bank com-

mon spatial pattern (FBCSP) [7], which added a feature selection algorithm on the basis of CSP

to select distinguishable frequency band pairs and corresponding CSP features. Meanwhile, the

representative methods of the latter include wavelet transform [8] and short-time Fourier trans-

form [9]. However, these traditional methods only consider the spectral-temporal or spatial-

temporal features, without taking into account the multidimensional or comprehensive (i.e.,

spatial dimension, temporal dimension and spectral dimension) features of EEG signals, and at

the same time, the classification results are heavily dependent on expert experience.

Recently, deep learning technology has achieved great success in the fields of image process-

ing and natural language processing by virtue of the advantages of automatic feature extrac-

tion. In order to solve the limitation of artificial feature extraction, many scholars have used

deep learning technology to decode EEG signals, such as using two-dimensional or three-

dimensional convolutional neural networks (CNNs) to automatically extract EEG signals for

motion imagination classification. Schirrmeister et al. proposed a shallow convolutional net-

work to automatically extract features directly from original EEG signals [10]. Zhao et al. pro-

posed a multi-branch three-dimensional convolution model with three different convolution

kernel sizes to extract features from the three-dimensional representation of EEG signals [11].

Wu et al. proposed a convolution neural network based on parallel multi-scale filter banks to

extract EEG features [12]. However, most methods only involve the temporal and spatial char-

acteristics of EEG signals, which, as mentioned above, are not considerate. Moreover, the dis-

tribution of EEG electrodes is not a natural Euclidean space or standard grid structure, and

ordinary convolution cannot fully capture the spatial correlation between electrodes.

Since the electrodes of EEG are distributed in non-Euclidean space, graph convolution neu-

ral networks (GCNNs) are gradually used to classify motion imagination. Li et al. proposed an

end-to-end spatial-temporal GCNN, which simultaneously captured the spatial-temporal fea-

tures of EEG signals to identify different motion imagination [13]. Lun et al. [14] proposed a

deep learning framework based on GCNN by combining the functional topological relation-

ship of electrodes, so as to improve the decoding performance of motion imagination EEG sig-

nals. Sun et al. proposed an adaptive spatial-temporal GCNN, which can make full use of the

characteristics of EEG signal in time domain and channel correlation in space domain [15]. In

general, there are not many researches on the classification of motion imagination by graph

convolution, and although these existing models have achieved improvement in classification

performance, they do not take into account the association intensity of various dimensions

that varies with different experiments due to the characteristics of EEG. It is still a challenge to

represent, model and capture the dynamic correlation intensity of EEG signals in multiple

dimensions of time, frequency and space.
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To address the above challenges, this paper proposes a considerate attention-based multi-

dimensional feature graph convolutional neural network (C-GCNN) to perform motion imag-

ination classification. The main contributions of this paper are summarized as follows.

1. A graph structure is proposed for EEG signals that can accurately represent the non-Euclid-

ean space of EEG electrode distribution and take into account the spatial correlation

between electrodes.

2. A spatial-temporal and spatial-spectral dual branching architecture is proposed to simulta-

neously extract the feature information of EEG signals in three dimensions: temporal

domain, spectral domain and spatial domain.

3. The C-GCNN model is designed to capture the dynamic correlation intensity of EEG sig-

nals in each dimension adaptively and extract EEG features effectively by combining atten-

tion mechanism and graph convolution for the first time.

4. Experiments are conducted on four publicly available brain-computer interface datasets to

demonstrate that the proposed model outperforms other existing motion imagination clas-

sification methods.

Materials and methods

GCNN

A graph is made up of nodes and edges connecting two nodes. It is usually used to describe a

particular relationship between things. Considering that the neighbor nodes in the graph

structure are not fixed, traditional fixed-size and learnable convolution kernels cannot be used

to extract graph node features. Therefore, scholars put forward the concept of graph convolu-

tion, which can be performed on a graph. There are two most commonly used construction

methods: the spatial domain-based and the spectral domain-based. To construct graph convo-

lution in the spatial domain is to apply the convolution kernel directly to the nodes and their

neighborhoods on the graph [16]. However, because the neighborhood of each vertex is differ-

ent, it needs to be processed for each vertex, so the calculation cost is high and the complexity

is great. In the spectral domain, the convolution operation on the graph structure data can be

realized by transforming the graph Laplian matrix to the spectral domain and solving the K-

order truncation approximation of Chebyshev polynomials [17], so the computation cost is

correspondingly low. based on this, spectral graph convolution is used in this paper to extract

graph node features.

C-GCNN

In this paper, a novel C-GCNN model is proposed to decode and recognize the EEG signals

generated by motion imagination. The overall framework of C-GCNN is shown in Fig 1.

