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Abstract: Triptolide (TP), the main active ingredient of Tripterygium wilfordii Hook.f., displays potent
anti-inflammatory, antioxidant, and antiproliferative activities. In the present study, the effect of TP on
acute pancreatitis and the underlying mechanisms of the disease were investigated using a caerulein-
induced animal model of acute pancreatitis (AP) and an in vitro cell model. In vivo, pretreatment
with TP notably ameliorated pancreatic damage, shown as the improvement in serum amylase and
lipase levels and pancreatic morphology. Meanwhile, TP modulated the infiltration of neutrophils
and macrophages (Ly6G staining and CD68 staining) and decreased the levels of proinflammatory
factors (TNF-α and IL-6) through inhibiting the transactivation of nuclear factor-κB (NF-κB) in
caerulein-treated mice. Furthermore, TP reverted changes in oxidative stress markers, including
pancreatic glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA), in acute
pancreatitis mice. Additionally, TP pretreatment inhibited intracellular reactive oxygen species (ROS)
levels via upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and Nrf2-regulated
redox genes expression (HO-1, SOD1, GPx1 and NQO1) in vitro. Taken together, our data suggest
that TP exert protection against pancreatic inflammation and tissue damage by inhibiting NF-κB
transactivation, modulating immune cell responses and activating the Nrf2-mediated antioxidative
system, thereby alleviating acute pancreatitis.

Keywords: acute pancreatitis; triptolide; inflammatory responses; oxidative stress

1. Introduction

Acute pancreatitis (AP) is a common systemic inflammatory process originating from
the pancreas. Most cases of AP are mild and self-limited, but approximately 15–20% of
patients develop severe acute pancreatitis. Although diagnosis and treatment technology
have been greatly improved in recent years, the overall mortality of the disease has not
improved significantly, affecting up to 20% of patients with severe acute pancreatitis [1,2].
Thus, a challenge still lies ahead in the prevention of acute pancreatitis.

Increasingly, evidence has implied that inflammation and oxidative stress are the
dominant factors in the process of AP [3,4]. Irrespective of the causative factor, the damage
originates in the pancreatic acinar cells, triggering uncontrolled immune cell infiltration
and excessive inflammatory cytokine secretion in the pancreas. These events ultimately
lead to an inflammatory response and oxidative stress, thereby further aggravating the
tissue damage and edema. Nuclear factor-kappa B (NF-κB) is the central driving factor
of the inflammatory response which regulates the expression of numerous inflammatory
cytokines (such as TNF-α, IL-6, and IL-1β) and is closely related to AP severity in mice [5].
In addition, the progression of AP can also increase the production of ROS and decrease
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the expression of SOD, an enzyme that removes superoxide anions, therefore inducing
excessive oxidative stress [6]. Both the activities and expression of these antioxidant
enzymes are regulated by the Nrf2 signaling pathway. Recent studies have underlined the
fact that Nrf2 adjusts oxidative stress and the inflammatory response by regulating the
expression of genes coding for antioxidant, anti-inflammatory and detoxifying proteins,
which further play a significant role in the pathophysiology of various inflammatory
diseases, including AP and hepatitis [7]. Consequently, a potential strategy to ameliorate
AP is focused on the suppression of oxidative stress and/or inflammation

As a diterpene triepoxide originally purified from Tripterygium wilfordii Hook.f. (TWHF),
triptolide (TP) displays a variety of bioactivities, such as anti-inflammatory, immunomodu-
latory, antioxidant, and anti-proliferation activities, and has attracted tremendous scholarly
interest [8,9]. Due to its narrow therapeutic window and the high rate of side effects, the
wide application of TP is limited [10,11]. Recently, in lipopolysaccharide (LPS)-induced
liver injury, TP was shown to regulate the Nrf2 and NF-κB signaling pathways and alleviate
oxidative stress and inflammation, which offers a novel insight for the application of TP in
inflammatory diseases [12,13].

