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There is significant recent interest in Peto’s paradox and the related problem of

the evolution of large, long-lived organisms in terms of cancer robustness.

Peto’s paradox refers to the expectation that large, long-lived organisms

have a higher lifetime cancer risk, which is not the case: a paradox. This para-

dox, however, is circular: large, long-lived organisms are large and long-lived

because they are cancer robust. Lifetime risk, meanwhile, depends on the age

distributions of both cancer and competing risks: if cancer strikes before com-

peting risks, then lifetime risk is high; if not, not. Because no set of competing

risks is generally prevalent, it is instructive to temporarily dispose of compet-

ing risks and investigate the pure age dynamics of cancer under the multistage

model of carcinogenesis. In addition to augmenting earlier results, I show that

in terms of cancer-free lifespan large organisms reap greater benefits from an

increase in cellular cancer robustness than smaller organisms. Conversely, a

higher cellular cancer robustness renders cancer-free lifespan more resilient

to an increase in size. This interaction may be an important driver of the

evolution of large, cancer-robust organisms.
1. Introduction
Multicellularity is risky. Every cell could, in principle, escape the checks and bal-

ances of healthy organisms that keep individual cells from proliferating in an

uncontrolled manner and cause cancer [1–3]. To do so, a cell needs to differ in

a number of ways from normal cells (i.e. rate limiting stages or ‘hits’). This obser-

vation has given rise to the ‘multiple hit model’ or the ‘multistage theory of

cancer’ [4–8]. Every ‘hit’ is a way in which cancer cells necessarily differ from

normal cells. For instance, a cancer cell needs to sidestep the checkpoints in the

cell cycle. Most hits seem to result from DNA mutations, whereas epigenetic

mutations may also play a role [9–11]. For brevity, I write ‘mutations’ and ‘stages’.

It has long been recognized that with c stages, the cancer hazard rate should

rise approximately as a power of c 2 1 with age, and many cancers seem to have a

hazard function that is at least approximately compatible with this model [4].

If having many cells is risky, then having even more cells should be even

riskier. If the hazard rate increases with age as a power of c 2 1, then a

longer life should progressively increase cancer risk. Hence, large, long-lived

organisms are expected to suffer a higher lifetime cancer risk than small,

short-lived organisms. This does not seem to be the case; an apparent contradic-

tion known as Peto’s paradox [12,13] that is receiving increasing attention from

the medical community [14,15].

Peto’s paradox [15–21], however, is circular. The paradox relies on assuming a

certain lifespan, after which the cancer risk during that lifetime is evaluated. This

seems the wrong procedure. Lifespan is a function, inter alia, of cancer robustness:

organisms are long-lived because they are cancer robust. If not, then they would be

short-lived. One cannot next expect that they are not cancer robust and should

therefore have a higher lifetime cancer risk, based on the very same lifespan

that derives from high cancer robustness. Similarly, large organisms exist because

they are cancer robust; one cannot next expect that they are not.

Formulations like the following are equally uncomfortable: ‘the risk of

cancer should be many orders of magnitude greater in humans [than in
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Figure 1. The hazard rate as a function of age for several parameter settings.
The black line is the reference model. The number of mutations that gives
cancer, c, changes the shape of the hazard rate (dark blue line). The
number of cells at risk, s, scales the hazard rate (grey line). Mutation rate
m gives the accelerated failure time effect (light blue line). Note that the
plateau is not reached during normal lifespan. (Online version in colour.)
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mice]’ [17]. Lifetime cancer risk in mice is at least one-third

[22,23], so lifetime cancer risk in humans cannot possibly

be orders of magnitude higher.

To give another example, Peto mentions the rapid

increase with age of cancer risk up to that age, the implica-

tion being that a longer life leads to a progressively higher

lifetime cancer risk [12]. Apart from the objection to this

procedure raised above, a steeper increase of the cancer inci-

dence rate (and risk) with age actually reduces cancer risk

up to any specified age, cancer being postponed to later

ages (figure 1).

Clearly, the conceptualization of these matters in terms of

lifetime risk invites unsound reasoning. In addition, lifetime

risk does not reveal whether organisms die at age 1, or at

age 100. Without other causes of death, ‘competing risks’ in

the epidemiological literature [24–26], lifetime cancer risk is

1. With competing risks, lifetime cancer risk depends entirely

on the way age distributions of cancer and competing risks

interact. Hence, a lifetime risk is always situational: it is

true only in the context of a specific set of competing risks.