As shown in the Fig 1, the raw EEG signals are converted into spatial-temporal graph repre-

sentation and spatial-spectral graph representation based on the graph structure, and then fed

into the network consisting of attention mechanism, graph convolution, temporal convolu-

tion, global feature aggregation and shortcut connection, respectively, and the outputs of the

two branches are classified after feature fusion. The model as a whole consists of five parts,

namely, the data transformation and its graph representation, an attention mechanism-based

spatial graph convolution module, an attention mechanism-based temporal/spectral convolu-

tion module, global feature aggregation modules, and multidimensional feature fusion mod-

ules, which are described in detail in the following sections.
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Data transformation and its graph representation. Since the electrode node locations of

EEG signals are not in standard Euclidean space, in order to accurately represent this property,

a graph is constructed based on the natural spatial distribution of electrodes. The temporal

and frequency domain information of the EEG signal is then mapped into the graph, and the

specific conversion process is shown in Fig 2.

Spatial-temporal graph representation: The motion imagination raw EEG signal collected

through multiple electrodes is a multiconductor signal defined as

X ¼ X1;X2; � � � ;XN½ � 2 RN�T
, where N is the number of electrode nodes of EEG and T is the

duration of time. Each one-conductor EEG signal Xn2 1;N½ � ¼ S1
n; S

1
n; � � � ; S

1
n

� �
2 RT

is the one-

dimensional temporal data.

In this paper, we construct a graph G applicable to EEG signals based on the natural spatial

distribution of electrode nodes on the brain, and the construction process is shown in Fig 3.

The graph is composed of nodes and edges, denoted as G = (N, E), where N is the set of nodes

of EEG electrodes and E is the set of edges. Considering that the voltage value of each electrode

node is influenced by its surrounding voltage value, it is assumed in this paper that each node

has 8 naturally adjacent nodes: upper, lower, left, right, top-left, top-right, bottom-left, bot-

tom-right, and each node is assumed to be connected to itself. The set of edges is defined as E
= {Ni Nj | (i, j) � H}, where H is the set of naturally adjacent nodes. For the multiconductor

EEG signal in the temporal domain, each time slice can form an undirected graph, and the

Fig 1. The flowchart.

https://doi.org/10.1371/journal.pone.0276526.g001

Fig 2. The conversion process of EEG signals. (a): The conversion process of Spatial-Temporal graph representation; (b): The conversion process of

Spatial-Spectral graph representation.

https://doi.org/10.1371/journal.pone.0276526.g002
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entire time forms a spatial-temporal graph representation xst, which is used to describe the

information of time in space.

Spatial-spectral graph representation: The time-frequency domain conversion is adopted

for the original EEG signal to obtain frequency domain information. In this paper, the power

spectral density (PSD) of different frequencies on each conductor is obtained using the Welch

method to calculate each conductor Xn2[1, N] [18], and it is denoted as f 1
n ; f

1
n ; � � � ; f

1
n

� �
2 RN�F

,

where F is the PSD feature length of each electrode. Again, based on the constructed graph

structure, convert all PSD on each frequency into an undirected graph, and the graphs com-

posed of all frequencies are combined to form a spatial-spectral graph representation, denoted

as xss, to describe the information of the spectrum in space.

Attention mechanism-based spatial graph convolution. In order to capture the dynamic

association intensity between EEG nodes in the spatial domain adaptively, this paper designs

an attention mechanism-based spatial graph convolution module, which consists of two parts:

spatial attention mechanism and spatial graph convolution.

Spatial attention mechanism. In general, different motion imagination tasks trigger neuro-

nal activity in different areas of the brain. Even when the same task is performed, the degree of

activation in different regions varies from person to person. Therefore, the intensity of the

association between brain nodes is dynamic. Inspired by the self-attentive mechanism [19],

this paper designs a spatial attention mechanism to capture this dynamic association intensity

adaptively, which is computed as follows:

Since the structure of the spatial-temporal branch and the spatial-spectral branch are identi-

cal, the time-space branch is described here as an example. The input of the module is

xst 2 RN�T�C
, where C is the number of channels, and the module adaptively calculates as 2

RN�N
according to xst:

as ¼ sðx
stWs1

þ bs1
ÞsðWs2

xst þ bs2Þ ð1Þ

where σ is the activation function Tanh, Ws1
;Ws2

2 RC is the weight matrix, bs1
2 RN�T and

bs2
2 RT�N

are the deviations.

