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Abstract: The lung cancer threat has become a critical issue for public health. Research has been
devoted to its clinical study but only a few studies have addressed the issue from a holistic perspective
that included social, economic, and environmental dimensions. Therefore, in this study, risk factors or
features, such as air pollution, tobacco use, socioeconomic status, employment status, marital status,
and environment, were comprehensively considered when constructing a predictive model. These
risk factors were analyzed and selected using stepwise regression and the variance inflation factor to
eliminate the possibility of multicollinearity. To build efficient and informative prediction models of
lung cancer incidence rates, several machine learning algorithms with cross-validation were adopted,
namely, linear regression, support vector regression, random forest, K-nearest neighbor, and cubist
model tree. A case study in Taiwan showed that the cubist model tree with feature selection was
the best model with an RMSE of 3.310 and an R-squared of 0.960. Through these predictive models,
we also found that apart from smoking, the average NO2 concentration, employment percentage,
and number of factories were also important factors that had significant impacts on the incidence
of lung cancer. In addition, the random forest model without feature selection and with feature
selection could support the interpretation of the most contributing variables. The predictive model
proposed in the present study can help to precisely analyze and estimate lung cancer incidence rates
so that effective preventative measures can be developed. Furthermore, the risk factors involved
in the predictive model can help with the future analysis of lung cancer incidence rates from a
holistic perspective.

Keywords: lung cancer incidence rate; predictive model; machine learning algorithm; cubist model
tree; random forest; feature selection; variable importance

1. Introduction

An estimated 19.3 million new cancer cases occur worldwide each year and result
in nearly 10.0 million people dying from the disease [1,2]. Lung cancer accounted for
1.80 million deaths or about 18% of the total cancer deaths in 2020. Many variables, includ-
ing genetic predisposition, unhealthy diet, environmental exposure, and air pollution, may
influence lung cancer occurrences separately or in combination with tobacco smoking [3,4].

By far the most prevalent cause of lung cancer mortality is smoking, accounting for
around 80% of all lung cancer fatalities globally. In addition to smoking, experts believe
that air pollution is also one of the major contributors to lung cancer incidence. Traffic
emissions, industrial pollutants, coal combustion, steel production, and suspended road
dust are the primary contributors to air pollution. Particulate matter 2.5 (PM2.5) is the
most harmful group of pollutants to a person’s health, followed by ozone and nitrogen
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oxides [5,6]. Coleman et al. [7] concluded that exposure to PM2.5 contributes to lung cancer
mortality and may be a risk factor for other types of cancer. According to Hvidtfeldt et al. [8],
long-term exposure to ambient PM2.5 is related to lung cancer, even at concentrations below
the current EU limit levels and perhaps the WHO Air Quality Guidelines. Kim et al. [9]
found that exposure to the primary air pollutants (PM2.5, PM10, and NO2) is related to an
elevated risk of cancer death across the board [10], including lung cancer. Other factors,
such as socioeconomic status, employment status, marital status, and living environment,
are also linked with the occurrence of lung cancer.

The recording of a disease mortality rate serves as statistical data that is used to monitor
the causes of death and life expectancy, and allows for the determination of developmental
policies in an area. Mortality rate data is also closely related to incidence rate data. As for
analyzing the mortality rate of a disease, the first step involves analyzing the incidence
rate of the disease itself. Therefore, generating a prediction model to analyze the incidence
rate of a disease is necessary. Rahib et al. [11] used population growth and cancer trends
to estimate cancer incidences in the USA. According to the findings, leading cancer rates
and fatalities in the United States will be significantly different in 2040 than they are now.
Jakobsen et al. [12] projected the future lung cancer occurrence, death, and prevalence in
Denmark. For the years 2016 to 2030, a forecast of future numbers of yearly incident cases,
fatalities, and resulting prevalent case numbers was developed using the concepts of a
“stock and flow” model for a closed population. The data suggest that lung cancer is being
detected at an earlier stage, that the incidence will plateau, that death will decline further,
and that the prevalence will continue to rise significantly.

Machine learning algorithms have been adopted to predict the incidence rate, mortal-
ity rate, or survivability of cancer [13]. Sekeroglu and Tuncal [14] used linear regression
(LR), support vector regression (SVR), decision trees, long short-term memory neural
networks (NN), backpropagation NN, and radial basis function NN to build cancer in-
cidence rate prediction models for the European continent. They found that LR and
SVR outperformed the other models with R-squared values of 0.99 and 0.98, respectively.
Tuncal et al. [15], proposed several machine learning algorithms, including SVR, backprop-
agation NN, and long short-term memory NN, to provide an effective and rapid prediction
of lung cancer incidence. The results show that SVR gives better results than the other
considered algorithms.

Studies on lung cancer incidence rates were devoted to clinical studies but only a few
addressed this issue from a holistic perspective of the social, economic, and environmental
dimensions. Therefore, in this study, we aimed to build prediction models for the incidence
rate of lung cancer in the whole country of Taiwan using machine learning algorithms by
considering several risk factors or features for lung cancer, such as air pollution, tobacco
use, socioeconomic status, employment status, marital status, and living environment.
These risk factors or features were comprehensively surveyed.

2. Materials and Method
2.1. Data Source

The Ministry of Health and Welfare (MOHW) statistics revealed that the cancer death
rate in Taiwan in 2020 fell slightly for the first time since 2009; however, cancer was still
the biggest cause of mortality in Taiwan that year, claiming more than 50,000 lives [16,17].
Lung cancer is also one of the most frequently diagnosed cancers in Taiwan [18–20]. The
incidence of lung cancer is growing rapidly, making Taiwan ranked 15th in the world and
2nd in Asia for the incidence of lung cancer [21].

The lung cancer incidence rate dataset from 1995 to 2018 used in this study was
obtained from the Cancer Registry Report by the Health Promotion Administration,
Taiwan [18,19]. The HPA is a government organization that was formed to be responsible
for health promotion and the prevention of non-communicable diseases. The organization
is also responsible for conducting public health surveillance and related research, as well
as dealing with other specialized health topics. Figure 1 shows the graph of the trachea,
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bronchus, and lung cancer incidence rates per 100,000 in the whole country of Taiwan from
1995 to 2018, which grew more than threefold over this period.
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Other datasets, including air pollution, tobacco use, socioeconomic status, employment
status, marital status, and living environment data [22], were also used in this study.
The air pollution dataset (such as carbon monoxide, nitrogen dioxide, sulfur dioxide,
ozone, and particulate matter 10) was obtained from the Air Quality Annual Report by
Environmental Protection Administration (EPA), Taiwan [5,6]. To improve data exchange
and information services, the EPA created a hierarchical air quality monitoring system to
thoroughly integrate real-time monitoring data given by air monitoring stations of various
authorities. The dataset for each type of air pollution for the whole country of Taiwan
was obtained by averaging the data from a total of 22 administrative divisions of Taiwan
provided by the EPA. Registered vehicle data was obtained from the Annual Transportation
Report, Ministry of Transportation and Communication (MOTC), Taiwan [23,24]. The
MOTC is tasked with regulating all aspects of transportation and communication, with the
MOTC statistics section being in charge of gathering, analyzing, and disseminating data on
Taiwan’s transportation and communications industry.

Industry-related data from the Factory Operation Census Report, Ministry of Eco-
nomic Affairs (MOEA), Taiwan, were also included in the air pollution dataset used in
this study. This annual report was released by the MOEA statistics department, which is
responsible for developing statistical sets to show economic changes due to the impacts of
changes in industry, trade, and services, as well as the future development of economic
activity [25–27]. Tobacco use, socioeconomic status, employment status, marital status,
and living environment data were obtained from the National Statistics of the Directorate-
General of Budget, Accounting and Statistics (DGBAS), Taiwan. The Executive Yuan’s
DGBAS handles national budgetary, accounting, and statistical affairs which complement
each other in an integrated system [28]. The tobacco use dataset included tobacco consump-
tion per capita aged 18 and over (pieces/year), and the percentage of smokers from the
population aged 18 and over. The employment status dataset included the percentage of
employed from the civilian population aged 15 and over, as well as the unemployment rate.
Registered workers from all occupations (such as mining and quarrying, manufacturing,
electricity and gas supply, water supply, and service providers) were included in this
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percentage of employed. The aim was to find out whether people who had jobs affected
the incidence of lung cancer, whether it was due to the work environment or work stress.