A recent paper has investigated lifespan extension as a

result of a change in cancer dynamics, exploring a theoretical

model of cancer in the presence of a specific competing risk in

the form of constant ‘extrinsic mortality’ [27]. Thus, organ-

isms die of either cancer or ‘extrinsic mortality’, whichever

strikes first, and overall lifespan is calculated. This approach

overcomes the problems related to lifetime cancer risk, but

the reported results hold only under a constant competing

risk hazard. For instance, a constant ‘extrinsic mortality’

rate of 0.1 per year implies that overall lifespan cannot be

extended beyond 1/0.1 ¼ 10 years, regardless of cancer

dynamics. But there are various non-cancer mortality func-

tions other than a constant mortality rate of 0.1 that limit

lifespan at 10, for instance the Gompertz function aebx with

a ¼ 0.001 and b ¼ 0.579701. The perturbation that Kokko &

Hochberg [27] report to result in a lifespan reduction from

9.40 to 7.79 (their figure 1d ) then instead yields a lifespan

reduction from 9.99 to 9.74: a significantly different result.

Because there is no generally prevalent set of competing

risks, it is instructive to temporarily dispose of competing

risks and investigate the pure age dynamics of cancer:

cancer-free lifespan, its coefficient of variation and its
sensitivity to model parameters. Here, I show how such a

theory could take shape, how earlier results can be augmen-

ted and how new exciting results can be obtained along these

lines. I analyse a straightforward model of cancer age inci-

dence under the multistage model of carcinogenesis that is

a slightly adapted version of the Calabrese–Shibata model

[28] also analysed in various recent papers [16,27,29]. Yet it

can be analysed even deeper, with surprising results: in

terms of cancer-free lifespan, large organisms reap greater

benefits from an increase in cellular cancer robustness than

smaller organisms. Reversely, a higher cellular cancer robust-

ness renders cancer-free lifespan more resilient to an increase

in size. This interaction may be an important driver of the

evolution of large, cancer-robust organisms.

The model [28] is the most direct derivation of cancer age

incidence under the multistage model of carcinogenesis,

making it fundamental to cancer research. Achieving a good

understanding of the model dynamics is therefore of consider-

able interest. It should be emphasized, however, that various

biological factors that influence carcinogenesis are not in the

model, such as clonal expansion, selection and varying

mutation rates, making the predictions inexact at best. Never-

theless, the model does chart the basic machinations of a

process that is widely believed to be fundamental to carcinogen-

esis, and it serves well to highlight important theoretical aspects.
2. Model analysis
Suppose that cancer requires c mutations, stages. Suppose

that an organism consists of s potentially malignant cells.

Further suppose that genes mutate at a per time rate m. Let

Z denote the time to mutation of an individual gene. The

probability that Z exceeds x, so that the gene is not mutated

at age x, is then

PðZ . xÞ ¼ e
�
Ð x

0
mðtÞdt

: ð2:1Þ

With constant m, this gives

PðZ . xÞ ¼ e�mx, ð2:2Þ

but the original equation may be used for more involved

modelling [4].

Let Y denote the healthy survival time of an individual

cell, which ends if c mutations have occurred;

PðY . xÞ ¼ 1� ð1� e�mxÞc: ð2:3Þ

Let X denote the healthy survival time of an entire organ-

ism. For an organism to be cancer-free, all cells need to be

cancer-free. For s cells, the cancer-free survivorship up to

age x for the entire organism is

PðX . xÞ ¼ lðxÞ ¼ ð1� ð1� e�mxÞcÞs: ð2:4Þ

Equation (2.4) is the same as the equation originally derived

by Calabrese & Shibata [28], only now in continuous time

rather than in ‘cell division time’ and for an entire organism

rather than for the bowel alone. The same equation (or

similar) is found in [16,27,29].