Typically, the as is normalized using the Softmax normalization function. However,

although Softmax can guarantee that different electrodes are separable from each other, it can-

not achieve the effect of intra-region compactness and inter-region separation. Therefore, in

this paper, we propose to compute the spatial attention matrix by L2 normalization of as. L2

normalization can make the feature vectors as compact as possible within regions and as sepa-

rated as possible between regions, which can better improve the model performance. The

Fig 3. The construction process of graph.

https://doi.org/10.1371/journal.pone.0276526.g003
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spatial attention matrix a0s 2 R
N�N is defined as

a0s ¼
ai;j
s

jjai;j
s jj2

ð2Þ

where the element ai;j
s denotes the magnitude of the association intensity of node i and node j.

Spatial graph convolution. In order to reduce the computational cost, this paper uses spec-

tral graph convolution to extract the spatial features of EEG signals by performing a convolu-

tion operation on the graph structure data after being adjusted by the spatial attention

mechanism. The specific process is as follows.

Based on the constructed graph, calculate the adjacency matrix Ai;j 2 R
N�N :

Ai;j ¼
1 NiNj 2 E

0 NiNj=2E

(

ð3Þ

The corresponding Laplacian matrix is denoted as L ¼ D � A 2 RN�N
, where the degree

matrix D 2 RN�N is the diagonal matrix Dii = ∑j Aij, consisting of the degrees of the graph

nodes. The eigen decomposition after regularization of the Laplace matrix yields

L ¼ IE � D� 1
2AD� 1

2 ¼ ULUT , where IE is the unit matrix, U is the eigenvector matrix, and Λ is

the diagonal matrix of eigenvalues.

Taking the EEG nodal graph x ¼ xstt at moment t as an example, the spectral graph convolu-

tion on the graph can be defined as the product with the Fourier domain filter gθ = diag(θ),

and gθ can be interpreted as a function about the eigenvalue of L, i.e., gθ (Λ), and here the trun-

cated expansion of the K-order Chebyshev polynomial Tk(x) is used to approximate gθ (Λ).

Thus, the spectral graph convolution is computed as

gy � x �
XK

k¼0

y
0

kTkðL
�

Þx ð4Þ

where y
0
2 RK

is a vector of Chebyshev coefficients, and the recursive definition of the Cheby-

shev polynomial is: Tk(x) = 2xTk−1(x) − Tk−2(x), T0(x) = 1, T1(x) = x.

In this paper, each order of Chebyshev polynomial Tkð
~LÞ 2 RN�N is multiplied with the

computed spatial attention matrix a0s and the ReLU function is used as the activation function.

Thus, the output xst
1
2 RN�T�C1 of the spatial graph convolution based on the spatial attention

mechanism is defined as:

xst
1
¼ sðgy � xÞ � s

XK

k¼0

y
0

kðTkðL
�

Þ � a0sÞx

 !

ð5Þ

where σ represents the activation function and� represents the multiplication of correspond-

ing elements.

Attention mechanism-based temporal / spectral convolution. In order to extract the

features of spectral-temporal domains in EEG and capture the dynamic correlation intensity

between time and time and between spectrum and spectrum in EEG adaptively, this paper

designs an attention mechanism-based temporal / spectral convolution module, including

temporal / spectral attention mechanism and temporal / spectral convolution.

Temporal / spectral attention mechanism. The EEG signal is the multiple time series that

varies with time, and there is a certain interplay and dependence of its voltage values at differ-

ent moments. Likewise, the frequency spectral density between adjacent frequencies also

affects and depends on each other. Therefore, this paper designs a temporal / spectral attention
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mechanism to capture this dynamically changing correlation adaptively. In particular, pro-

posed temporal attention and spectral attention act on two branches separately, but with the

same structure, and the spatial-temporal branch is still described as an example. The relevant

specific computational procedure is as follows:

The input of this module is the output of the previous module xst
1
2 RN�T�C1 , and based on

xst
1

, the attention mechanism first adaptively computes at 2 R
T�T

:

at ¼ sðx
st
1
Wt1
þ bt1

ÞsðWt2
xst

1
þ bt2

Þ ð6Þ

where σ is the activation function Tanh, Ws1
;Ws2

2 RC is the weight matrix, bs1
2 RN�T and

bs2
2 RT�N

are the deviations.

Secondly, L2 normalization of at yields the temporal attention matrix a0t 2 R
T�T :

a0t ¼
ai;j
t

jjai;j
t jj2

ð7Þ

where ai;j
t denotes the intensity of the association between timing i and timing j.

Temporal / spectral convolution. After the adjustment of the temporal / spectral attention

mechanism, this paper chooses to use the standard convolution in two dimensions to learn the

temporal dependence as well as the spectral dependence, respectively. Although deep neural

networks have good learning representation capability, for EEG analysis, it is not the deeper

the network, the better the results. Therefore, one convolution layer has been able to capture

the temporal and spectral features on each node very well. In this paper, the specific structure

of the temporal / spectral convolution is shown in Table 1.

