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Abstract

The treatment of World Health Organization (WHO) grades 2 and 3 meningiomas remains difficult

and controversial. The pathogenesis of high-grade meningiomas was expected to be elucidated to im-

prove treatment strategies. The molecular biology of meningiomas has been clarified in recent years.

High-grade meningiomas have been linked to NF2 mutations and 22q deletion. CDKN2A/B homozygous

deletion and TERT promoter mutations are independent prognostic factors for WHO grade 3 men-

ingiomas. In addition to 22q loss, 1p, 14p, and 9q loss have been linked to high-grade meningiomas.

Meningiomas enriched in copy number alterations may be biologically invasive. Furthermore, several

new comprehensive classifications of meningiomas have been proposed based on these molecular bio-

logical features, including DNA methylation status. The new classifications may have implications for

treatment strategies for refractory aggressive meningiomas because they provide a more accurate

prognosis compared to the conventional WHO classification. Although several systemic therapies, in-

cluding molecular targeted therapies, may be effective in treating refractory aggressive meningiomas,

these drugs are being tested. Systemic drug therapy for meningioma is expected to be developed in

the future. Thus, this review aims to discuss the distinct genomic alterations observed in WHO grade

2 and 3 meningiomas, as well as their diagnostic and therapeutic implications and systemic drug

therapies for high-grade meningiomas.
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Introduction

Meningiomas in adults are the most common primary

intracranial tumors.1) Approximately 80%, 15%-20%, and

1%-3% of meningiomas are benign (World Health Organi-

zation [WHO] grade 1), atypical (WHO grade 2), and ma-

lignant (WHO grade 3), respectively.1-7) Recurrence occurs

in 3%-20%, 30%-40%, and 50%-58% of grades 1, 2, and 3

meningiomas, respectively.8-12) High-grade meningiomas

often become refractory to standard surgical and radiation

therapy and are therefore difficult to manage. Chemother-

apy and other systemic medical therapies are reserved as

salvage therapy in these patients. These therapies, how-

ever, have had only limited success and have shown little

clinical benefit.13,14) Thus, the molecular biological charac-

teristics of these high-grade meningiomas should be clari-

fied. Systemic medical therapies are also expected to be

developed to combat them. The World Health Organization

Classification of Tumors of the Central Nervous System, fifth

edition, published in 2021, described these genetic charac-

teristics.15) The WHO 2021 classification introduced signifi-

cant changes that advance the role of molecular diagnos-

tics of central nervous system tumors. TERT promoter

(TERTp) mutation and homozygous CDKN2A/B deletion

have been included as independent criteria for WHO grade

3 meningiomas15) (Table 1). Novel molecular classifications

based on multimolecular omics analysis have been recently

reported and appear to have clinical application.16,17)
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Table　1　2021 WHO classification of meningiomas

WHO 

grade
Subtype Criteria

Grade 1 Meningothelial

Fibrous

Transitional

Psammomatous

Angiomatous

Microcystic

Secretory

Lymphoplasmacyte-rich

Metaplastic

Grade 2 Atypical 4-19 mitotic figures in 10 consecutive HPF of each 0.16 mm2

Chordoid or

Clear cell Unequivocal brain invasion (not only perivascular spread or indentation of brain without pial breach)

or

Specific morphological subtype (chordoid or clear cell)

or

At least three of the following

1. Increased cellularity

2. Small cells with high N:C ratio

3. Prominent nucleoli

4. Sheeting (uninterrupted pattern-less or sheet-like growth)

5. Foci of spontaneous (non-iatrogenic) necrosis

Grade 3 Anaplastic 20 or more mitotic figures in 10 consecutive HPF of each 0.16 mm2 (at least 12.5/mm2)

Rhabdoid or

Papillary Frank anaplasia (sarcoma-, carcinoma-, or melanoma-like appearance)

or

TERT promoter mutation

or

Homozygous deletion of CDKN2A and/or CDKN2B

HPF high power field.

This article aims to review the distinct genomic altera-

tions observed in WHO grade 2 and 3 meningiomas and

discuss their diagnostic and therapeutic implications, as

well as systemic drug therapies for high-grade men-

ingiomas.15,18,19)

Genomic Alterations and mRNA Expressions
(Table 2)

NF2 gene encodes the tumor suppressor protein merlin,

a negative regulator of mTORC1.20,21) The rate of NF2 muta-

tions in low-grade meningiomas is -40%, whereas, the rate

of NF2 mutations in high-grade meningiomas is signifi-

cantly higher at 80%.22) The incidence of non-NF2 muta-

tions is <5% in 20% of high-grade meningiomas without

NF2 mutations, compared to 35% in grade 1 non-NF2 men-

ingiomas. This significantly lower incidence suggests that

high-grade meningiomas have a different genetic basis.23)