To explore age patterns, probability density function f (x)

is calculated as

f ðxÞ ¼ � d

dx
lðxÞ

¼ mcse�mxð1� e�mxÞc�1ð1� ð1� e�mxÞcÞs�1: ð2:5Þ



342.4

792.4

1255

1691

2093

2462

2801

3114

3404

3673

3925

4161

4383

104.2

343.9

647.3

966.2

1280

1581

1866

2134

2388

2627

2852

3066

3269

32.56

155.1

348.5

577.2

818.8

1061

1299

1528

1748

1959

2161

2354

2538

10.26

71.06

191.5

352.8

536.4

730.1

926.5

1121

1312

1498

1677

1851

2018

3.239

32.79

106.4

218.4

356.4

509.8

671.1

835.6

1000

1163

1322

1478

1630

1.024

15.18

59.4

136.2

238.8

359.3

491

629.2

770.4

912.3

1054

1193

1330

0.324

7.035

33.27

85.29

160.9

254.9

361.7

477.2

597.9

721.4

846

970.5

1094

0.102

3.264

18.67

53.57

108.8

181.6

267.8

363.8

466.5

573.6

683.2

794.2

905.3

0.032

1.514

10.49

33.7

73.78

129.7

198.9

278.4

365.5

458

554.2

652.8

752.6

0.01

0.703

5.893

21.23

50.1

92.88

148.1

213.6

287.2

366.9

451.1

538.5

627.9

0.003

0.326

3.313

13.38

34.05

66.6

110.5

164.3

226.2

294.7

368.2

445.4

525.4

0.001

0.151

1.862

8.435

23.17

47.8

82.53

126.5

178.5

237.2

301.1

369.3

440.6

0

0.07

1.047

5.321

15.77

34.34

61.72

97.6

141.1

191.2

246.8

306.8

370.3

2

5

8

11

14

102 105 108 1011 1014

no. cells

no
. s

ta
ge

s

Figure 2. Cancer-free lifespan for several parameter settings. Mutation rate m is fixed at m ¼ 0.00027375, because the effect of m is described entirely by the
accelerated failure time model. The number of stages, c, and the number of cells at risk, s, seem to interact. Compare for instance the change from c ¼ 6 to c ¼ 8
for s ¼ 100 increasing 10-fold to s ¼ 1000 versus the same change in c for s ¼ 1010 increasing 10-fold to s ¼ 1011. In the first case, the original lifespan is not
recovered. In the second case, the original cancer-free lifespan is more than doubled. Note that the step size for s is multiplicative, while being additive for c.
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Change in survivorship f (x) comes down on those organisms

still alive (i.e. cancer-free), expressed by the hazard rate l(x),

lðxÞ ¼ fðxÞ
lðxÞ ¼ mcse�mx ð1� e�mxÞc�1

ð1� ð1� e�mxÞÞc : ð2:6Þ

The total number of stem cells in humans seems to be in the

order of 1011 [10], but organisms like elephants and whales are

clearly expected to have many more. I follow earlier work

[16,27] in taking a yearly mutation rate of m ¼ 0.00027375.

The number of mutations necessary for cancer may be as low

as two [7] or three [30], but is thought to be typically higher,

in the range of 3–8. I explore a wide range of parameter

values as appropriate.

It was recognized long ago [4] that with c stages the

hazard rate should increase by a power of c 2 1 with age.

However, this is true only initially. The population increas-

ingly consists of organisms of s cells waiting for their last

mutation (all other organisms already have cancer), which

comes at mutation rate m, meaning that the hazard rate

limits at sm. This explains why the hazard rate increases

faster with age in relative terms for larger c (initially increas-

ing as a power of c 2 1 with age), whereas one would expect,

c being a cancer-robustness mechanism, that the hazard rate

would be higher for smaller c than for larger c at all ages.

Through the limit at ms, such is, indeed, the case (figure 1).

The hazard rate is helpful in charting the effects of par-

ameter changes (figure 1 and equation (2.6)). Multiplication

of s by some factor f . 0 multiplies the hazard rate by f

for all ages: s scales the hazard rate, which means it gives a

proportional hazards model [31]. A change in c does not

change the level of the plateau, but changes the way the

curve approaches the plateau. If c is higher, the hazard rate

stays lower for longer, but eventually catches up. Finally, m

not only scales the hazard rate, but also its time dimension:

multiplying m by some f . 0 changes l(x) to fl(fx) and
f (x) to ff(fx) (equations (2.6) and (2.5)), whereas the same

survivorship would be reached at x/f (equation (2.4)). This

model is known as the accelerated failure time model [31],

which means that a straightforward relationship exists

between m and survivorship: the distance between any two

points is multiplied by 1/f in the age dimension, but

except for this scaling the survivorship function is identical.