The above-mentioned datasets from 1995 to 2020 with a total of 26 years (the sample
size) for each variable were collectively used in building a machine learning model in
this study. Then, the imputation method was applied to fill in missing feature values
with a reasonable approximated value based on the existing feature values. The most
frequent method of imputation is to replace missing values in a feature with a measure of
that feature’s central tendency [12,29]. The mean or median is most usually employed for
continuous features, whereas for categorical features, the mode is most commonly used.
When the data is skewed, utilizing the median value to replace missing values and provide
robustness is recommended [30]. Therefore, in this study, the median of each variable was
used to replace missing values.

2.2. Variables

The independent variable (predictor) is one of the important components in building
a machine learning model. In this study, various independent variables were used to
build a predictive model of the lung cancer incidence rate in Taiwan (dependent variable).
Several studies showed that air pollution appears to slightly increase the risk of lung cancer.
Therefore, we considered various air pollutants as independent variables in this study, as
well as the number of registered vehicles and the number of factories that contribute to air
pollution. Tobacco use or smoking is also one of the factors that cannot be separated when
discussing lung cancer, where smoking itself is associated with various other risk factors
for lung cancer.

Several studies linked socioeconomic status (SES) to lung cancer, with those from
lower socioeconomic backgrounds having the greatest incidence rates [31]. Tobacco use
was responsible for 11.7% of the entire sickness burden in the lowest socioeconomic regions
(individuals who are most socioeconomically disadvantaged), whereas it was only 6.5%
in the highest socioeconomic regions (those who experienced the least disadvantage).
After age was taken into account, the same statistics demonstrated that the burden of
illness caused by tobacco smoking was 2.6 times higher in the lowest socioeconomic
regions than in the highest socioeconomic regions [32]. According to the National Drug
Strategy Household Survey [33], daily smoking is still more common among those in poor
socioeconomic groups, people who live in distant or remote places, and people who are
unable to work or are jobless. De Vogli and Santinello [34] also analyzed the link between
smoking and unemployment, finding that jobless people were 2.78 times (95% confidence
interval (CI) 1.68 to 4.62) more likely to smoke than managers and professionals after
adjusting for higher demographic characteristics.

Marital status is also commonly linked to lung cancer survival, while research on the
particular association between the two produced inconsistent results. Tannenbaum et al. [35]
concluded that lung cancer patients who are married or widowed have a better progno-
sis than those who are never married or who are divorced. On the other hand, another
study discovered that marriage was not a significant predictor of survival [36]. Therefore,
we considered the marital status factor in this study to determine whether there was an
association with the incidence of lung cancer. In addition, we also considered the living
environment data, namely, the rate of people living in one-story buildings, rate of people
living in apartments six stories high or over, rate of days with a PSI of more than 100, avail-
ability rate of public sanitary sewers, rate of heavy-polluted sections, rate of unqualified
drinking water, and rate of proper disposal. According to the US Environmental Protection
Agency (EPA), radon is the second leading cause of lung cancer in nonsmokers and the top
in smokers. Indoors (homes and other buildings) may have high levels of radon, especially
in basements. People in areas with unqualified drinking water (such as high arsenic levels)
have a greater risk of lung cancer too.
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Finally, a total of 20 risk factors (independent variables) used as considerations in
building predictive models of lung cancer incidence rate in Taiwan (dependent variable)
are shown in Table 1.

Table 1. Description of the predictive model variables.

Factor Variable (Notation) Description Data Type

Air pollution

1. Carbon monoxide (CO) Average CO concentration (ppm) Continuous

2. Nitrogen dioxide (NO2) Average NO2 concentration (ppb) Continuous

3. Sulfur dioxide (SO2) Average SO2 concentration (ppb) Continuous

4. Ozone (O3) Average O3 concentration (ppb) Continuous

5. Particulate matter
10 (PM10)

Average PM10 concentration (µg/m3) Continuous

6. Registered vehicles
(VEHICLES)

Total number of registered vehicles, including buses, heavy
trucks, sedans, light trucks, specially constructed vehicles,
and motorcycles.

Discrete

7. Factories (FACTORIES) Total number of factories Discrete

Tobacco use

8. Tobacco consumption per
capita (TOBACCO)

Consumption of tobacco per capita aged 18 and over
(pieces/year) Discrete

9. Smokers rate (SMOKERS) Percentage of smokers from population aged 18 and over Continuous

Socioeconomic status 10. Rate of low-income
persons (LI)

Percentage of low-income persons from total population Continuous

Employment status

11. Percent employed
(EMPLOYED)

Percentage of employed from civilian population aged 15
and over Continuous

12. Unemployment rate
(UNEMPLOYMENT)

Total unemployment rate Continuous

Marital status 13. Divorce status (DIVORCE)
Divorce status of population aged
15 and over Continuous

Living environment

14. Rate of one-story
buildings (ONE)

Number of households living in one-story buildings Continuous

15. Rate of apartments six
stories or over
(APARTMENTS)

Number of households living in apartments six stories
or over Continuous

16. Rate of days with PSI
> 100 (PSI)

Percentage of days measured with PSI > 100 Continuous

17. Availability rate of
public sanitary
sewers (SANITARY)

Percentage of public sanitary sewer availability Continuous

18. Rate of heavily polluted
sections (POLLUTED)

Percentage of heavily polluted sections in the total length
of major rivers Continuous

19. Rate of unqualified
drinking water
(UNQDRINK)

Percentage of unqualified drinking water as tested Continuous

20. Rate of proper refuse
disposal (DISPOSAL)

Percentage of proper refuse disposal Continuous

Dependent variable 21. Lung cancer incidence
rate (LC)

Trachea, bronchus, and lung cancer (C33–C34) incidence
rates per 100,000 in Taiwan Continuous
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2.3. Method

The study procedure is shown in Figure 2. Collecting the required data was carried out
as the first step in this study, then data pre-processing was carried out to fill in the missing
data and standardize the data. Data standardization is known as the process of converting
data into a common format that permits individuals to explore, evaluate, and make use of
it. The term “standardization” refers to the act of placing a variety of variables on a single
scale so that scores can be compared. Data standardization has the ability to eliminate data
utilization roadblocks, such as metadata uncertainties, data transformation challenges, and
missing data. Data transformation has multiple challenges, such as merging data from
various time intervals into a cohesive data collection. Other obstacles may occur as a result
of the requirement to rearrange data into new datasets that are integrated with different
internal structures. These obstacles make data integration harder, which can lead to higher
costs. This procedure can eliminate at least some of these roadblocks, resulting in improved
data flow and machine learning [37–39]. Then, before building a predictive model, feature
selection was carried out to reduce the number of input variables by selecting influential
features (optimal features) and overriding features that had no effect.

Int. J. Environ. Res. Public Health 2022, 19, x 7 of 20 
 

 

 
Figure 2. Research process. 

In this study, we used five supervised learning algorithms to build a predictive 
model, namely, linear regression, SVR, random forest, K-nearest neighbor, and cubist 
model tree. Details on these algorithms are found in Appendix A. The R programming 
language was used to build prediction models. Parameters for each of these machine 
learning algorithms were mostly set to random value combinations generated by the Caret 
package in R. For each algorithm, parameter tuning was automatically performed using 
tuneLength, which is one of the built-in capabilities of the Caret package and implements 
a cross-validation grid search approach. In this study, we used tuneLength = 10, which 
denotes 10 random tuning parameter combinations to try for each tuning parameter. To 
evaluate the predictive models obtained from each algorithm, 5-fold cross-validation was 
used to avoid over-fitting. The RMSE and R-squared results from each fold were then 
averaged and compared to determine which algorithm was the best at building a 
predictive model of lung cancer incidence rate in Taiwan. 

Figure 2. Research process.