After the computation of the temporal convolution module based on the attention mecha-

nism, we can obtain xst
2
2 RN2�T2�C2 , i.e.,

xst
2
¼ sðW2ðx

st
2
a0tÞ þ b2Þ ð8Þ

where W2 and b2 are the weights and biases learned by temporal convolution, respectively.

Global feature aggregation. In order to globally consider the feature information

between all nodes and the feature information between all time/spectrum, a global feature

aggregation module is designed to aggregate spatial global features and temporal / spectral

global features through two convolutional layers, respectively. Moreover, the nonlinear func-

tion ReLU between the convolutional layers can also make the model learn more complex

functions, and thus increase the model complexity.

Again, using the spatial-temporal branch as an example, first the features between all nodes

are aggregated to obtain the global spatial features xst
3
2 R1�T2�C2 :

xst
3
¼ sðW3x

st
2
þ b3Þ ð9Þ

where W3 and b3 are the weights and deviations of the global spatial aggregation, respectively.

Table 1. The structure of temporal / spectral convolution.

Layer KernelSize/Stride Kernel Activation

temporal / spectral convolution (1,5)/(1,1) 64 ReLU

https://doi.org/10.1371/journal.pone.0276526.t001
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Then aggregating all the features in temporal domain to get the global temporal feature

xst
4
2 R1�1�C2 :

xst
4
¼ sðW4x

st
3
þ b4Þ ð10Þ

where W4 and b4 are the weights and deviations of the global temporal aggregation,

respectively.

The structure of the global feature aggregation module is set as shown in Table 2.

Multidimensional feature fusion. The spatial-temporal branch and the spatial-spectral

branch added with the input through a series of feature extraction and aggregation operations

by shortcut connections to form the spatial-temporal feature ~Yst 2 R
C2 and the spatial-spectral

feature ~Yss 2 R
C2 , respectively. They are concatenated and fed into the fully connected layer to

form a fused feature vector ~Y . This feature vector fuses all the features contained in the tempo-

ral, spectral and spatial dimensions of the EEG signal and can provide comprehensive, consid-

erate and valuable feature information for classification. Finally, ~Y is normalized by Softmax

to perform the final classification.

~Y ¼Wst
~Yst þWss

~Yss ð11Þ

where Wst and Wss are learning parameters reflecting the different degrees of influence of the

two branches on the motion imagination classification.

Results

The dataset

In order to demonstrate the effectiveness of proposed method, four publicly available brain-

computer interface datasets used in this paper, i.e., the BCI Competition IV dataset 2a (BCI-

CIV-2a), the BCI Competition III dataset 3a (BCIC III -3a), the large EEG dataset HaLT

(HaLT) and the AHU-MIEEG dataset (AHU-MIEEG).

BCICIV-2a [20]: The dataset contains EEG signals from 9 subjects doing different motion

imagination tasks, namely imagining 4 types of motion imagination tasks: left hand, right

hand, foot and tongue movements. The EEG signals are recorded using 22 electrodes and the

sampling frequency of 250 Hz. A total of two sets of experiments are performed for each indi-

vidual on different days. Each set of experiments consists of 288 motion imagination sessions,

with an average of 72 sessions for each type of motion imagination.

BCIC III -3a [21]: The dataset consists of 3 subjects, the first of whom performs 360 motion

imagination sessions and the others 240 sessions. There are 4 types of motion imagination

tasks: left hand, right hand, foot and tongue. The EEG signals are collected using 60 EEG elec-

trodes and recorded at the sampling frequency of 250 Hz.

HaLT [22]: Given the relatively early date of all BCI competitions, a large public EEG signal

dataset released in recent years is also selected for this paper. The HaLT dataset is a subset of

the "Large EEG Motion Imagination Dataset for Brain-Computer Interface EEG". It contains

12 subjects with 6 types of motion imagination tasks: left hand, right hand, left leg, right leg,

tongue, and stillness. EEG signals are recorded at the sampling frequency of 200 Hz and 19

Table 2. The structure of global feature aggregation.

Layer KernelSize/Stride Kernel Activation

Global spatial aggregation (N2, 1)/1 64 ReLU

Global spectral-temporal aggregation (1, T2)/1 64 ReLU

https://doi.org/10.1371/journal.pone.0276526.t002
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EEG electrodes. A total of 29 experiments are included in the dataset, with approximately 900

motion imagination sessions in each experiment, including different imagination tasks.

AHU-MIEEG [23]: The dataset is a publicly available motion imagination EEG data set

from Anhui University, of which 10 subjects are selected for this experiment. The data are col-

lected by Neuroscan amplifier with 26 electrodes and 250Hz sampling frequency, and there

are3 types of motion imagination tasks: left hand, right hand and foot. Each subject performs

the experiment on a different day, and each experiment consists of approximately 75 motion

imagination sessions, with an average of 25 sessions of each type of motion imagination.