Cancer-free lifespan, calculated as the first moment around

0 of f(x), or as the sum under the survivorship curve [31], is key

in any framework of analysis. The accelerated failure time

property of m means that multiplication of m by f amounts

to multiplying cancer-free lifespan by 1/f, with no surprising

effects. For parameters c and s, effects are shown in figure 2:

organisms that are orders of magnitude larger (high s) need

only a slightly higher number of stages (higher c) to achieve

the same cancer-free lifespan. In addition, figure 2 suggests

that this effect is stronger the larger s is.

The interaction between c and s is further explored in figure 3.

Figure 3a shows a heatmap of cancer-free lifespan after an

increase in c as a percentage of cancer-free lifespan before that

increase while keeping s constant. Figure 3b shows a heat map

of cancer-free lifespan after an increase in s as a percentage of

cancer-free lifespan before that increase while keeping c constant.

For an increase in c, these percentages are greater than 100,

because increasing c increases cancer-free lifespan. For an

increase in s, these percentages are smaller than 100, because

increasing s decreases cancer-free lifespan. Significantly, the

effect on cancer-free lifespan following an increase in s is smaller

when c is larger, whereas the effect on cancer-free lifespan follow-

ing an increase in c is larger when s is larger. Hence, the larger the

organism, the more it gains from an increase in c, whereas the

higher c, the smaller the proportional reduction in cancer-free

lifespan following an increase in s. A similar interaction between

c and s occurs for their effectiveness in reducing the coefficient of

variation (electronic supplementary material, figure S1).
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3. Discussion
The findings in this paper demonstrate the benefits of cancer-free

survivorship rather than lifetime cancer risk as the metric of inter-

est in investigations regarding the evolution of cancer. This

perspective was used to rethink Peto’s paradox, which was

found to be circular. Large, long-lived animals can exist if and

only if they are cancer robust; one cannot next expect them to

have a higher lifetime cancer risk because they are not cancer

robust. The observation that (cells of) large, long-lived organisms

must be more cancer robust than (those of) small, short-lived

organisms is shrewd and of great importance, but should have

been the endpoint. The expectation that large, long-lived animals

should have a higher lifetime cancer risk than small, short-lived

organisms is an unnecessary and faulty extra step, as is the result-

ing paradox when that prediction remains unconfirmed. Given

that whales live up to 200 years and weigh up to 200 000 kg
[32], their cancer dynamics differ from those of humans, and

the ‘promise of comparative oncology’ [17] stands.

The relevance of the age distribution of cancer and compet-

ing risks has not gone unnoted. Various authors have noted

that postponing cancer until after reproduction renders natural

selection largely powerless in cancer suppression [12,29,33,34].

Lichtenstein [35] commented on the timing of cancer from the

perspective of Peto’s paradox: ‘animals with a small body

weight and short lifespan (e.g. rodents) should not suffer from

cancer at all, while big animals (whales) should get cancer in

their mothers’ wombs’. Noble et al. [18] mention both age distri-

butions and competing risk in their reanalysis of Tomasetti &

Vogelstein [10], as do Caulin et al. [16]. In several life-history

models of cancer, competing risks (and hence necessarily age

distributions) feature prominently [20,27,29]. Yet these papers

have stopped short of disposing of Peto’s paradox and placing
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cancer-free survivorship (rather than lifetime risk) at the heart of

the theory, whereas the use of a specific set of competing risks

limits the generalityof the results. Lifetime riskoroverall lifespan

can certainly be calculated if one is interested in a specific set of

competing risks, but keeping in mind that the results are

restricted to situations where that set of competing risks applies.

A greater number of stages has been suggested before as a

possible mechanism by which larger organisms can protect

themselves against cancer [16,21,34,36]. Caulin et al. [16]

found that ‘increasing the number of hits required for cancer

was a powerful tumour suppressive mechanism’. This result

presaged the findings here (figure 2), with the reservations

that the effect of c depends on s, and that Caulin et al. look at

cancer risk before age 90, subject to all the objections raised

above, rather than cancer-free survivorship.