Homozygous deletion of the CDKN2A/B gene located at

9p21 has been frequently observed in anaplastic men-

ingiomas.18,24-29) CDKN2A/B homozygous deletion was found

in about 4.9% of meningiomas of all WHO grades and sub-

types. Atypical meningiomas made up 27% of the cases

with CDKN2A/B homozygous deletion, while anaplastic

meningiomas made up 73%. In particular, CDKN2A/B ho-

mozygous deletion, in particular, was able to identify pa-

tients with poor prognosis among WHO grade 2 and 3

cases.18) Consequently, CDKN2A/B homozygous deletion has

been added as an independent criterion for WHO grade 3

meningiomas in the 2021 WHO classification.15)

TERTp mutations occur at specific hotspots known as

C228T and C250T in meningiomas.19,30,31) TERTp mutations

occur in 4.7%, 7.9%, and 15.4% of WHO grades 1, 2, and 3

meningiomas, respectively.30) TERTp mutations are associ-



Molecular Biological Research in Grades 2 and 3 Meningiomas 349

Neurol Med Chir (Tokyo) 62, August, 2022

Table　2　Main genomic alterations in WHO grades 2 and 3 meningioma

Gene Locus Product Frequency Histology Pathway

NF218-21) 22q12.2 Merlin 40%-80% Atypical, anaplastic PI3K/AKT/mTOR and hippo

CDKN2A/2B16, 22-27) 9p.21.34 p16(INK4A)/p15(INK4B) <5% Atypical, anaplastic Cell cycle regulation

TERTp17, 28, 29) 5p15.33 TERT 5%-15% Atypical, anaplastic Telomerase activity

BAP132) 3p21.1 Ubiquitin carboxy-terminal hydrase 1 <1% Rhabdoid DNA repair

PBRM135) 3p21.1 Subunit of PBAF complex 2.8% Papillary Chromatin remodeling

DMD39) Xp21.1 Dystrophin NA Atypical, anaplastic Cytoskeleton

SMARCB140, 41) 22p11.23 Subunit of SWI/SNF complex 5% Atypical, anaplastic Chromatin remodeling

SMARCE120, 42, 43) 17q21.2 Subunit of SWI/SNF complex 3%-4% Clear cell Chromatin remodeling

SMARCA420, 42, 43) 19p13.2 Subunit of SWI/SNF complex NA Atypical, anaplastic Chromatin remodeling

ARID1A45) 1p36.11 Subunit of SWI/SNF complex 12% in grade 3 Anaplastic Chromatin remodeling

PIK3CA40, 46-48) 3p26.32 Catalytic subunit of kinase, PI3K 3%-7% Grades 1-3 PI3K/AKT/mTOR

ated with increased TERT expression and telomerase activ-

ity but not with telomere length.32,33) The recurrence rate in

WHO grade 1 and 2 cases with TERTp mutation is higher

than in WHO grade 3 cases without TERTp mutation. This

suggests that TERTp mutation is a prognostic factor inde-

pendent of WHO grade.30) Therefore, the presence of TERTp

mutation has been added as an independent criterion for

WHO grade 3 meningiomas in the WHO classification

2021.15) Furthermore, TERTp mutations are associated with

tumor progression and poor outcome of de novo high-

grade meningiomas after following adjuvant radiotherapy.34)

Somatic mutations in BAP1 have been identified in a

rare subset of aggressive meningiomas with rhabdoid mor-

phology.35) BAP1 codes a BRCA1-associated protein and is

essential for DNA repair. Its inactivation is oncogenic.36)

Cases with germline BAP1 mutations also exist in the sub-

set of cases with somatic BAP1 mutations. This indicates

that such meningiomas can occur as part of the

BAP1 cancer predisposition syndrome. Furthermore,

immunohistochemistry-based negative nuclear staining for

BAP1 reveals the absence of BAP1 expression.37) Therefore,

immunohistochemistry can help predict the prognosis of

meningiomas with rhabdoid features.37)

Biallelic inactivation of PBRM1 in papillary meningiomas

was recently reported.38) BAF180 protein, a subunit of the

polybromo-associated BAF complex chromatin remodeling

complex, is encoded by PBRM1. PBRM1 mutations, which

is a tumor suppressor gene, have been found in clear cell

renal cell carcinoma, papillary renal cell carcinoma, and

bladder carcinoma.36) PBRM1 mutations significantly in-

crease cell proliferation and migration.39) BAF180 protein is

required for centromeric cohesion, and cells lacking

PBRM1 have DNA damage and dynamic chromosome in-

stability.40) PBRM1 mutations can overlap with BAP1 muta-

tions, and their prognostic role in meningiomas remains

unknown.38)

Mutations in the DMD gene, which codes for dystrophin,

have also been linked to progressive/high-grade men-

ingiomas.41) DMD inactivation was found in 32% of progres-

sive meningiomas, either through genomic deletion or loss

of protein expression. Furthermore, the presence of DMD

inactivation in advanced or high-grade meningiomas re-

duces overall and progression-free survival.41) Importantly,

somatic DMD mutations and TERTp mutations are mutu-

ally independent in predicting unfavorable outcomes.41)