Int. J. Environ. Res. Public Health 2022, 19, 8445 7 of 19

In this study, we used five supervised learning algorithms to build a predictive model,
namely, linear regression, SVR, random forest, K-nearest neighbor, and cubist model tree.
Details on these algorithms are found in Appendix A. The R programming language was
used to build prediction models. Parameters for each of these machine learning algorithms
were mostly set to random value combinations generated by the Caret package in R. For
each algorithm, parameter tuning was automatically performed using tuneLength, which
is one of the built-in capabilities of the Caret package and implements a cross-validation
grid search approach. In this study, we used tuneLength = 10, which denotes 10 random
tuning parameter combinations to try for each tuning parameter. To evaluate the predictive
models obtained from each algorithm, 5-fold cross-validation was used to avoid over-fitting.
The RMSE and R-squared results from each fold were then averaged and compared to
determine which algorithm was the best at building a predictive model of lung cancer
incidence rate in Taiwan.

2.4. Feature Selection

In building a predictive model, we considered the multicollinearity issue where
the independent variables are correlated with each other. Multicollinearity causes the
estimator to have a large variance, and as a result, the estimation interval tends to be
larger such that the independent variable is not statistically significant, even though the
coefficient of determination (R-squared) is high, making it difficult to obtain an accurate
estimate [10,40,41]. This condition is often referred to as overfitting, which is the main
concern during feature selection and it must be ensured that it does not occur. A very high
correlation between independent variables results in regression model estimators that are
biased, unstable, and may be far from their predicted values [42].

The variance inflation factor (VIF), which quantifies how much the variance of a
predicted regression coefficient increases when predictors are linked, is one technique to
determine multicollinearity [43–46]. When orthogonal independent variables are linked
linearly, VIF is a factor that indicates how much the variance of the regression estimator
coefficient increases when compared with the orthogonal independent variables. A VIF
value greater than 10 can be used as a strong indicator of multicollinearity. Other criteria
were proposed, such as predictors with VIF values greater than 5 potentially significantly
contributing to multicollinearity and requiring more investigation [47]. Standard errors
for one or more individual partial regression coefficients might be excessively exaggerated
when several of the predictors are engaged in significant linear correlations among them-
selves. In the setting of other explanatory factors, this tends to result in conclusions of a
probable lack of distinctive significance for substantively relevant regressors [44]. As a
technique for measuring probable (near) multicollinearity, the VIF equation is defined as
given in Equation (1).

Vj = 1/
(

1 − R2
j

)
(1)

where R2
j represents the R2 index when the jth explanatory variable is regressed on the

remaining independent variables j = 1, . . . , k [46].
This research had 20 independent variables, some of which had sufficient underlying

data to accurately predict the outcome. However, this set of predictors might include
non-informative factors, which could have an influence on the performance. After the
stepwise regression procedure, a feature selection strategy was used to limit the predictor
set to a smaller set that only contained the useful predictors. A VIF value greater than
5 was used as an indicator of multicollinearity.

2.5. Evaluation Criteria

After building a machine learning model, the model evaluation was undertaken by
using the testing data. K-fold cross-validation is generally used to evaluate the performance
of machine learning models, especially on a limited dataset. In this study, 5-fold cross-
validation was used to reduce the bias that might be caused by random sampling. The



Int. J. Environ. Res. Public Health 2022, 19, 8445 8 of 19

dataset was initially separated into five random disjoint folds with approximately equal
numbers of occurrences. Then, one by one, each fold took on the duty of testing the model
created by the other 4 (k−1) folds. Because the partition was random, the variation in the
accuracy estimates for statistical inference might be rather high. In assessing the fit of the
regression, two statistic values were used, namely, the root-mean-square error (RMSE) and
R-squared. RMSE is the square root variance of the residuals, which indicates the absolute
fit of the predictive model to the observed data. RMSE may be defined as the standard
deviation of the unexplained variance and has the advantage of being in the same units
as the response variable. If the model’s primary goal is prediction, the RMSE is the most
essential fit criteria and a good indicator of how well it predicts the response [48,49]. The
RMSE equation can be seen as Equation (2).

RMSE =

√
∑ (At − Ft)

2

n
(2)

where At is the current value in period t, Ft denotes the projected value in period t, and
n denotes the number of periods utilized in the computation [50]. This RMSE value is a
suitable measure of accuracy for comparing prediction errors of different models or model
configurations for a given variable, with a smaller RMSE value (close to 0) indicating that
the prediction results are more accurate.

R-squared is a measure of how much the interaction of independent factors influences
the value of the dependent variable. R-squared has the benefit of a straightforward scale
that ranges from 0 to 1. The value of R-squared increases proportionally when the regression
model is improved [48].

3. Results and Discussion
3.1. Key Features of Lung Cancer Incidence

Twenty predictor variables that have an association with the incidence of lung cancer
were considered when constructing our predictive model. The correlation plot of these
20 predictor variables with the dependent variable of lung cancer incidence rate (LC) can
be seen in Figure 3. Before building a predictive model, stepwise regression was performed
to analyze all considered predictor variables so that a useful subset of predictors could be
identified. Stepwise regression itself is a method that is used to obtain the best model from
a regression analysis. Then, to ensure that there is no multicollinearity, feature selection is
carried out by calculating the VIF value of each variable in the subset of useful predictors
from the stepwise regression results. In this study, predictor variables with a VIF value
of more than 5 were eliminated. The subset of predictors from the stepwise regression
consisted of 15 predictor variables, while the subset of predictors from the feature selection
based on the VIF value consisted of 8 predictor variables. These two subsets of predictors
can be seen in Table 2 and were used to build the machine learning models.

The results indicated that eight key variables (NO2 concentration, number of registered
vehicles, number of factories, tobacco consumption, percentage of smokers, percentage of
employed, percentage of days measured with PSI more than 100, and percentage of proper
refuse disposal) were included in the selected features based on the VIF value.

On the other hand, the O3 concentration, PM10 concentration, unemployment rate,
percentage of the population with divorce status, and number of households living in a
one-story building were eliminated in the stepwise regression stage, which showed that
these variables were not significantly associated with the dependent variable of lung cancer
incidence rate.

These statements are in line with the results of several studies [51,52] that showed
significant associations between NO2 and NOx concentrations and lung cancer risk. Vehicles
are a major source of particulate matter, nitrogen oxides, carbon monoxide, and other
pollutants, which contribute significantly to air pollution. According to a 2013 assessment
by WHO’s International Agency for Research on Cancer (IARC), outdoor air pollution
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is carcinogenic to humans and is related to an increased incidence of cancer, particularly
lung cancer [53]. Chen et al. [51] concluded that lung cancer risk rises significantly when
people are exposed to traffic-related air pollution. Extensive research data also established
smoking as a major cause of lung cancer and environmental tobacco smoke is regarded
as a probable occupational carcinogen [33,54]. Smokers have a thirty-fold increased risk
compared with nonsmokers of developing cancer [55]. Moon et al. [56] found that lung
cancer incidence was higher in smokers but there was no increased risk of lung cancer with
higher PM10 exposure.

The remaining variables (CO concentration, SO2 concentration, percentage of low-
income persons, number of households living in apartments, percentage of public sanitary
sewers, percentage of heavy-polluted sections, and percentage of unqualified drinking
water) were only included in the stepwise regression stage. This showed that these variables
had high VIF values (greater than 10), meaning that there were associated independent
variables that were highly collinear with the other independent variables in the model
(multicollinearity). Therefore, these remaining variables were removed at the feature
selection stage. As a result, two sets of predictors could be obtained, namely, the predictor
set from the stepwise regression and the predictor set from feature selection based on the
VIF value. The predictor set from the stepwise regression was used to build predictive
models, which were then referred to as models without feature selection. The prediction
models that were generated using the predictor set from feature selection were then referred
to as models with feature selection. Furthermore, the performance of each model was
compared to determine whether eliminating multicollinearity could reduce the error of a
model in this study.

Table 2. Selected variables from the stepwise regression and feature selection.

Factor Predictor Variable Stepwise Regression Feature Selection
Based on the VIF Value

Air pollution

CO V

NO2 V V

SO2 V

O3

PM10

VEHICLES V V

FACTORIES V V

Tobacco use
TOBACCO V V

SMOKERS V V

Socioeconomic status LI V

Employment status EMPLOYED V V

UNEMPLOYMENT

Marital status DIVORCE

Living environment

ONE

APARTMENTS V

PSI V V

SANITARY V

POLLUTED V

UNQDRINK V

DISPOSAL V V

Total number of variables 15 8
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3.2. Benchmarking of Machine Learning Algorithms

Table 3 shows the performance of the models without feature selection and with
feature selection. It could be concluded that all machine learning models with feature
selection in this study were models with strong effect sizes since their R-squared values
were more than 0.7 [57]. This meant that each machine learning model with feature selection
could explain the variation in the dependent variable well and the model fit the observed
data. For machine learning models without feature selection, all models in this study except
the linear regression model also had an R-squared value of more than 0.7, and thus, it can
be said that the models had strong effect sizes.
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Table 3. Performance results of the machine learning models.