Evaluation index

In this paper, accuracy and Kappa coefficient, which commonly used in motion imagination

classification, are used as the evaluation index of the proposed model. Among them, accuracy

is the proportion of motion imagination being correctly classified, i.e., the ratio of the number

of correctly classified samples to the total number of samples, and the Kappa coefficient is cal-

culated by the following formula,

k ¼
po � pe
1 � pe

ð12Þ

in which pe ¼
a1�b1þa2�b2þ���am�bm

n�n , where am represents the number of true samples of the m-th

class, bm represents the number of predicted number of samples, n represents the total number

of samples and po is the overall classification accuracy.

Experiment settings

In this paper, all sets of experimental data for each subject are combined and the proposed

model is validated using a 5-fold cross-validation method, finally the obtained results are aver-

aged. The model is optimized using the Adam optimizer algorithm to minimize the cross-

entropy loss function during the training process, and the learning rate is set to 0.001. The

batch size is set to 64, i.e., 64 samples are selected for model optimization each time. In the

graph representation, the time length T and frequency length F are both set to 100, and the K

in the Chebyshev polynomial is set to 3.

All experiments of this paper are implemented in Python, where TensorFlow and Keras

frameworks are used for the model part, and the models are trained and tested on a GPU

server. Table 3 gives a detailed description of the hardware and software environments used in

the experiments.

Table 3. Details of the experimental environment.

environments versions

Operating System Ubuntu 16.04.2 LTS

memory 128G

CPU Intel(R)Xeon(R)CPU

E5-2683 v3@2.00GHz

GPU Tesla K80

CUDA 10.1

cuDNN 7.5.1

Python 3.6.8

TensorFlow 1.13.1

Keras 2.1.6

https://doi.org/10.1371/journal.pone.0276526.t003
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Data augmentation

In the field of deep learning, the amount of training data is crucial for improving classification

accuracy. Since motion imagination experiments are time-consuming and complex, it is not

possible to obtain a large amount of EEG signals. Therefore, this paper uses data augmentation

to generate more training data from the original EEG signals. In the BCICIV-2a and BCICIII-

3a datasets, each motion imagination task contains 3s of EEG signal data. In this paper, we

choose a common data enhancement method in EEG signal, i.e., sliding window, and set the

window size to 2s and the sliding step to 0.32s, and enhance the EEG data to 4 times of the

original. In the HaLT dataset, each motion imagination task contains only 1s of EEG signal

data, and considering the short duration of the tasks, this paper adopts the method of adding

white noise for its data enhancement.

Benchmark methods

In order to verify the superiority of C-GCNN on motion imagination classification task, some

excellent traditional and deep learning methods in motion imagination classification research

are selected as benchmark methods to compare with C-GCNN in this paper, and the related

benchmark methods are described as follows:

FBCSP [7]: a spatial filtering method that extracts the spatially distributed components of

each type from a multichannel EEG signal and then classifies them using linear discriminant

analysis.

Shallow-ConvNet [24]: a shallow convolutional network that uses two convolutional layers

as temporal convolution and spatial filter, respectively, to extract the features of the original

EEG signal.

EEGNet [25]: a compact CNN that uses depthwise separable convolutions to build EEG

classification models.

Multi-branch-3D [26]: a multi-branch 3D convolutional model with three different convo-

lutional kernel sizes to extract spatial-temporal features from the 3D representation of EEG

signals.

MSFBCNN [27]: a parallel multiscale filter bank CNN to extract temporal and spatial fea-

tures from EEG.

CNN-LSTM [28]: a one-versus-rest filter bank common spatial pattern (OVR-FBCSP),

CNN and long short-term memory (LSTM) [29] -based hybrid deep neural network to decode

the EEG signals of motion imagination.

Contrast experiments

In order to verify the effectiveness of C-GCNN in the motion imagination classification task, it

is compared with the most representative benchmark methods on four datasets. The same data

preprocessing and 5-fold cross-validation are applied to all benchmark methods. Tables 4–7

show the classification accuracy and Kappa coefficients of the different methods in the BCI-

CIV-2a, BCICIII-3a, HaLT, and AHU-MIEEG datasets, respectively. Since the proposed

method is based on a subject-specific motion imagination classification study, the classifica-

tion accuracy and Kappa coefficients are calculated for each individual and averaged across all

individuals in each dataset.