Mutations in SWI/SNF chromatin remodeling complex

members have been found in high-grade meningiomas.42,43)

SMARCB1 is also found on 22q, and mutations in this gene

may be found in cases with NF2 mutations. Other SWI/

SNF complex members, e.g., SMARCE1, SMARCA4, and

ARID1A, have also been shown to be mutated on multiple

occasions.22,44,45) SWI/SNF gene mutations are more fre-

quently detected in anaplastic (16%) meningiomas than in

benign and atypical meningiomas (<5%).46) ARID1A muta-

tions were found in 19.1%, 16.8%, and 15.8% of WHO

grades 1, 2, and 3 meningiomas, respectively, and the pres-

ence of an ARID1A mutation was associated with a 7.4-fold

mortality risk.47)

PIK3CA mutations are most commonly found in WHO

grade 1 meningioma, which accounts for 4%-7% of all

meningioma cases.42,48) The presence of PIK3CA mutations

in high-grade meningiomas was first reported in 2006.49)

PIK3CA mutations are found in 3.7% of anaplastic men-

ingiomas50) and are relatively rare in high-grade men-

ingiomas. Moreover, PIK3CA mutations are found in men-

ingiomas without additional copy number alterations or

somatic mutations. This suggests that PIK3CA may have

played a role in the tumorigenesis of malignant men-

ingioma.

Only 0.6% of meningiomas have mutations in mismatch

repair genes (MMR), e.g., MSH2, MSH6, SETD2, and POLE,

but interest exists in studying these mutations in aggres-

sive meningiomas.51) Firstly, these mutations can be targets

for immunotherapy because MMR mutations are often as-

sociated with neoantigens. Pembrolizumab, a PD-1 inhibi-

tor, has been approved for solid tumors with MMR muta-



350 A. Okano et al.

Neurol Med Chir (Tokyo) 62, August, 2022

tions.52) These drugs may also be effective in meningiomas

with MMR mutations. Secondly, MMR mutation frequency

is rare in high-grade meningiomas despite genetic instabil-

ity. Thus, other driver events may be involved in high-

grade meningioma development.

NF2 mutations have been linked to chromatin remodel-

ing genes like SUZ12, KDM5D, KDM6A, SETD6, KMT2C,

KMT2D, or CREBBP as well as DNA damage response

genes like ATM, ATR, or BAP1 in chordoid meningiomas.53)

Importantly, these mutations are independent prognostic

factors for chordoid meningioma’s aggressive course.

Although many factors have been identified through

transcriptome analysis, the current study focused on the

FOXM1 gene, which is of particular importance. FOXM1

was identified as a key transcription factor for tumor

growth and a marker of poor clinical outcome.17,54-56) FOXM1

is a promitotic transcription factor necessary for cell pro-

liferation during development.57,58) FOXM1 expression in

meningioma has previously been reported to be high in in-

vasive tumors.59) Furthermore, meningiomas with a poor

prognosis had a high somatic mutation burden. The

FOXM1-wnt signaling pathway was associated with a mi-

totic gene expression program, poor clinical outcome, and

primary meningioma growth. To summarize, FOXM1 activ-

ity promotes meningioma proliferation and tumor growth

by collaborating with the dysregulated FOXM1-wnt signal-

ing pathway.54)

Unlike WHO grade 1 meningioma, the association be-

tween tumor location and genetic genomic alterations in

high-grade meningiomas is not reported in detail. Thus,

further studies are needed.

Copy Number Alterations

Genomic instability is linked to tumor aggressiveness,

and karyotypic abnormalities are noted to gradually in-

crease as meningiomas become more aggressive.60,61) The

most noticeable difference between grades 2 and 3 men-

ingiomas is an increase in copy number alterations (CNAs)

when compared to grade 1 meningiomas. Loss of chromo-

somes 1p, 4p, 6q, 9q, 10, 14q, and 22q or gain of chromo-

somes 1q, 9q, 12q, 15q, 17q, 19, 20, and 5 have also been

described.22,27,55,61-64) CNAs become more common as the

WHO grade of meningioma rises. The number of CNAs is

strongly associated with the risk of recurrence in atypical

meningiomas after gross total resection.60) These results

suggest that meningiomas with a high number of CNAs

may have a biologically aggressive behavior.22)

Grades 2 and 3 meningiomas are strongly linked to dele-

tion or loss of genetic locus on chromosome 22q that con-

tains the NF2 gene.4,22) The rate of loss of heterozygosity for

22q increases with the grade, from 50% in WHO grade 1

meningioma to 75%-85% in WHO grade 3 meningioma.65,66)

Other tumor suppressor genes found on chromosome 22q

include SMARCB1, CHEK2, and CLH22. Loss of 22q loss re-

sults in a state of genetic instability that is prone to so-

matic mutations. This results in a genetically diverse and

aggressive tumor phenotype.