However, currently, few studies have reported the pharmacological effects of TP
during AP treatment. The present study evaluated the potential beneficial effect of TP on
AP and explored the underlying cellular mechanism. These results provide a theoretical
basis for the rational application of TP and offer new treatment targets and effective
treatment measures for acute pancreatitis.

2. Results
2.1. Triptolide Ameliorated Pancreatic Damage in Caerulein-Induced Acute Pancreatitis Mice

The combination of caerulein and LPS was used to induce the AP model in ICR
mice with the advantages of non-invasiveness, easy induction and reproducibility. As
shown in Figure 1A, the serum lipase and α-amylase levels increased dramatically, in-
dicating that pancreatic injury happened. Serum lipase levels were notably attenuated
by both pretreatment and therapeutic treatment with TP, while serum α-amylase levels
were notably attenuated by pretreatment with TP alone, which confirms that TP alleviates
pancreatic damage of AP in mice. H&E staining of pancreatic sections further indicated
that caerulein-induced AP showed marked isolation of pancreatic lobes and acinar cells
and patchy parenchymal necrosis, together with neutrophil infiltration of the ductal area,
interstitial space and parenchyma. TP protected against caerulein-induced pancreatic
damage, including edema, inflammation and necrosis; pretreatment with 100 µg/kg TP
was especially effective (Figure 1B).

2.2. Triptolide Decreases Inflammatory Cell Infiltration and Cytokine Production in
Caerulein-Induced Acute Pancreatitis Model

Abundant inflammatory cell infiltration, including of neutrophils and macrophages,
has a prejudicial impact on the development of diseases. We investigated the accumulations
of neutrophils and macrophages in the pancreas using immunohistochemistry. As shown
in Figures 2 and 3, Ly6G+ neutrophils and CD68+ macrophages were abundantly recruited
in the model group compared with the normal control group. Then, we further analysed
inflammatory cytokine production in serum using ELISA. The levels of inflammatory
cytokines (TNF-α and IL-6) were also significantly elevated in the model group compared
with the normal control group (Figure 4). The TP treatment groups presented fewer
neutrophils and macrophages in the pancreas. Consistently, the serum TNF-α level was
significantly decreased with TP treatment, and the serum IL-6 level was slightly reduced in
the TP treatment group.
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Figure 1. Triptolide-ameliorated pancreatic damage in mice with caerulein-induced acute pancrea-
titis. (A) Serum lipase and serum amylase levels; (B) hematoxylin and eosin stained (H&E) section 
of pancreas. Data shown are means ± SEM. *** p < 0.001 compared with control group. # p < 0.05, and 

Figure 1. Triptolide-ameliorated pancreatic damage in mice with caerulein-induced acute pancreatitis.
(A) Serum lipase and serum amylase levels; (B) hematoxylin and eosin stained (H&E) section of
pancreas. Data shown are means ± SEM. *** p < 0.001, and **** p < 0.0001 compared with control
group. # p < 0.05, ## p < 0.01, and ### p < 0.001 compared with model group. Triptolide is abbreviated
as TP, and tanshinone IIA is abbreviated as TSA.
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Figure 2. Triptolide decreased neutrophil infiltration in the mice with caerulein-induced acute
pancreatitis. Data shown are means ± SEM. *** p < 0.001 compared with control group. ### p < 0.001
compared with the model group.

2.3. Triptolide Inhibits NF-κB Activation in Caerulein-Induced Acute Pancreatitis Model

NF-κB is activated in early-phase acute pancreatitis and regulates the expression of
inflammatory factors [14]. Therefore, we evaluated the expression of NF-κB p65 in an acute
pancreatitis model via Western blot analysis. Figure 5A shows that the administration
of TP markedly reduced the activation of NF-κB compared with that in the model group
in vivo. Consistent with the in vivo results, TP pretreatment remarkably inhibited the NF-
κB p65 up-regulation induced by caerulein in 266-6 cells, especially at 100 nM (Figure 5B).
In addition, TP pretreatment significantly inhibited the nuclear translocation of NF-κB
p65 (Figure 5C). Altogether, these results further confirm that TP inhibited inflammatory
development and alleviated the pancreatic injury.
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Figure 4. Triptolide reduced inflammatory factors in mice with caerulein-induced acute pancreatitis. 
Serum TNF-α and IL-6 were measured by ELISA. Data shown are means ± SEM. **p < 0.01 compared 