From the tables, we can see that as a spatial filter-based traditional EEG classification

method, FBCSP only considers spatial information and ignores the discriminative features

about time and frequency information, so the classification results are poor. In contrast, meth-

ods such as Shallow-ConvNet, EEGNet and MSFBCNN extract temporal and spatial features

from EEG by designing different types of 2D convolutions. Multi-branch-3D uses 3D
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convolution kernels of different sizes to extract spatial and temporal features simultaneously.

CNN-LSTM combines the various traditional deep learning-based methods such as FBCSP,

CNN and LSTM to extract spatial and temporal features. These methods take into account the

features of both temporal and spatial dimensions of EEG signals, so the classification perfor-

mance is better than that of FBCSP.

The C-GCNN proposed in this paper has the best performance in terms of average accuracy

and average Kappa coefficient over the four datasets compared with all benchmark methods.

This is because C-GCNN extracts spatial-spectral-temporal features simultaneously based on

the graph representation suitable for EEG signals, and obtains more accurate and comprehen-

sive/considerate feature information. Moreover, C-GCNN also utilizes an attention mechanism

to adaptively capture the dynamic correlation intensity of EEG signals in different dimensions,

which makes the model more robust. In the results of the single-subject experiments, EEGNet

achieves the best classification results on the HaLT dataset on subject 6 and CNN-LSTM on

Table 4. The contrast results of different methods in BCICIV-2a dataset.

Subject Metric FBCSP Shallow CovNet EEGNet Multi-branch-3D MSFB

CNN

CNN-LSTM C-GCNN

A01 Acc 0.7344 0.8333 0.8333 0.8122 0.8160 0.8741 0.8898

Kappa 0.6457 0.7774 0.7773 0.7496 0.7541 0.8319 0.8529

A02 Acc 0.5608 0.6775 0.6380 0.6795 0.6415 0.7739 0.8233

Kappa 0.4141 0.5692 0.5168 0.5727 0.5220 0.6977 0.7644

A03 Acc 0.8042 0.8741 0.8876 0.8409 0.8698 0.9073 0.9093

Kappa 0.7388 0.8320 0.8498 0.7878 0.8260 0.8430 0.8790

A04 Acc 0.5768 0.7400 0.6241 0.6569 0.6814 0.8277 0.8359

Kappa 0.4359 0.6533 0.4992 0.5425 0.5742 0.7700 0.7810

A05 Acc 0.5738 0.6341 0.5872 0.7058 0.7127 0.7289 0.7335

Kappa 0.4313 0.5119 0.4497 0.6078 0.6158 0.6301 0.6445

A06 Acc 0.4948 0.7687 0.5851 0.6757 0.6337 0.8251 0.8355

Kappa 0.3263 0.6917 0.4462 0.5676 0.5111 0.7665 0.7805

A07 Acc 0.8125 0.8646 0.8481 0.8587 0.9054 0.8958 0.9171

Kappa 0.7497 0.8193 0.7972 0.8116 0.8736 0.7940 0.8894

A08 Acc 0.7352 0.8598 0.8212 0.8494 0.7787 0.8517 0.8780

Kappa 0.6463 0.8128 0.7908 0.7991 0.7047 0.7684 0.8373

A09 Acc 0.6636 0.8238 0.7830 0.7810 0.7031 0.8891 0.8945

Kappa 0.5514 0.7647 0.7106 0.7080 0.6035 0.8176 0.8593

Mean Acc 0.6618 0.7862 0.7342 0.7622 0.7491 0.8415 0.8574

Kappa 0.5488 0.7147 0.6453 0.6830 0.6650 0.7688 0.8098

https://doi.org/10.1371/journal.pone.0276526.t004

Table 5. The contrast results of different methods in BCICIII-3a dataset.

Subject Metric FBCSP Shallow CovNet EEGNet Multi-branch-3D MSFB

CNN

CNN-LSTM C-GCNN

K3b Acc 0.9139 0.9674 0.9625 0.9481 0.9636 0.9118 0.9840

Kappa 0.8848 0.9564 0.9499 0.9309 0.9517 0.8821 0.8797

K6b Acc 0.6792 0.7698 0.7052 0.7528 0.7854 0.8833 0.9229

Kappa 0.5721 0.6911 0.6037 0.6704 0.7135 0.8406 0.8967

L1b Acc 0.8031 0.8292 0.8021 0.8078 0.8229 0.9167 0.9573

Kappa 0.7369 0.7710 0.7354 0.7437 0.7631 0.8868 0.9430

Mean Acc 0.7987 0.8554 0.8233 0.8363 0.8574 0.9039 0.9547

Kappa 0.7313 0.8062 0.7642 0.7817 0.8094 0.8699 0.9394

https://doi.org/10.1371/journal.pone.0276526.t005
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subject 4 in the dataset AHU-MIEEG. This may be due to the individual differences in EEG sig-

nals generated by motion imagination and the depthwise separable convolution of EEGNet

and the hybrid network of CNN-LSTM better capture the feature information of these two sub-

jects’ feature information. In comparison, C-GCNN, although not capture the most suitable

EEG features for these 2 subjects, but also achieves excellent classification results. In addition,

C-GCNN obtains the best classification performance on all other subjects. In general,

C-GCNN can improve the classification performance of motion imagination for most subjects

and ensure that the average classification result in each dataset is optimal.