After 22q loss, the second most common copy number

in meningiomas is 1p loss which is associated with higher

WHO grade.46,55,67-69) 1p loss is found in 40%-76% and 70%-

100% of WHO grades 2 and 3 meningiomas, respectively,

and is especially common in recurrent and high-grade tu-

mors.61) Interestingly, 1p loss is an independent marker of

meningioma recurrence and progression.70,71) However, 1p

loss is observed at a significantly lower frequency in grade

3 rhabdoid meningiomas, a particularly aggressive subtype,

compared to other high-grade subtypes.22) Recently, 1p36

loss was reported as the prognostic marker of regrowth af-

ter gamma knife surgery for WHO grade 1 meningiomas.72)

However, genetic alterations associated with radiation

therapy efficacy in high-grade meningiomas have not been

identified.

The loss of chromosomes 14q, 9p, and 6q are major ad-

ditional alterations found in high-grade meningiomas.46,55,69)

14q loss is detected in 40%-57% and 55%-100% of WHO

grades 2 and 3 meningiomas, respectively, especially in

high-grade tumors.71) Loss of both 1p and 14q has been as-

sociated with early tumor recurrence and is a prognostic

factor independent of WHO grade.73) 9p loss is a common

finding in WHO grade 3 meningiomas. CDKN2A/B dele-

tions on 9p are especially linked to tumor recurrence. As

aforementioned, these genes have recently been studied as

biomarkers of poor prognosis.18,74,75) Other chromosome ab-

normalities have been reported, as summarized in Table 3.

Epigenetic Alteration

H3K27 me3 was referred to in the WHO 2021 classifica-

tion. Lack of H3K27 me3 staining in meningioma cells has

been linked to faster progression, establishing its role as

an adjunct prognostic marker.76,77) This provides important

prognostic information, particularly in WHO grade 2 or

borderline cases between WHO grades 1 and 2.76,78) In an-

other large cohort study including 1,268 cases, lack of

H3K27 me3 staining was found in 4.7% of meningiomas

and was noted to be more common in females, in convex-

ity or falx.79) The WHO grading system also revealed a sig-

nificant difference in trimethylation loss: 3.1%, 10.4%, and

17.7% in grades 1, 2, and 3, respectively. Anaplastic (16.7%)

and rhabdoid (20.0%) meningioma had the highest rate of

trimethylation loss, followed by atypical and chordoid

meningiomas (9.9% and 14.3%). Furthermore, significantly

more cases were noted with a MIB1 labeling index (LI) of

�6.9% in 18.3% of cases where H3K27 me3 staining was

missing. The combination of H3K27 me3 loss and MIB1 LI

has been reported to be a poor prognostic marker for

meningiomas.79) The importance of H3K27 me3 loss in IHC

has been highlighted.
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Table　3　Main copy number alterations in WHO grades 2 and 3 meningioma

Alteration Chromosome Related genes
Frequency in 

grade 2
Frequency in grade 3

Loss 22q4, 20, 63, 64) NF2, SMARCB1, CHEK2, and CLH22 75%–85% 75%–85%

1p44, 53, 65-67) TP73, CDKN2C, RAD54, and EPB41, GADD45A, and ALPL 40%–76% 70%–100% (except for rhabdoid)

14q44, 53, 67) NDRG2, MEG3, and AKT1 40%–57% 55%–100%

9p16, 71, 72) CDKN2A/B 32% 38%

6q53) CTGF 33% 53%–63%

18q53) MADH2, MADH4, APM-1, and DCC 43% 47%–75%

10p53) 29% 47%

10q53) PTEN and DMBT1 29% 58%–63%

11p20) NA 21%–50%

7p20) NA 38%

4p53) 19% 21%–38%

6p53) 14% 26%

4q53) NA 26%

18p53, 62) DAL-1 and bcl-2 NA NA

X53) NA 26%

Gain 20q20, 53) 48% 58%

15q53) 43% 42%

17q20, 53) STAT3 and RPS6K 33% 63%

12q20, 53) CDK4 and MDM2 43% 42%

5p20, 53) 38% NA

5q20, 53) 38% NA

1q53) 33% 42%

9q53) 33% 37%

20p20, 53) 33% 32%

2q53) 29% 26%

353) 29% NA

2p53) 24% 32%

12p20, 53) 24% NA

16p53) 24% 32%

17p53) 24% 47%

8q53) 19% 26%

11q53) 24% 21%

21q20, 53) NA 32%

13q53) NA 26%

7q20, 53) NA 21%

16q53) NA 21%

NA not available.