Figure 3. Triptolide decreased macrophage infiltration in mice with caerulein-induced acute pancre-
atitis. Data shown are means ± SEM. *** p < 0.001 compared with control group. ## p < 0.01, and
### p < 0.001 compared with the model group.
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Figure 4. Triptolide reduced inflammatory factors in mice with caerulein-induced acute pancreatitis.
Serum TNF-α and IL-6 were measured by ELISA. Data shown are means± SEM. ** p < 0.01 compared
with control group. # p < 0.05 compared with the model group. Triptolide is represented by TP, and
tanshinone IIA is represented by TSA.
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Figure 5. Triptolide inhibited NF-κB activation in a caerulein-induced acute pancreatitis model.
(A) The expression of pancreatic NF-κB in mice, (B) the expression of NF-κB in 266-6 cells, and
(C) immunofluorescence staining of NF-κB in 266-6 cells. Data shown are means ± SEM. * p < 0.05,
*** p < 0.001 compared with control group. # p < 0.05, ## p < 0.01, and ### p < 0.001 compared with
model group. Triptolide is represented by TP, and tanshinone IIA is represented by TSA.
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2.4. Triptolide Alleviates Oxidative Stress via Nrf2 in a Caerulein-Induced Acute Pancreatitis Model

Reactive oxygen species (ROS) and damage play an important role in a wide variety
of inflammatory diseases, including AP. To further examine the mechanism of how TP
exerts its effect, we examined whether TP pretreatment could alleviate oxidative stress
in caerulein-induced AP. First, we evaluated the cytotoxic effect of TP on the pancreatic
acinar cancer cell line, 266-6. The TP dose we used in subsequent experiments (25, 50 and
100 nM at 12 h) did not cause cytotoxic effects. As shown in Figure 6A, caerulein treatment
increased intracellular ROS levels in 266-6 cells compared with the control group, which
were decreased significantly by TP pretreatment. Meanwhile, intracellular SOD levels were
significantly increased in the TP groups compared with the model group. In agreement
with the in vitro results, pancreatic SOD and GSH levels were significantly decreased in the
model group, while TP pretreatment dramatically reversed SOD and GSH levels (Figure 6B).
As shown in Figure 6B, TP pretreatment effectively revised the up-regulation of the MDA
level induced by caerulein in AP mice. Furthermore, we detected the mRNA expression
of antioxidant enzymes, including HO-1, SOD1, GPx1 and NQO1. Pretreatment with TP
significantly increased the expression of antioxidant enzymes compared with the model
group (Figure 7A). Nrf2 is a redox-sensitive transcription factor that becomes activated
and translocated into the nucleus in response to oxidative stress [7]. Figure 7B shows that
treatment with TP significantly increased the expression and activation of Nrf2 compared
with the model group in vitro. Therefore, TP could protect against oxidative stress via
activation of the Nrf2 signaling pathway in acute pancreatitis.
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Figure 6. Triptolide alleviates oxidative stress in a caerulein-induced acute pancreatitis model. (A) The
levels of ROS and SOD in 266-6 cells, and (B) the levels of SOD, GSH and MDA in pancreatic tissue.
Data shown are means ± SEM. * p < 0.05, ** p < 0.01, and *** p < 0.001 compared with control group.
# p < 0.05, ## p < 0.01, and ### p < 0.001 compared with model group. Triptolide is represented by TP,
and tanshinone IIA is represented by TSA.
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Figure 7. Triptolide activated the Nrf2 signaling pathway in a caerulein-induced acute pancreatitis
model. (A) The mRNA expression of HO-1, SOD1, GPx1 and NQO1 in 266-6 cells. (B) The mRNA
and protein expression of Nrf2 in 266-6 cells. Data shown are means ± SEM. * p < 0.05, ** p < 0.01
compared with control group. # p < 0.05, and ## p < 0.01 compared with the model group. Triptolide
is represented by TP, and tanshinone IIA is represented by TSA.