Ablation experiments

In order to further investigate the roles of different modules in C-GCNN, five variants about

C-GCNN are designed in this paper, and the differences between these variants are described

as follows:

1. Spatial-temporal graph convolution: This variant has only the spatial-temporal branch of

C-GCNN, which includes spatial graph convolution and temporal convolution.

2. Spatial-spectral graph convolution: This variant has only the spatial-spectral branch of

C-GCNN, and only spatial graph convolution and spectral convolution are included in this

branch.

Table 6. The contrast results of different methods in HaLT dataset.

Subject Metric FBCSP Shallow CovNet EEGNet Multi-branch-3D MSFB

CNN

CNN-LSTM C-GCNN

1 Acc 0.4765 0.8476 0.8740 0.8672 0.8999 0.7073 0.9114

Kappa 0.3720 0.8169 0.8486 0.8406 0.8798 0.6487 0.8935

2 Acc 0.2863 0.6752 0.6722 0.7337 0.7837 0.6970 0.8313

Kappa 0.1438 0.6100 0.6065 0.6804 0.7363 0.5964 0.7974

3 Acc 0.3682 0.7933 0.8236 0.7988 0.8209 0.6898 0.8353

Kappa 0.2417 0.7516 0.7881 0.7585 0.7807 0.6074 0.8023

4 Acc 0.3599 0.7483 0.7694 0.7699 0.8149 0.7716 0.8271

Kappa 0.2315 0.6978 0.7231 0.7237 0.7777 0.7053 0.7924

5 Acc 0.2998 0.7037 0.7032 0.7412 0.7904 0.7586 0.7961

Kappa 0.1590 0.6444 0.6437 0.6893 0.7482 0.7103 0.7552

6 Acc 0.3830 0.8458 0.8933 0.8549 0.8914 0.8787 0.8781

Kappa 0.2595 0.8149 0.8719 0.8258 0.8695 0.8341 0.8536

7 Acc 0.2210 0.3844 0.4346 0.3999 0.4681 0.5080 0.5159

Kappa 0.0646 0.2610 0.3213 0.2797 0.3614 0.4121 0.4190

8 Acc 0.2135 0.3916 0.4425 0.3886 0.4541 0.4918 0.4937

Kappa 0.0569 0.2695 0.3315 0.2660 0.3409 0.3902 0.3920

9 Acc 0.7272 0.9894 0.9884 0.9884 0.9884 0.6920 0.9900

Kappa 0.6717 0.9873 0.9860 0.9860 0.9860 0.5837 0.9879

10 Acc 0.4180 0.7968 0.8103 0.8174 0.8534 0.5862 0.8537

Kappa 0.3012 0.7559 0.7720 0.7808 0.8240 0.4822 0.8243

11 Acc 0.5961 0.9559 0.9535 0.9283 0.9485 0.7294 0.9561

Kappa 0.5150 0.9470 0.9441 0.9139 0.9382 0.6351 0.9473

12 Acc 0.4443 0.8296 0.8493 0.8590 0.8945 0.8521 0.9048

Kappa 0.3329 0.7954 0.8190 0.8307 0.8733 0.7821 0.8856

Mean Acc 0.3995 0.7468 0.7679 0.7623 0.8007 0.6969 0.8161

Kappa 0.2792 0.6960 0.7213 0.7146 0.7597 0.6156 0.7792

https://doi.org/10.1371/journal.pone.0276526.t006
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3. Dual branch: This variant includes both the spatial-temporal branch, the spatial-spectral

branch and the feature fusion of the last two branches of C-GCNN.

4. ADD Global feature aggregation: Based on variant 3(i.e., dual branch), the global feature

aggregation modules are added.

5. ADD Attention mechanism: Based on variant 4, this variant adds attention mechanisms,

namely spatial attention and temporal/spectral attention.

Fig 4 shows the comparison of the average classification accuracy of all 5 variants of the

model in the datasets BCICIV-2a, BCICIII-3a, HaLT, and AHU-MIEEG. It can be seen that if

extracting features in the spatial-spectral-temporal dimensions of EEG can provide more and

richer discriminative features than extracting temporal features or spatial-spectral features

alone, and thus obtain better classification performance. Moreover, the global feature aggrega-

tion module and attention mechanism designed in this paper can improve the classification

accuracy of the model for different motion imagination varying degrees. In conclusion, it can

be proved that each module of the proposed C-GCNN model is effective and can improve the

performance of motion imagination classification.