Global DNA Methylation Profiling

Meningiomas are classified into six groups, according to

Sahm et al., based on global DNA methylation profiling us-

ing a genome-wide methylation array.27) Higher methylation

levels have been linked to a higher risk of tumor aggres-

siveness and recurrence according to this classification.27)

DNA methylation is a type of epigenetic change that has

been linked to genomic instability by silencing genes in-

volved in DNA repair and cell cycle regulation. This group

reported that DNA methylation-based classification can be

used to diagnose other types of tumors.80,81)
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Table　4　Integrative molecular classification of meningio-

mas 1

Components of classification Score

WHO grading Grade 1 0

Grade 2 1

Grade 3 2

DNA copy number alterations 

Losses chromosome 1p, 6q, and 

14q

None present 0

1-2 present 2

3 present 3

Global DNA methylation status Benign 0

Intermediate 2

Malignant 4

Classifications Total score

Low risk 0-2

Intermediate risk 3-5

High risk 6-10

Outcome

Low > intermediate > high

Table　5　Integrative molecular classification of meningiomas 2

DNA somatic point 

mutations

DNA copy number altera-

tions

Messenger RNA 

abundance 

(transcriptome)

Global DNA methylation 

status

MG1 Immunogenic NF2 and SMARCB1 22q loss Immunogenic Differences in genome-wide 

DNA methylation patterns 

between groups
MG2 Benign NF2 

wild-type

AKT1, KLF4, SMO, POLR2A, 

and TRAF7

5, 12, and 20 gain Vascular/angiogenesis

MG3 Hypermetabolic NF2, TERTp, and CREBBP 1p, 6, 14p, 18, and 22q loss Hypermetabolic

MG4 Proliferative NF2, TERTp, CREBBP, and 

CHD2

1p, 6, 10, 14q, 18, 22q loss, 

and 1q gain

Proliferative

Outcome

MG1 > MG2 > MG3 > MG

Integrative Molecular Classifications of
Meningiomas (Tables 4 and 5)

Meningioma integrative molecular classifications have

recently been proposed.16,17,82) A combined model score

based on WHO grading, CNAs, and global DNA methyla-

tion classification has been developed16) (Table 4). Patients

were classified as having low (0-2), intermediate (3-5), and

high (>5) integrated risk in that model. Although both

methylation classification and the classification by CNAs

have been independently proven to be better predictors

than WHO grade alone, this integrated score consistently

outperforms each component.16) In another study, an inte-

grated molecular analysis of CNAs, DNA somatic muta-

tions, global DNA methylation status, and transcriptome

revealed four consensus molecular groups17) (Table 5).

These molecular groups outperformed traditional classifi-

cation in predicting clinical outcomes. Furthermore, each

group exhibited distinctive and prototypical biology (MG1,

immunogenic; MG2, benign NF2 wild-type; MG3, hyperme-

tabolic; and MG4 proliferative), making them potential

therapeutic targets.17) MG1 group demonstrated large im-

mune infiltration and was enriched by pathways involved

in immune regulation and signaling. The MG2 subset’s

transcriptome is enriched for vascular and angiogenic

pathways. The pathways converging the metabolism of sev-

eral macromolecules were specifically enriched in MG3 tu-

mors. MG4 group was enriched in pathways involved in

cell cycle regulation and several important and comple-

mentary transcription factor networks related to prolifera-

tion, e.g., MYC, CDKs, and kinesins.17) Meningioma classifi-

cation based on molecular biological features is being pro-

posed. These classifications, along with those for other

gliomas, have the potential to change the way diagnostic

meningioma samples are processed.

Systemic Medical Therapies (Table 6)

Molecular targeted therapies

Neurosurgeons face therapeutic challenges when dealing

with aggressive high-grade meningiomas that do not re-

spond to surgeries and radiation therapy. Advances in un-

derstanding intracellular signaling pathways and microen-

vironment in meningiomas have led to the promise of mo-

lecular targeted therapies for meningiomas.83) NF2 muta-

tions and 22q loss are most frequently observed in recur-

rent high-grade meningiomas and are potential therapeutic

targets. GSK2256098, a FAK inhibitor that is supposed to

be active when merlin expression is defective, is currently

being studied in an umbrella clinical trial that is specifi-

cally targeting meningiomas with NF2 mutations.84) BAP1
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Table　6　Systemic medical therapies for meningiomas

Classification Drugs Mechanism Phase Case Result Study

Molecular-

targeted therapy

GSK2256098 FAK inhibitor Phase II Recurrent or pro-

gressive cases with 

NF2 mutations

Improving PFS6 rate

PFS6 rate of >41.5%

Brastianos et al. 

2020

NCT02523014

Tazemetostat EZH2 inhibitor Phase II BAP1 mutation 

(Rhabdoid)