Algorithm Fold
Without Feature Selection With Feature Selection

RMSE R-Squared RMSE R-Squared

Linear regression

1 17.612 0.632 22.122 0.682

2 2.341 0.980 5.279 0.875

3 134.232 0.532 24.519 0.827

4 13.419 0.080 6.846 0.960

5 4.911 0.849 10.789 0.374

Average 34.503 0.615 13.911 0.743

Support vector
regression

1 2.144 0.971 1.617 0.994

2 3.712 0.978 5.296 0.919

3 2.447 0.996 5.223 0.941

4 4.055 0.922 4.244 0.984

5 9.489 0.173 9.758 0.182

Average 4.369 0.808 5.228 0.804

Random forest

1 5.402 0.853 4.532 0.885

2 4.599 0.905 5.067 0.895

3 1.732 0.969 2.448 0.935

4 5.086 0.897 4.996 0.885

5 7.365 0.853 7.570 0.868

Average 4.837 0.895 4.922 0.894

K-nearest neighbor

1 2.562 0.946 7.215 0.974

2 6.008 0.749 6.008 0.842

3 3.925 0.875 3.516 0.923

4 4.282 0.913 6.862 0.669

5 10.792 0.590 6.393 0.660

Average 5.514 0.814 5.999 0.814

Cubist model tree

1 5.817 0.831 6.524 0.853

2 3.508 0.910 2.712 0.971

3 5.615 0.869 2.607 0.988

4 7.451 0.550 2.897 0.998

5 2.007 0.987 1.808 0.990

Average 4.880 0.829 3.310 0.960

However, to determine the best machine learning model, it was necessary to consider
the stability of the model’s performance at each fold. The fairly large R-squared range
between folds in some models (e.g., the linear regression without feature selection) indicated
that the performance of the model was not constant, meaning that the algorithms were not
able to build a good predictive model for the data used. Table 3 indicates that the cubist
model tree with feature selection gave the lowest mean RMSE value when predicting the
incidence rate of lung cancer. The RMSE average value of the fivefold cross-validation
using the cubist model tree with feature selection was 3.310 with an R-squared of 0.960,
meaning that 96.0% of the variation in the dependent variable (lung cancer incidence rate)
could be explained by the model. In addition, the cubist model tree with feature selection
had a fairly constant R-squared value for each fold; therefore, it could be concluded that
feature selection was able to provide a predictive model with a lower error value.
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3.3. Discussion

A metric, such as the accuracy of prediction, cannot fully describe the majority of
real-world tasks, and thus, raises the need for interpretability [58]. Interpretability itself
is the extent to which we can understand the explanation for a decision [59]. In addition
to knowing that a predictive model performs well, knowing why a decision or prediction
was made can help us to learn more about the problem, the data, and the reasons why
a model might fail [60]. However, not all models can be interpreted easily, such as a
“black box” model, which is a term for a model that is complex enough that it cannot be
interpreted directly. Difficulties in understanding and interpreting a “black box” model
can undermine confidence in the model and limit its use in certain fields, including health
and medicine [16,61]. The random forest model is one of the “black box” models in which
information about the relationships between model variables and outputs is hidden in the
model structure [62].

A random forest model comprises a huge number of deep trees, each of which is
trained on bagged data using random feature selection, making it hard to examine each tree
individually to acquire a complete understanding of the random forest model’s decision
process. One approach to interpreting and gaining insight into a “black box” model is to
calculate the variable importance that represents the statistical significance of each variable
used in relation to its effect on the resulting model. Quantifying the importance of features
in a machine learning model helps to understand the global contribution of each feature to
a model’s predictions.

The results of this study showed that the cubist model with feature selection (RMSE:
3.310, R-squared: 0.960) was the best model for predicting the incidence rate of lung cancer
in this study, followed by the random forest model without feature selection (RMSE: 4.837,
R-squared: 0.895) and the random forest model with feature selection (RMSE: 4.922, R-
squared: 0.894). These three models showed fairly constant performance results for each
fold, indicating that the machine learning algorithms were not able to build good predictive
models from the data used. The following cubist model tree with feature selection generated
in this study can be considered when predicting the lung cancer incidence rate in Taiwan
using standardized data (Figure 4).
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The cubist model tree with feature selection above consists of two rules, where the
first rule gives a greater contribution than the other rule to the accuracy of the model on
the training data. When all conditions in a rule are met, the linear model in that rule is
used to calculate the prediction of the lung cancer incidence rate. The first rule of the above
model can be interpreted as saying that among all training cases, there were 17 cases that
satisfied the condition of a standardized smokers rate greater than −0.124 and their lung
cancer incidence rates ranged from 19.8 to 46 with an average value of 33.112. The model
discovered that the target outcome value of these or other cases satisfying the condition
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could be modeled using the linear model formula in the first rule with an estimated error
(est err) of 12.032.

Furthermore, it can be seen that “SMOKERS” (percentage of smokers), “NO2” (average
NO2 concentration), “EMPLOYED” (percentage of employed), and “FACTORIES” (number
of factories) variables contribute to the model, meaning that we could consider these
variables as important risk factors of lung cancer incidence in Taiwan. The contribution
of the “SMOKERS” (percentage of smokers) variable to the cubist model tree with feature
selection was in line with the general public knowledge and, therefore, supported the
reliability of this model. The World Health Organization highlights that tobacco smoking is
the most common cause of lung cancer, accounting for more than two-thirds of all lung
cancer deaths worldwide [63]. Quitting smoking can reduce the risk of lung cancer to about
half of a smoker’s risk after 10 years of quitting smoking, and about 90% of lung cancers
can be avoided by eliminating tobacco use [64].

Regarding the association between lung cancer and NO2 exposure, Hamra et al. [65]
collected 20 relevant studies for analysis and the results showed that for every 10 µg/m3

increase in NO2 exposure, the risk of lung cancer increased by 4% (95% CI: 1%, 8%). One of
the sources of NO2 is vehicles, where large diesel vehicles as mobile pollution sources are
one of the main sources of NO2. Apart from NO2, vehicles also produce other pollutants,
such as particulate matter, nitrogen oxides, and carbon monoxide. Therefore, exposure to
high doses of NO2 and other pollutants may occur in areas with high traffic flow. Some
other interesting variables, namely, the “EMPLOYED” (percentage of employed) variable
and the “FACTORIES” (number of factories) variable can be related to the incidence of lung
cancer via exposure in the work environment [1,25,66] or work stress [67].

In addition, the random forest model without feature selection and the random forest
model with feature selection, which were also considered among the best models in this
study, could therefore be interpreted to support the interpretation of the most contributing
variables. Visualization of variable importance of features used in the random forest model
without feature selection and the random forest model with feature selection is shown in
Figure 5.
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Figure 5 indicates that the percentage of smokers is the most important variable for
both the random forest model with feature selection and the random forest model without
feature selection. This supported the claim that smoking is the most important risk factor
for lung cancer, and other data supporting this association are also very convincing [68,69].
It could be concluded that the random forest model with feature selection and the random
forest model without feature selection were quite reliable at predicting the lung cancer
incidence rate in this study.

Furthermore, the proposed predictive model can facilitate researchers and experts
when analyzing and estimating lung cancer incidence rates to enable the development
of more effective preventative measures. The model enables an overview of how lung
cancer incidence has changed over time in a population from a variety of aspects. Medical
experts, such as pharmaceutical and biotech companies, rely on incidence rates when they
apply to the Food and Drug Administration (FDA) for permission to commercialize the
drugs; therefore, the model can assist them in anticipating future incidents and making
appropriate plans. Further, the predicted outcomes can be utilized to raise public awareness
about lung cancer and how to prevent it.