Caulin et al. [16] when exploring lifetime cancer risk in the

Calabrese–Shibata model found that a 3.2-fold reduction in

the mutation rate compensates for a 1000-fold increase in

body size. This claim is at odds with the findings of others

[27,29], who find that a doubling of m halves cancer-free

survivorship up to any point. The identification of the

effect of m with the accelerated failure time model confirms

the results of [27] and [29], whereas the finding of Caulin

et al. [16] seems an artefact of their parameter settings

(electronic supplementary material, figure S2).

Kokko & Hochberg [27] call for mathematical models that

explore how c and s co-evolve. They find that larger organisms

gain more from an increase in c from 3 to 4 than smaller organ-

isms (their figure 2c). They do not, however, show the

dependence of the effect of a change in s on c, do not discuss

the coevolution of c and s, and as noted their results depend

on the specific, non-general set of competing risks that they con-

sider, to wit age-invariant ‘extrinsic mortality’. Kokko &

Hochberg [27] further write that reducing m (their parameter

k) has an effect similar to increasing c (their parameter n). The

above-mentioned analysis shows that m gives the accelerated

failure time model, with no interactions with other model par-

ameters, whereas the effect of c is not that of the accelerated

failure time model, depending instead on s and on c itself.

While both m and c could be manipulated to postpone cancer,

these manipulations work out differently.

Finally, Brown et al. [20] make the ‘assumption of dimi-

nishing returns to increased cancer suppression’, which is

corroborated by the finding in this paper that a further increase

in c becomes less beneficial the larger c is (but becomes more

beneficial again following an increase in s).

The favourable interaction between c and s may be of para-

mount evolutionary importance: organisms may differorders of

magnitude in body size, but to equalize their cancer-free life-

spans requires only a small number of additional cancer

robustness mechanisms in the larger organism. This is effective

especially if organisms are large. It would be interesting if experts

in cellular biology could comment on how they view the costs of

reducing m versus increasing c in organisms of different sizes.

Because extra robustness mechanisms (high c) are more effective
in larger organisms (high s), larger organisms could let

mutations run relatively free (high m) as long as they assure

some extra robustness in terms of high c. How does this weigh

against the conflicting but equally reasonable hypothesis that

mutation rates in larger organisms must be lower to protect

them against cancer [21]? In addition, the reduction in variabil-

ity as measured by the coefficient of variation could have

evolutionary advantages, as it brings predictability to the life

cycle. If the same life expectancy is reached through two differ-

ent combinations of c and s, say (c1, s1) and (c2, s2) with c1 . c2

and s1 . s2, then (c1, s1) will have a more predictable life cycle

than (c2, s2). For these reasons, mutually reinforcing effects of c
and s uncovered here could be a major driver of the evolution

of large, cancer-robust organisms.

A model is useful when it approximates reality. The model

analysed here forms a good approximation of any cancer

formation process that requires multiple discrete stages that are

acquired at approximately constant rates over age. This model

has been criticized [37], and the mathematical model explored

here leaves out important biological factors that affect oncogen-

esis, such as clonal expansion, ageing, selection and varying

mutation rates. There exist several ways in which the model

could be made more involved. Non-stem cells could be modelled

to have more stages than stem cells, as they are more phenotypi-

cally different from cancer cells, which could be modelled as

subpopulations of cells with different c, c being higher for non-

stem cells. Furthermore, mutations could increase the mutation

rate itself, giving rise to the ‘mutator phenotype’ [38]. Eventually,

tumours become complex adaptive systems, made up of a het-

erogeneous population of cells that compete, interact with their

environment and undergo evolution by natural selection

[9,33,39]. Nevertheless, it remains true that a number of modifi-

cations is required before cells become malignant [40] and the

multistage model remains of interest [9,41].

Restricted to the basic logic of the multistage model of car-

cinogenesis, equations (2.2)–(2.4) describe not just a simple

model; they describe the simplest model possible. Equation (2.2)

is the general expression of survivorship as a function of a con-

stant mortality rate (in this case, a gene remaining unmutated

as a function of a constant mutation rate). Equations (2.3) and

(2.4) then result from basic probability theory, and the density

function and rate immediately follow from standard survival

analysis. Therefore, for all its flaws and inaccuracies, the

model analysed here represents the simplest case and serves

well to demonstrate the theoretical points addressed in this

paper. Perhaps more involved, more realistic models could

build on these insights.
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