Ongoing NCT02860286

Ribociclib CDK4/6 inhibi-

tor

Phase II Grades 2 and 3 with 

CDKN2A/B deletion

Ongoing NCT02933736

Tien et al. 2019

Vistusertib 

(AZD2014)

mTORC1/C2 

inhibitor

Phase II Recurrent grades 2 

and 3 with NF2 

mutation

Ongoing NCT03071874

Vistusertib 

(AZD2014)

mTORC1/C2 

inhibitor

Phase II Progressive cases 

with NF2 mutation

Ongoing NCT02831257

Everolimus + 

octreotide

mTOR inhibitor 

+ Somatostatin 

agonist

Phase II Refractory aggres-

sive/progressive 

cases

Improving PFS6 rate

PFS6 rate of 55%

Graillon et al. 2020

CEVOREM trial

Everolimus + 

bevacizumab

mTOR inhibitor 

+ Anti-VEGF

Phase II Recurrent/progres-

sive cases

Improving PFS6 rate

PFS6 rate of 69%

Shih et al. 2016

Alpelisib + 

trametinib

PI3K inhibitor + 

MEK inhibitor

Phase II Progressive refrac-

tory cases with 

PIK3CA mutation

Ongoing NCT03631953

Vismodegib Hedgehog 

pathway 

targeting

Phase II Recurrent/progres-

sive cases with SMO/

PTCH1 mutation

Ongoing NCT02523014

Alliance clinical 

trial

Afuresertib AKT1 inhibitor Case 

report

Grade 1 with AKT1 

mutation

Potential Weller et al. 2017

Bevacizumab Anti-VEGF 

monoclonal 

antibody

Phase II Grades 2 and 3 PFS6 rate of 43.8% Nayak et al. 2012

Bevacizumab Anti-VEGF 

monoclonal 

antibody

Phase II Grades 1-3 PFS6 rate of  

77% in grade 2

46% in grade 3

Grimm et al. 2015

Bevacizumab Anti-VEGF 

monoclonal 

antibody

Case 

series

Grades 2 and 3 previ-

ous treated with RT

78.9% of edema 

improvement

Furuse et al. 2016

Vatalanib (PTK787) VEGF and PDGF 

receptors 

inhibitor

Phase II Recurrent or pro-

gressive cases

Response rate of 0%

PFS6 rate of 64.3% in 

grade 2

37.5% in grade 3

Raizer et al. 2014

Sunitinib Multitarget 

tyrosine kinase 

inhibitor

Phase II Recurrent grades 2 

and 3

Response rate of 6%

PFS6 rate of 42%

Kaley et al. 2015

Erlotinib or 

gefitinib

EGF receptor 

inhibitor

Phase II Recurrent cases No significant efficacy

PFS6 rate of 29% in 

grades 2 and 3

Norden et al. 2010

Imatinib PDGF receptor 

inhibitor

Phase II Recurrent cases No significant efficacy

PFS6 rate of 0% in 

grades 2 and 3

Wen et al. 2009

Cabozantinib Multitarget 

tyrosine kinase 

inhibitor

Case 

report

Recurrent cases Potential Kotecha et al. 2021

Apatinib VEGF receptor 

inhibitor

Case 

series

Recurrent anaplastic 

case

Potential Wang et al. 2020
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Classification Drugs Mechanism Phase Case Result Study

SSTR2A agonist Octreotide Somatostatin 

agonist

Phase II Recurrent cases with 

overexpression of SR

Limited efficacy Chamberlain et al. 

2007

Octreotide Somatostatin 

agonist

Phase II Recurrent cases with 

overexpression of SR

No significant efficacy Johnson et al. 2011

Octreotide Somatostatin 

agonist

Phase II Recurrent grade 2 or 

3 with positive 

octreotide SPECT

No significant efficacy 

PFS6 rate of 44.4% in 

grades 2 and 3

Simo et al. 2014

Pasireotide LAR Somatostatin 

agonist

Phase II Recurrent cases with 

SR overexpression

Limited efficacy

PFS6 rate of 17% in 

grades 2 and 3

Norden et al. 2015

PRRT 90Y-DOTATOC Phase II SR-positive progres-

sive cases

PFS6 rate of 78.6% in 

grade 1

PFS6 rate of 14.3% in 

grades 2 and 3

Bartolomei et al. 

2009

90Y-DOTATOC Phase II SR-positive progres-

sive or recurrent 

cases

PFS6 rate of 100% in 

grade 1

PFS6 rate of 0% in 

grades 2 and 3

Geyster-Gillieron 

et al. 2015

90Y-DOTATOC and 

Lutathera 

(177Lu-DOTATATE)

Phase II SR-positive progres-

sive WHO grade 1

SD of 65.6%, PD of 

34.4%

Marincek et al. 

2015

Lutathera 

(177Lu-DOTATATE)

Phase II Progressive grades 

1-3

Ongoing NCT03971461

Cu-64SARTATE and 

Cu-67SARTATE

Phase II Refractory grades 

1-3

Ongoing NCT03936426

Hydroxyurea Hydroxyurea Phase II Recurrent grade 1 or 

2

No significant efficacy Loven et al. 2004

Hydroxyurea Phase II Recurrent grade 1 Limited efficacy Weston et al. 2006

Immunotherapy Nivolumab/Ipilim-

umab

PD-1/CTLA4 

blocking 

antibody

Phase II Recurrent grades 2 

or 3

No significant efficacy

PFS6 rate of 42.4% in 

grades 2 and 3

Bi et al. 2021

NCT02648997

Pembrolizomab PD-1 blocking 

antibody

Phase II Refractory grades 2 

or 3

Ongoing NCT03016091

Pembrolizomab PD-1 blocking 

antibody

Phase II Recurrent grades 2 

or 3

PFS6 rate of 48% in 

grades 2 and 3

Median PFS of 7.6 

months

Brastianos et al. 