4. Conclusions
4.1. Summary

The high incidence of lung cancer as one of the deadliest diseases in the world means
that lung cancer needs more attention. The difficulty in obtaining complete and reliable
medical data, including lung cancer data, prompted us to build predictive models of
the lung cancer incidence rate. In this study, we built models to predict the lung cancer
incidence rate in Taiwan using linear regression, support vector regression, random forest,
K-nearest neighbor, and cubist model tree. Various risk factors were also considered when
building the prediction models, such as air pollution, tobacco use, socioeconomic status,
employment status, marital status, and living environment. The consideration was that
historical medical data normally used for forecasting, including the lung cancer incidence
rate data, are very difficult to obtain and expensive. Feature selection based on the VIF
value was performed to eliminate highly correlated variables, and fivefold cross-validation
was applied to evaluate the prediction model. The results showed that all models, except
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the linear regression model without feature selection, fit the observed data well. The cubist
model tree with feature selection, which had a fairly constant performance at each fold,
was the best model with the lowest RMSE and the highest R-squared, followed by the
random forest model without feature selection and the random forest model with feature
selection. Through these predictive models, we also found that apart from smoking, the
average NO2 concentration, percentage of employed, and number of factories were also
important factors that had a significant impact on the incidence of lung cancer in Taiwan.
Therefore, reducing the risk of these factors in order to reduce the incidence of lung cancer
is an urgent issue.

4.2. Limitation

For future research, it is suggested that researchers consider other risk factors of
lung cancer, such as secondhand smoke; dietary habits; and exposure to radon, asbestos,
or other cancer-causing agents. Several chronic diseases related to lung cancer are also
suggested to be considered. Analyzing other types of cancer can also be a challenge for
researchers. Future research may implement more machine learning algorithms or deep
learning algorithms to build predictive models of the incidence rate of lung cancer or other
types of cancer. The proposed model was from the whole-country viewpoint. This is a
limitation if we want to use this calculation for one hospital or one country region. A
regional modeling approach is recommended if the local features and data are available.

Author Contributions: Conceptualization, K.-M.W.; Formal analysis, C.A.H.; Investigation, K.-M.W.;
Methodology, K.-M.W. and K.-H.C.; Supervision, S.-H.T. and K.-J.W.; Validation, K.-M.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets analyzed during the current study are available from the
corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Linear regression: It is one of the most popular and frequently used data processing
methods [70]. This method aims to identify the close cause-and-effect relationships that
occur between variables and can be used to make predictions. One of the advantages of
this method is that it is quite simple and easy to understand but still produces powerful
insights. In practice, the most intriguing situations contain numerous predictors and
a single dependent variable, necessitating the estimation of a multiple linear regression
model. It is a statistical approach that models a dependent variable (Y) as a function of more
than one independent variable (X1, X2, X3, . . . , Xn). The multiple linear regression equation
is written as Y = f (X1, X2, X3, . . . , Xn) = β0 + β1X1 + β2X2 + β3X3 + . . . + βnXn + ε [50].
β0 is the intercept and the other βi’s are the slope terms associated with the corresponding
independent variables (i.e., the Xi’s). The population error term (ε) in this model is defined
as the difference between the actual Y and the one predicted by the regression model (Ŷ).

Support vector regression: It is one of the most widely used machine learning methods
for predictive problems in the medical field, such as incidence rate and survivability [39].
SVR is a method for regression cases that was developed from a popular machine learning
method that has been used to solve classification cases, namely, the support vector machine
(SVM), which was first identified in 1992 by Vladimir Vapnik and his colleagues [71]. The
function of SVR is to discover a function as a hyperplane (separation line) in the form of a
regression function that fits all input data with an error and makes it as thin as possible [72].
SVR minimizes the error by maximizing the margin of the hyperplane, it creates subclasses
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from the training data (support vectors); and tries to minimize the distance between the
observed data and predicted data in order to improve the performance [15]. In this study,
the support vector machine with a radial basis function (RBF) kernel was used. The cost
parameter and the RBF kernel parameter sigma were tuned in this model.

K-nearest neighbor (KNN): It is a machine learning algorithm that is called a lazy
learning algorithm because of its cheap processing costs and ease of use [73]. Because of
its simplicity and tolerance for high-dimensional and imperfect data, the KNN method is
one of the most widely used machine learning algorithms [74,75]. This algorithm is based
solely on the idea that objects that are close to each other will have similar characteristics;
therefore, if the characteristic features of one of the objects are known, then its nearest
neighbors can also be predicted [76]. KNN is a non-parametric method for classification
or regression, with the input consisting of the k closest training instances in the feature
space, but the output varies depending on whether the method is used for classification
or regression. KNN saves the complete training dataset and searches it to discover k data
points in the training set that are the most comparable to the data point to be categorized
for generating predictions. As a result, there is no model other than the raw training dataset
and the sole computation is querying this dataset [77]. In KNN regression, the response
value is determined as the weighted sum of all k neighbors’ replies, with the weight being
inversely proportional to the distance from the input record. The Euclidean distance is the
name for this measurement. Regarding the R terms in this model, k was tested at {2:10}
using the Caret package.

Random forest: It is a machine learning algorithm that is commonly used to deal
with classification and regression problems because of its ease of use and flexibility [53].
This algorithm is able to produce better predictor performance compared with traditional
regression or other statistical procedures, while it also protects against overfitting and
detects interactions between predictors [37]. The random forest method is an extension of
the bagging method as it uses both bagging and randomness features. It trains each tree
with a random sample of the main dataset using row sampling and feature sampling with
replacement to create a forest of uncorrelated decision trees. Basically, the random forest
method combines the outputs of several decision trees, each with high variance, to achieve
a single result with low variance [78]. A weak relationship between residuals and small
error trees are both required for accurate regression forests. For further details about the
random forest method, please refer to Breiman [79]. This study used the “rf” method from
the Caret package that tunes over the mtry parameter (the number of variables picked at
random in each split).

Cubist model tree: It is an extension of Quinlan’s M5 model tree in which corrections
are added to the training set based on the nearest neighbors [80]. This powerful decision
tree learner is used to generate rule-based models that can produce accurate and clear
predictions in regression tasks. The cubist model generally gives better results than basic
approaches, such as multivariate linear regression, and the results given are also easy to
understand [81]. The balance between interpretive ability and predictive power offered by
the cubist model motivated us to consider this model for this study. The cubist model was
shown to be more promising in terms of deciphering complicated interactions between
variables and is superior in terms of execution time [15,82]. In this model, a tree is grown,
where the branches can be thought of as an “if-then” set of rules, and the terminal leaves
contain predictive linear regression models. Each branch of the tree has its intermediate
linear model, where these models are based on the predictors used in the previous split. A
linear regression prediction model at the tree terminal node will be smoothed by considering
the predictions from the linear model at the previous tree node (this happens recursively
up the tree as well). Rules in the tree are pruned and/or merged for simplicity, which
prefers pathways from the top to the bottom of the tree. For further details on the cubist
model, please refer to Kuhn et al. [83]. The cubist model incorporates boosting via training
committees (typically more than one), which is analogous to the boosting approach of
successively growing trees with altered weights [82]. In the cubist model, the number of
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neighbors is used to modify the rule-based prediction [84]. In this study, the term committees
was tested at 10 and the term neighbors was tested at {0:9} using the Caret package.

References
1. Stayner, L.; Bena, J.; Sasco, A.J.; Smith, R.; Steenland, K.; Kreuzer, M.; Straif, K. Lung cancer risk and workplace exposure to

environmental tobacco smoke. Am. J. Public Health 2007, 97, 545–551. [CrossRef] [PubMed]
2. Taiwan’s Cancer Death Clock 3 Seconds Slower in 2020. Focus Taiwan—CNA English News. Available online: https://

focustaiwan.tw/society/202106180017 (accessed on 18 June 2021).
3. Lung Cancer Screening Study in East Asia Successful at Identifying Early-Stage Disease. IASLC Lung Cancer News. Retrieved

2022. 2021. Available online: https://www.ilcn.org/lung-cancer-screening-study-in-east-asia-successful-at-identifying-early-
stage-disease/ (accessed on 3 January 2022).