Conclusions

As an important application of brain-computer interface, motion imagination is an important

support for sports rehabilitation training. Because the distribution of electroencephalography

electrodes is not a natural Euclidean space, it is a great challenge to accurately classify motion

Table 7. The contrast results of different methods in AHU-MIEEG dataset.

Subject Metric FBCSP Shallow CovNet EEGNet Multi-branch-3D MSFB

CNN

CNN-LSTM C-GCNN

S1 Acc 0.7953 0.8185 0.5396 0.5069 0.7904 0.8193 0.8200

Kappa 0.6927 0.7277 0.2494 0.2007 0.6851 0.7295 0.7297

S2 Acc 0.4384 0.3930 0.5372 0.5204 0.4121 0.5807 0.5932

Kappa 0.1580 0.0921 0.2472 0.2210 0.1187 0.3730 0.3899

S3 Acc 0.8617 0.8026 0.7610 0.7771 0.9099 0.8868 0.9208

Kappa 0.7926 0.7042 0.5817 0.6059 0.8649 0.8298 0.8809

S4 Acc 0.6895 0.7232 0.5414 0.5375 0.5534 0.8143 0.8081

Kappa 0.5340 0.5849 0.2527 0.2466 0.3361 0.7212 0.7119

S5 Acc 0.3602 0.5263 0.6562 0.6136 0.6872 0.7087 0.7345

Kappa 0.0389 0.2889 0.4247 0.3604 0.5308 0.5655 0.6020

S6 Acc 0.5339 0.4696 0.5656 0.5890 0.7053 0.6801 0.7083

Kappa 0.3009 0.2044 0.2905 0.3227 0.5576 0.5225 0.5627

S7 Acc 0.5359 0.4354 0.5098 0.5629 0.4483 0.6103 0.6162

Kappa 0.3027 0.1561 0.2106 0.2838 0.1733 0.4296 0.4296

S8 Acc 0.4018 0.5150 0.5058 0.4997 0.5405 0.5469 0.5645

Kappa 0.1014 0.2713 0.1995 0.1896 0.3106 0.3208 0.3472

S9 Acc 0.4662 0.6268 0.5169 0.5527 0.7602 0.7431 0.7764

Kappa 0.1956 0.4385 0.2136 0.2696 0.6397 0.6176 0.6646

S10 Acc 0.3481 0.3264 0.4440 0.4495 0.4163 0.4380 0.4519

Kappa 0.0251 0.0290 0.1711 0.1310 0.1269 0.1677 0.1779

Mean Acc 0.5431 0.5637 0.5577 0.5609 0.6224 0.6828 0.6994

Kappa 0.3142 0.3497 0.2861 0.2831 0.4344 0.5277 0.5492

https://doi.org/10.1371/journal.pone.0276526.t007
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imagination. In addition, the existing methods only consider the information of a certain

dimension or two dimensions in electroencephalography signals, and cannot considerately

capture the inherent characteristics of electroencephalography signals in spatial-spectral-tem-

poral aspect. At the same time, the dynamic correlation intensity of each dimension of electro-

encephalography affected the robustness of classification. To solve the above problems, this

paper proposes a considerate attention-based multi-dimensional feature graph convolutional

neural network (C-GCNN) integrating the attention mechanism. Firstly, a graph structure is

designed according to the non-Euclidean spatial characteristics of electrode node distribution

to fully represent the spatial correlation between electrodes. Secondly, the spatial-temporal and

the spatial-spectral architectures are proposed to represent the information of electroencepha-

lography in spatial-spectral-temporal domain simultaneously. Finally, the spatial representa-

tion, temporal dependence and spectral dependence of electroencephalography signals are

learned from graph representation by integrating attention mechanism, graph convolution

and temporal / spectral convolution, and the dynamic correlation intensity of each dimension

Fig 4. The ablation results of different variants. (a) BCICIV-2a dataset. (b) BCICIII-3a dataset. (c) HaLT dataset. (d) AHU-MIEEG

dataset.

https://doi.org/10.1371/journal.pone.0276526.g004
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is captured adaptively. A series of contrast experiments and ablation experiments on several

different public brain-computer interface datasets show that the proposed C-GCNN model

achieved some improvement in motion imagination classification task compared with other

benchmark methods. Although the proposed method has some unique advantages, there are

still some problems that need to be studied at a turn. For example, the current research is

aimed at each subject, so how to propose a more universal algorithm for cross-subject research

needs further discussion and analysis.
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