2022

NCT03279692

Nivolumab/ipilim-

umab

PD-1/CTLA4 

blocking 

antibody

Phase II Recurrent grades 2 

or 3

Ongoing NCT03604978

Avelumab PD-L1 Phase II Recurrent, radiation 

refractory cases

Ongoing NCT03267836

Progesterone 

receptor 

antagonist

Mifepristone Progesterone 

receptor 

antagonist

Phase 

III

Unresectable grades 

1 or 2

No significant efficacy Ji et al. 2015

Trabectedin Trabectedin Antisarcoma-

tous drug

Phase II Recurrent grades 2 

or 3

No significant efficacy Preusser et al. 

2019

EORTC-1320-BTG

PFS6 6 months progression-free survival, SSTR2A somatostatin receptor 2A, PRRT peptide receptor radionuclide therapy, SD stable disease, and 

PD progression disease.

Table　6　Systemic medical therapies for meningiomas (continued)
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mutations are potential targets for the BAP1 inhibitor,

tazemetostat.37,46) Ribociclib, a CDK 4/6 inhibitor, has been

tested in vitro and is currently being tested in recurrent

WHO grades 2 and 3 meningiomas with CDKN2A/B ho-

mozygous deletion.52,85)

The PI3K/AKT/mTOR pathway has recently been shown

to be overactivated in the majority of meningiomas with

NF2 mutations.86,87) Merlin functions as a negative regulator

of mTORC1, and its loss is important for NF2-dependent

tumorigenesis.20,21) These results suggest that mTORC1 may

be a promising therapeutic target. Vistusertib (AZD2014), a

dual mTORC1-mTORC2 inhibitor, is currently in clinical

trials.88)

The function of somatostatin receptor 2A (SSTR2A) in

meningioma is unknown. However, they are present in al-

most all meningiomas and are strongly present in 70% of

cases.89) SSTR2A activation by somatostatin agonist, octreo-

tide, leads to inhibiting meningioma cell proliferation via

PI3K/AKT/mTOR pathway inhibition.88) Somatostatin ago-

nists were found to be ineffective in the majority of aggres-

sive meningiomas in multiple clinical trials.89-91) The

CEVOREM study, which combined an mTOR inhibitor,

everolimus, and a somatostatin agonist, octreotide, for re-

fractory and progressive meningiomas, revealed a radio-

graphic response in four of 20 patients at 3 months and

encouraged PFS at 6 and 12 months of 58.2% and 38%, re-

spectively, with a median follow-up of 12.3 months.89)

Therefore, additional studies are needed to assess the effi-

cacy of everolimus and octreotide in a randomized trial. A

phase II clinical trial with everolimus plus antivascular en-

dothelial growth factor (VEGF) drug, bevacizumab, for the

treatment of recurrent or progressive meningioma revealed

that stable disease was achieved in 15 of 17 patients.92)

Furthermore, one of the advantages of everolimus is that it

is an oral medication. In vitro data on primary men-

ingioma cell lines have demonstrated caspase-induced cell

death mediated by the MEK inhibitor, trametinib. There-

fore, alpelisib, a PI3K inhibitor, in combination with

trametinib may be effective in meningioma treatment. This

combination therapy is currently being studied.52)

In the case of AKT1 inhibitor, the AKT1 inhibitor afure-

sertib (AZD5363) is effective. Afuresertib was used to treat

a WHO grade 1 meningioma with AKT1 mutation, which

resulted in long-term treated disease control.85) According

to this study, the AKT1 mutation could be a potential

therapeutic target.

SMO mutations cause the sonic hedgehog signaling

pathway to be overexpressed. SMO mutations are more

common in the anterior skull base of meningiomas.93,94) A

phase II clinical trial with vismodegib, which is an SMO

receptor antagonist, is currently ongoing.

Anti-VEGF drugs remain the most commonly used drugs

in aggressive meningiomas today. When compared to

WHO grade 1 meningiomas, it is secreted twofold in atypi-

cal meningiomas and tenfold in anaplastic men-

ingiomas.95-97) Bevacizumab was found to have the most sig-

nificant tumor growth inhibition effect in recurrent WHO

grades 2 and 3 meningiomas and anti-edematous activity

in 2016.98) PFS6 rates in grades 2 and 3 meningiomas

ranged from 43.8% to 77% in several prospective stud-

ies.99,100) Another study found that bevacizumab showed a

significant reduction in volume and peritumoral edema in

meningiomas that had been previously treated with radia-

tion therapy. These findings suggest that bevacizumab has

an important role in postradiation changes and radiation

necrosis.101) Future studies should look for more predictors

to further determine efficacy. Other anti-angiogenic agents,

e.g., vatalanib, an inhibitor of VEGF and platelet-derived

growth factor (PDGF) receptors, and sunitinib, a multitar-

geted tyrosine kinase inhibitor, have shown limited efficacy

with response rates of 0% and 6%, respectively.102,103) In a

phase II trial, erlotinib or gefitinib, an EGF receptor inhibi-

tor and PDGF receptor inhibitor, were investigated. How-

ever, no statistically significant changes were noted in PFS

or OS.104,105) Two new VEGF targeting drugs, cabozantinib

and apatinib, have been reported to be active.106,107)