4. Malhotra, J.; Malvezzi, M.; Negri, E.; La Vecchia, C.; Boffetta, P. Risk factors for lung cancer worldwide. Eur. Respir. J. 2016, 48,
889–902. [CrossRef] [PubMed]

5. Environmental Protection Administration; Executive Yuan, R.O.C. (n.d.). Environmental Protection Administration, EY-Air
Pollution Statistics. Retrieved 2022. Available online: https://www.epa.gov.tw/eng/B19FC7AF2E9ACA66 (accessed on
3 January 2022).

6. Environmental Protection Administration; Executive Yuan, R.O.C. (n.d.). Introduction to Local Monitoring-Taiwan Air Quality
Monitoring Network. Retrieved 2022. Available online: https://airtw.epa.gov.tw/ENG/EnvMonitoring/Local/LocalBack.aspx
(accessed on 3 January 2022).

7. Coleman, N.C.; Burnett, R.T.; Higbee, J.D.; Lefler, J.S.; Merrill, R.M.; Ezzati, M.; Marshall, J.D.; Kim, S.Y.; Bechle, M.;
Robinson, A.L.; et al. Cancer mortality risk, fine particulate air pollution, and smoking in a large, representative cohort of US
adults. Cancer Causes Control 2020, 31, 767–776. [CrossRef] [PubMed]

8. Hvidtfeldt, U.A.; Severi, G.; Andersen, Z.J.; Atkinson, R.; Bauwelinck, M.; Bellander, T.; Boutron-Ruault, M.-C.; Brandt, J.;
Brunekreef, B.; Cesaroni, G.; et al. Long-term low-level ambient air pollution exposure and risk of lung cancer—A pooled analysis
of 7 European cohorts. Environ. Int. 2021, 146, 106249. [CrossRef] [PubMed]

9. Kim, H.B.; Shim, J.Y.; Park, B.; Lee, Y.J. Long-Term Exposure to Air Pollutants and Cancer Mortality: A Meta-Analysis of Cohort
Studies. Int. J. Environ. Res. Public Health 2018, 15, 2608. [CrossRef]

10. Wang, K.J.; Lee, C.M.; Hu, G.C.; Wang, K.M. Stroke to dementias associated with environmental risks—A semi-Markov model.
Int. J. Environ. Res. Public Health 2020, 17, 1944. [CrossRef]

11. Rahib, L.; Wehner, M.R.; Matrisian, L.M.; Nead, K.T. Estimated projection of US cancer incidence and death to 2040. JAMA Netw.
Open 2021, 4, e214708. [CrossRef]

12. Jakobsen, E.; Olsen, K.E.; Bliddal, M.; Hornbak, M.; Persson, G.F.; Green, A. Forecasting lung cancer incidence, mortality, and
prevalence to Year 2030. BMC Cancer 2021, 21, 985. [CrossRef]

13. Kelleher, J.D.; Namee, M.B.; D’Arcy, A. Fundamentals of Machine Learning for Predictive Data Analytics, second edition. In
Algorithms, Worked Examples, and Case Studies, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2020.

14. Sekeroglu, B.; Tuncal, K. Prediction of cancer incidence rates for the European continent using machine learning models. Health
Inform. J. 2021, 27, 146045822098387. [CrossRef]

15. Tuncal, K.; Sekeroglu, B.; Ozkan, C. Lung Cancer Incidence Prediction Using Machine Learning Algorithms. J. Adv. Inf. Technol.
2020, 11, 91–96. [CrossRef]

16. Louppe, G. Understanding Random Forests: From Theory to Practice. arXiv 2014, arXiv:1407.7502.
17. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN

estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

18. Health Promotion Administration (HPA). Research & Statistic. Retrieved 2022. Available online: https://www.hpa.gov.tw/
EngPages/List.aspx?nodeid=1042 (accessed on 3 January 2022).

19. Health Promotion Administration (HPA). Introduction. Retrieved 2022. 2016. Available online: https://www.hpa.gov.tw/
EngPages/Detail.aspx?nodeid=1046&pid=5892 (accessed on 3 January 2022).

20. Hsu, J.C.; Wei, C.F.; Yang, S.C.; Lin, P.C.; Lee, Y.C.; Lu, C.Y. Lung cancer survival and mortality in Taiwan following the initial
launch of targeted therapies: An interrupted time series study. BMJ Open 2020, 10, e033427. [CrossRef]

21. Everington, K. Taiwan has 15th Highest Lung Cancer Rate in World. Taiwan News, 28 November 2019. Available online:
https://www.taiwannews.com.tw/en/news/3825780 (accessed on 28 November 2019).

22. International Agency for Research on Cancer. IARC: Outdoor Air Pollution a Leading Environmental Cause of Cancer Deaths.
Available online: https://www.iarc.who.int/wp-content/uploads/2018/07/pr221_E.pdf (accessed on 17 October 2013).

23. Ministry of Transportation and Communications, R.O.C. (n.d.). A Brief Introduction to the Department of Statistics. Retrieved
2022. Available online: https://www.motc.gov.tw/en/home.jsp?id=607&parentpath=0,154 (accessed on 3 January 2022).

24. Ministry of Transportation and Communications, R.O.C. (n.d.). Annual Transportation Report. Retrieved 2022. Available online:
https://www.motc.gov.tw/en/home.jsp?id=610&parentpath=0,154 (accessed on 3 January 2022).

25. Garshick, E.; Laden, F.; Hart, J.E.; Rosner, B.; Davis, M.E.; Eisen, E.A.; Smith, T.J. Lung cancer and vehicle exhaust in trucking
industry workers. Environ. Health Perspect. 2008, 116, 1327–1332. [CrossRef]

http://doi.org/10.2105/AJPH.2004.061275
http://www.ncbi.nlm.nih.gov/pubmed/17267733
https://focustaiwan.tw/society/202106180017
https://focustaiwan.tw/society/202106180017
https://www.ilcn.org/lung-cancer-screening-study-in-east-asia-successful-at-identifying-early-stage-disease/
https://www.ilcn.org/lung-cancer-screening-study-in-east-asia-successful-at-identifying-early-stage-disease/
http://doi.org/10.1183/13993003.00359-2016
http://www.ncbi.nlm.nih.gov/pubmed/27174888
https://www.epa.gov.tw/eng/B19FC7AF2E9ACA66
https://airtw.epa.gov.tw/ENG/EnvMonitoring/Local/LocalBack.aspx
http://doi.org/10.1007/s10552-020-01317-w
http://www.ncbi.nlm.nih.gov/pubmed/32462559
http://doi.org/10.1016/j.envint.2020.106249
http://www.ncbi.nlm.nih.gov/pubmed/33197787
http://doi.org/10.3390/ijerph15112608
http://doi.org/10.3390/ijerph17061944
http://doi.org/10.1001/jamanetworkopen.2021.4708
http://doi.org/10.1186/s12885-021-08696-6
http://doi.org/10.1177/1460458220983878
http://doi.org/10.12720/jait.11.2.91-96
http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
https://www.hpa.gov.tw/EngPages/List.aspx?nodeid=1042
https://www.hpa.gov.tw/EngPages/List.aspx?nodeid=1042
https://www.hpa.gov.tw/EngPages/Detail.aspx?nodeid=1046&pid=5892
https://www.hpa.gov.tw/EngPages/Detail.aspx?nodeid=1046&pid=5892
http://doi.org/10.1136/bmjopen-2019-033427
https://www.taiwannews.com.tw/en/news/3825780
https://www.iarc.who.int/wp-content/uploads/2018/07/pr221_E.pdf
https://www.motc.gov.tw/en/home.jsp?id=607&parentpath=0,154
https://www.motc.gov.tw/en/home.jsp?id=610&parentpath=0,154
http://doi.org/10.1289/ehp.11293


Int. J. Environ. Res. Public Health 2022, 19, 8445 18 of 19

26. Ministry of Economic Affairs, R.O.C. (n.d.). Industrial Production, Shipment & Inventory Statistics Survey—Industrial Statistics.
Retrieved 2022. Available online: https://dmz26.moea.gov.tw/GMWeb/investigate/InvestigateDB.aspx?lang=E (accessed on
3 January 2022).

27. Ministry of Economic Affairs, R.O.C. (n.d.). Missions. Retrieved 2022. Available online: https://www.moea.gov.tw/MNS/dos_
e/content/Content.aspx?menu_id=6761 (accessed on 3 January 2022).