SSTR2A-targeted drug

Several clinical trials have found that low somatostatin

agonists have low activity against aggressive men-

ingiomas.89-91) In contrast, the use of somatostatin analog

has been shown to slow tumor growth in WHO grade 1

skull base meningiomas.108,109) Peptide receptor radionuclide

therapy (PRRT) for recurrent meningiomas was proposed

based on high SSTR expression. This treatment is designed

to specifically target the tumors that express and internal-

ize SSTR2A. Several retrospective studies have been con-

ducted using various agents, e.g., 90Y-DOTATOC or 177Lu-

DOTATATE, Lutathera.110-114) These findings concluded that

PRRT has a promising effect on WHO grades 1 and 2 men-

ingiomas, but is less useful in aggressive WHO grades 2

and 3 meningiomas.115) A possible reason is that in aggres-

sive WHO grades 2 and 3 meningiomas, SSTR2A expres-

sion is lower than in WHO grade 1 and meningiomas.116)

Thus, PRRT could be less effective for this group. However,

SSTR1 and SSTR5 expressions are higher than in WHO

grades 1 and 2 meningiomas.116) A broader affinity of sub-

stances used for PPRT has the potential to improve the ef-

ficacy.116) New drugs in the USA, Copper 64 labeled sartate

and 177Lu-DOTA-Tyr3-octreotate, are being investigated.117)

Hydroxyurea

Hydroxyurea was the first drug proposed for the treat-

ment of meningiomas;118,119) it is an oral inhibitor of ribonu-

cleotide reductase. Several clinical trials have been con-

ducted,120-122) wherein their findings suggest that hydroxy-

urea may have potential but uncertain activity in low-

grade meningiomas, whereas no significant effect has been

reported in WHO grades 2 and 3 meningiomas.
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Immunotherapy

The immune system’s role in the progression of men-

ingioma has long been suspected.123,124) According to stud-

ies,125-127) the immune microenvironment may have an im-

pact on high-grade meningioma. According to some stud-

ies, programmed death-ligand 1 (PD-L1) expression is in-

creased in high-grade meningiomas.128,129) However, a phase

II clinical trial of PD-1 blocking antibody, nivolumab, in re-

current high-grade meningiomas showed no improvement

in PFS6.130) Most recently, another PD-1 blocking antibody,

pembrolizumab, in recurrent high-grade meningiomas

showed promising efficacy.131) Several studies are being

done with anti-CTLA4, pembrolizumab, either alone or

with the combination of radiation therapy and anti-PD1,

PD-L1, or CTLA4 agents.132) Since meningiomas express dif-

ferent potential immunotherapy targets, e.g., PD-L2, CTLA-

4, and B7-H3, it has been suggested that the combination

of immunotherapy with radiotherapy or targeted therapy

may improve the local immune response.126)

Progesterone receptor antagonist (mifepristone)

Progesterone receptor (PR) expression is found in 70%

of meningiomas.133) PR is strongly expressed in low-grade

meningiomas, while the PR expression is reduced in high-

grade meningiomas.134,135) Although PR was expected to be a

potential therapeutic target for growth inhibition, a ran-

domized double-blind placebo-controlled phase III trial

concluded that the PR antagonist, mifepristone, lacked effi-

cacy.136)

Trabectedin

Trabectedin binds to the minor groove of the DNA dou-

ble helix. It affects several transcription factors and DNA

repair mechanisms and has immunomodulatory and ant-

angiogenic.137,138) It is currently approved for advanced soft

tissue sarcoma and ovarian cancer.139) Trabectedin sup-

pressed meningioma cells from WHO grades 2 and 3 men-

ingiomas through multiple mechanisms, and a favorable

response was observed in a patient with recurrent anaplas-

tic meningioma treated with trabectedin.140) However, in

the EORTC Brain Tumor Group’s randomized phase II trial

(EORTC-1320-BTG), trabectedin did not improve overall

survival in recurrent WHO grades 2 and 3 meningiomas.141)

Conclusion

Meningiomas’ molecular biological characteristics have

been clarified. Furthermore, several new comprehensive

classifications of meningiomas based on these molecular

biological features have been proposed. These classifica-

tions are expected to provide a more accurate prognosis

than the traditional WHO classification and to influence

treatment strategies for refractory aggressive meningiomas.

Future systemic drug therapy research, including molecu-

lar targeted therapies, is also expected to be developed.
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