28. Executive Yuan, R.O.C. (n.d.). Directorate General of Budget, Accounting and Statistics. National Statistics: Taiwan, China,
Retrieved 2022. Available online: https://eng.stat.gov.tw/mp.asp?mp=5 (accessed on 3 January 2022).

29. Kang, H. The prevention and handling of the missing data. Korean J. Anesthesiol. 2013, 64, 402. [CrossRef]
30. Krishna, M.; Gopal Durgaprasad, N.; Kanmani, S.; Deepa Reddy, G.; Sravan; Reddy, D. Revanth. In Comparative Analysis Of

Different Imputation Techniques For Handling Missing Dataset; Blue Eyes Intelligence Engineering & Sciences Publication: Bhopal,
India, 2019; Volume 8, Issue 7, pp. 347–351.

31. Ekberg-Aronsson, M.; Nilsson, P.M.; Nilsson, J.K.; Pehrsson, K.; Löfdahl, C.G. Socio-economic status and lung cancer risk
including histologic subtyping—A longitudinal study. Lung Cancer 2006, 51, 21–29. [CrossRef]

32. Australian Institute of Health and Welfare. Burden of Tobacco Use in Australia: Australian Burden of Disease Study 2015; Australian
Institute of Health and Welfare Cat: Darlinghurst, Australia, 2019; No. BOD 20.

33. National Toxicology Program. Tobacco-Related Exposures, Report on Carcinogens, 4th ed.; National Institute of Environmental Health
and Safety: Triangle Park, NC, USA, 2016.

34. De Vogli, R.; Santinello, M. Unemployment and smoking: Does psychosocial stress matter? Tob. Control 2005, 14, 389–395.
[CrossRef]

35. Tannenbaum, S.L.; Zhao, W.; Koru-Sengul, T.; Miao, F.; Lee, D.; Byrne, M.M. Marital status and its effect on lung cancer survival.
SpringerPlus 2013, 2, 504. [CrossRef]

36. Siddiqui, F.; Bae, K.; Langer, C.J.; Coyne, J.C.; Gamerman, V.; Komaki, R.; Choy, H.; Curran, W.J.; Watkins-Bruner, D.; Movsas, B.
The influence of gender, race, and marital status on survival in lung cancer patients: Analysis of Radiation Therapy Oncology
Group trials. J. Thorac. Oncol. 2010, 5, 631–639. [CrossRef]

37. Fife, D.A.; D’Onofrio, J. Common, Uncommon, and Novel Applications of Random Forest in Psychological Research. 2021.
Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiB9sO88tn4
AhVLUPUHHY6YD0QQFnoECAUQAQ&url=https%3A%2F%2Fpsyarxiv.com%2Febsmr%2Fdownload&usg=AOvVaw0-8
ltV7dAz9Asx6Vhf5uDi (accessed on 3 January 2022).

38. Gal, M.; Rubinfeld, D.L. Data Standardization. SSRN Electron. J. 2018, 94, 737. [CrossRef]
39. Mahesh, B. Machine learning algorithms—A review. Int. J. Sci. Res. 2020, 9, 381–386.
40. Walton, J.T. Subpixel urban land cover estimation. Photogramm. Eng. Remote Sens. 2008, 74, 1213–1222. [CrossRef]
41. Widarjono, A. Ekonometrika Teori dan Aplikasi untuk Ekonomi dan Bisnis [Econometrics Theory and Application to Economics and

Business]; Ekonisia FE UII: Yogyakarta, Indonesia, 2007.
42. Farahani, A.; Rahiminezhed, H.; Same, A.L.; Immannezhed, K. A Comparison of Partial Least Square (PLS) and Ordinary Least

Square (OLS) regressions in predicting of couples mental health based on their communicational patterns. Procedia Soc. Behav. Sci.
2010, 5, 1459–1463. [CrossRef]

43. Akinwande, M.O.; Dikko, H.G.; Samson, A. Variance inflation factor: As a condition for the inclusion of suppressor variable(s) in
regression analysis. Open J. Stat. 2015, 5, 754–767. [CrossRef]

44. Draper, N.R.; Smith, H. Applied Regression Analysis; Wiley: New York, NY, USA, 2012.
45. Marcoulides, K.M.; Raykov, T. Evaluation of variance inflation factors in regression models using latent variable modeling

methods. Educ. Psychol. Meas. 2018, 79, 874–882. [CrossRef]
46. Wooldridge, J.M. Introductory Econometrics. A Modern Approach; Cengage Learning: Boston, MA, USA, 2015.
47. Chatterjee, S.; Simonoff, J.S. Handbook of Regression Analysis; Wiley: New York, NY, USA, 2013.
48. Grace-Martin, K. Assessing the Fit of Regression Models. The Analysis Factor. Retrieved 2022. 2013. Available online:

https://www.theanalysisfactor.com/assessing-the-fit-of-regression-models/ (accessed on 3 January 2022).
49. Sloboda, B.W. Transportation Statistics; J. Ross Publishing: Richmond, VA, USA, 2009.
50. Wilson, H.J.; Keating, B.; John Galt Solutions, Inc. Business Forecasting with Business ForecastX, 6th ed.; McGraw-Hill/Irwin:

New York, NY, USA, 2008.
51. Chen, G.; Wan, X.; Yang, G.; Zou, X. Traffic-related air pollution and lung cancer: A meta-analysis. Thorac. Cancer 2015, 6, 307–318.

[CrossRef]
52. Huang, Y.; Zhu, M.; Ji, M.; Fan, J.; Xie, J.; Wei, X.; Jiang, X.; Xu, J.; Chen, L.; Yin, R.; et al. Air pollution, genetic factors, and the risk

of lung cancer: A prospective study in the UK biobank. Am. J. Respir. Crit. Care Med. 2021, 204, 817–825. [CrossRef]
53. IBM Cloud Education. Random Forest. IBM. Retrieved 2022. 2020. Available online: https://www.ibm.com/cloud/learn/

random-forest (accessed on 3 January 2022).
54. Blot, W.; Fraumeni, J. Cancers of the Lung and Pleura. Cancer Epidemiology and Prevention; Schottenfeld, D., Fraumeni, J.F., Eds.;

Oxford University Press: New York, NY, USA, 1996; pp. 637–665.
55. Youlden, D.R.; Cramb, S.M.; Baade, P.D. The international epidemiology of lung cancer: Geographical distribution and secular

trends. J. Thorac. Oncol. 2008, 3, 819–831. [CrossRef]

https://dmz26.moea.gov.tw/GMWeb/investigate/InvestigateDB.aspx?lang=E
https://www.moea.gov.tw/MNS/dos_e/content/Content.aspx?menu_id=6761
https://www.moea.gov.tw/MNS/dos_e/content/Content.aspx?menu_id=6761
https://eng.stat.gov.tw/mp.asp?mp=5
http://doi.org/10.4097/kjae.2013.64.5.402
http://doi.org/10.1016/j.lungcan.2005.08.014
http://doi.org/10.1136/tc.2004.010611
http://doi.org/10.1186/2193-1801-2-504
http://doi.org/10.1097/JTO.0b013e3181d5e46a
https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiB9sO88tn4AhVLUPUHHY6YD0QQFnoECAUQAQ&url=https%3A%2F%2Fpsyarxiv.com%2Febsmr%2Fdownload&usg=AOvVaw0-8ltV7dAz9Asx6Vhf5uDi
https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiB9sO88tn4AhVLUPUHHY6YD0QQFnoECAUQAQ&url=https%3A%2F%2Fpsyarxiv.com%2Febsmr%2Fdownload&usg=AOvVaw0-8ltV7dAz9Asx6Vhf5uDi
https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiB9sO88tn4AhVLUPUHHY6YD0QQFnoECAUQAQ&url=https%3A%2F%2Fpsyarxiv.com%2Febsmr%2Fdownload&usg=AOvVaw0-8ltV7dAz9Asx6Vhf5uDi
http://doi.org/10.2139/ssrn.3326377
http://doi.org/10.14358/PERS.74.10.1213
http://doi.org/10.1016/j.sbspro.2010.07.308
http://doi.org/10.4236/ojs.2015.57075
http://doi.org/10.1177/0013164418817803
https://www.theanalysisfactor.com/assessing-the-fit-of-regression-models/
http://doi.org/10.1111/1759-7714.12185
http://doi.org/10.1164/rccm.202011-4063OC
https://www.ibm.com/cloud/learn/random-forest
https://www.ibm.com/cloud/learn/random-forest
http://doi.org/10.1097/JTO.0b013e31818020eb


Int. J. Environ. Res. Public Health 2022, 19, 8445 19 of 19

56. Moon, D.H.; Kwon, S.O.; Kim, S.Y.; Kim, W.J. Air pollution and incidence of lung cancer by histological type in Korean adults: A
Korean national health insurance service health examinee cohort study. Int. J. Environ. Res. Public Health 2020, 17, 915. [CrossRef]

57. Moore, D.S.; Notz, W.; Fligner, M.A. The Basic Practice of Statistics; W.H. Freeman and Company: New York, NY, USA, 2013.
58. Doshi-Velez, F.; Kim, B. Towards A Rigorous Science of Interpretable Machine Learning. arXiv 2017, arXiv:1702.08608.
59. Nandi, A.; Pal, A.K. Interpreting Machine Learning Models: Learn Model Interpretability and Explainability Methods; Apress:

New York, NY, USA, 2022.
60. Molnar, C. 3.1 Importance of Interpretability|Interpretable Machine Learning. Interpretable Machine Learning. Retrieved 2022.

2022. Available online: https://christophm.github.io/interpretable-ml-book/interpretability-importance.html (accessed on 3
January 2022).

61. Aria, M.; Cuccurullo, C.; Gnasso, A. A comparison among interpretative proposals for random forests. Mach. Learn. Appl. 2021,
6, 100094. [CrossRef]

62. Petch, J.; Di, S.; Nelson, W. Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology.
Can. J. Cardiol. 2022, 38, 204–213. [CrossRef] [PubMed]

63. World Health Organization. Cancer. Retrieved 2022. 2021. Available online: https://www.who.int/news-room/fact-sheets/
detail/cancer (accessed on 3 January 2022).

64. U.S. Department of Health and Human Services. Smoking Cessation A Report of the Surgeon General. Atlanta, GA: U.S.
Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease
Prevention and Health Promotion, Office on Smoking and Health. 2020. Available online: https://www.hhs.gov/sites/default/
files/2020-cessation-sgr-full-report.pdf (accessed on 3 January 2022).

65. Hamra, G.B.; Laden, F.; Cohen, A.J.; Raaschou-Nielsen, O.; Brauer, M.; Loomis, D. Lung cancer and exposure to nitrogen Dioxide
and traffic: A systematic review and meta-analysis. Environ. Health Perspect. 2015, 123, 1107–1112. [CrossRef] [PubMed]

66. Shankar, A.; Dubey, A.; Saini, D.; Singh, M.; Prasad, C.P.; Roy, S.; Bharati, S.J.; Rinki, M.; Singh, N.; Seth, T.; et al. Environmental
and occupational determinants of lung cancer. Transl. Lung Cancer Res. 2019, 8, S31–S49. [CrossRef] [PubMed]

67. Yang, T.; Qiao, Y.; Xiang, S.; Li, W.; Gan, Y.; Chen, Y. Work stress and the risk of cancer: A meta-analysis of observational studies.
Int. J. Cancer 2019, 144, 2390–2400. [CrossRef] [PubMed]

68. O’Keeffe, L.M.; Taylor, G.; Huxley, R.R.; Mitchell, P.; Woodward, M.; Peters, S.A.E. Smoking as a risk factor for lung cancer in
women and men: A systematic review and meta-analysis. BMJ Open 2018, 8, e021611. [CrossRef]

69. Proctor, R.N. Tobacco and the global lung cancer epidemic. Nat. Rev. Cancer 2001, 1, 82–86. [CrossRef]
70. Sarker, I.H. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2021, 2, 160.

[CrossRef]
71. Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995.
72. Schölkopf, B.; Smola, A.J. Learning with Kernels; MIT Press: Cambridge, MA, USA, 2002.
73. Alkhatib, K.; Najadat, H.; Hmeidi, I.; Shatnawi, M.K. Stock Price Prediction Using K-Nearest Neighbor (kNN) Algorithm. Int. J.

Bus. Humanit. Technol. 2013, 3, 32–44.
74. Ban, T.; Zhang, R.; Pang, S.; Sarrafzadeh, A.; Inoue, D. Referential kNN regression for financial time series forecasting. In

International Conference on Neural Information Processing; Springer: Berlin/Heidelberg, Germany, 2013; pp. 601–608.
75. Lin, A.; Shang, P.; Feng, G.; Zhong, B. Application of empirical mode decomposition combined with K-nearest neighbors approach

in financial time series forecasting. Fluct. Noise Lett. 2012, 11, 1250018. [CrossRef]
76. Taunk, K.; De, S.; Verma, S.; Swetapadma, A. A Brief Review of Nearest Neighbor Algorithm for Learning and Classification.

In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India,
15–17 May 2019.

77. Al-Dosary, N.M.N.; Al-Hamed, S.A.; Aboukarima, A.M. K-nearest Neighbors method for prediction of fuel consumption in
tractor-chisel plow systems. Eng. Agrícola 2019, 39, 729–736. [CrossRef]

78. Jabin, I.; Rahman, M.M. Predicting lung cancer survivability: A machine learning regression model. Netw. Biol. 2021, 11, 68–81.
79. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
80. Quinlan, J. Combining instance-cased and model-based learning. In Proceedings of the Tenth International Conference on

Machine Learning, Amherst, MA, USA, 27–29 July 1993; pp. 236–243.
81. Information on Cubist. Data Mining with Cubist. 2020. Available online: https://rulequest.com/cubist-info.html (accessed on

3 January 2022).
82. Zhou, J.; Li, E.; Wei, H.; Li, C.; Qiao, Q.; Armaghani, D.J. Random forests and cubist algorithms for predicting shear strengths of

rockfill materials. Appl. Sci. 2019, 9, 1621. [CrossRef]
83. Kuhn, M.; Weston, S.; Keefer, C.; Coulter, N. Cubist Models for Regression. 2012. Available online: https://mran.

revolutionanalytics.com/snapshot/2016-01-01/web/packages/Cubist/vignettes/cubist.pdf (accessed on 3 January 2022).
84. Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013.

http://doi.org/10.3390/ijerph17030915
https://christophm.github.io/interpretable-ml-book/interpretability-importance.html
http://doi.org/10.1016/j.mlwa.2021.100094
http://doi.org/10.1016/j.cjca.2021.09.004
http://www.ncbi.nlm.nih.gov/pubmed/34534619
https://www.who.int/news-room/fact-sheets/detail/cancer
https://www.who.int/news-room/fact-sheets/detail/cancer
https://www.hhs.gov/sites/default/files/2020-cessation-sgr-full-report.pdf
https://www.hhs.gov/sites/default/files/2020-cessation-sgr-full-report.pdf
http://doi.org/10.1289/ehp.1408882
http://www.ncbi.nlm.nih.gov/pubmed/25870974
http://doi.org/10.21037/tlcr.2019.03.05
http://www.ncbi.nlm.nih.gov/pubmed/31211104
http://doi.org/10.1002/ijc.31955
http://www.ncbi.nlm.nih.gov/pubmed/30484859
http://doi.org/10.1136/bmjopen-2018-021611
http://doi.org/10.1038/35094091
http://doi.org/10.1007/s42979-021-00592-x
http://doi.org/10.1142/S0219477512500186
http://doi.org/10.1590/1809-4430-eng.agric.v39n6p729-736/2019
http://doi.org/10.1023/A:1010933404324
https://rulequest.com/cubist-info.html
http://doi.org/10.3390/app9081621
https://mran.revolutionanalytics.com/snapshot/2016-01-01/web/packages/Cubist/vignettes/cubist.pdf
https://mran.revolutionanalytics.com/snapshot/2016-01-01/web/packages/Cubist/vignettes/cubist.pdf

	Introduction 
	Materials and Method 
	Data Source 
	Variables 
	Method 
	Feature Selection 
	Evaluation Criteria 

	Results and Discussion 
	Key Features of Lung Cancer Incidence 
	Benchmarking of Machine Learning Algorithms 
	Discussion 

	Conclusions 
	Summary 
	Limitation 

	Appendix A
	References