3. Discussion

In the present study, we identified that TP protected against caerulein-induced acute
pancreatitis by attenuating the accumulation of neutrophils and macrophages and reducing
the levels of inflammatory cytokines by inhibiting NF-κB inflammatory pathways. In
addition, TP upregulated antioxidant enzymes including HO-1, SOD1, and GPx1 NQO1
through Nrf2 activation, further alleviating pancreatic damage.

In acute pancreatitis, irrespective of the causative factor, the primary damage of acinar
cells releases various DAMPs that activate local inflammatory responses. Uncontrolled
local inflammatory responses further aggravate systemic inflammatory response syndrome
(SIRS) and multi-organ dysfunction (MODS) [14]. Thus, focusing on suppressing inflamma-
tory responses may be a promising strategy for the treatment of acute pancreatitis [15]. TP
is the main active ingredient derived from the Chinese herb Tripterygium wilfordii Hook.f.,
which has been used for centuries to treat inflammatory and autoimmune diseases such as
rheumatoid arthritis in the clinic. TP has been shown to have potent anti-inflammatory, an-
tioxidant, and antiproliferative activities [16]. Preclinical studies have revealed that TP was
effective against rheumatoid arthritis, bone marrow transplantation and cancer in animal
models [17–20]. TP and its derivatives (PG490-88 and F60008) have entered human clinical
trials [21–24]. However, its severe toxicity and poor water solubility restricts the further
application of TP in the clinic. It was reported that the IC50 values of TP on all cancer cell
lines are in the low nanomole range (average IC50 = 12 nM) at 72 h [25–27]. In the present
study, we first evaluated the cytotoxic effect of TP on the pancreatic acinar cancer cells,
and the dose we used in cells (25, 50 and 100 nM at 12 h) did not cause cytotoxic effects.
A study demonstrated that the LD50 for TP administered intravenously was 0.83 mg/kg
in mice [28]. In our prior research, after a single intraperitoneal injection of 100 µg/kg TP,
there were no changes in different organs (liver, kidney, spleen, thymus, pancreas) in mice
in vivo.
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In the early stage of acute pancreatitis, once pancreatic injury happens, in response
to various inflammatory factors, neutrophils infiltrate the site of injury within minutes
and reach a peak within hours, which can not only release cytotoxic signals, but also
recruit additional neutrophils and monocytes to aggravate pancreatic damage [29]. In
this study, TP pretreatment decreased the number of pancreatic neutrophils and mono-
cytes/macrophages in mice following caerulein-induced injury. At the molecular level,
TP was shown to interfere with a number of transcription factors, including NF-κB, p53,
NF-AT and HSF-1 [30–33]. Consistent with previous studies, TP directly suppresses the
transactivation of NF-κB in the AP model. More recently, it was shown that TP inhibits the
activity of XPB and TFIIH and blocks RNAPII-mediated transcription initiation; hence, it
blocks transactivation by all these transcription factors, which may also be an underlying
cause of its toxicity [34,35].

In vitro, AP model cells showed increased intracellular ROS levels induced by caerulein,
which were decreased significantly by TP pretreatment. In vivo, AP mice showed a re-
markable increase in pancreatic MDA content and a decrease in pancreatic SOD and GSH
levels, further verifying a low pancreatic antioxidant capacity. However, TP pretreatment
dramatically reversed the changes in parameters of pancreatic oxidative damage. Fur-
thermore, TP pretreatment transactivated the Nrf2 signaling pathway and promoted the
transcription of target genes including HO-1, SOD1, GPx1, and NQO1 in pancreatic acinar
cells following caerulein-induced injury. These results are consistent with previous reports
on lipopolysaccharide-induced liver injury [12]. However, at a high concentration or after
a long course, TP could induce oxidative stress and damage in HepG2 cells [36].

In conclusion, we found that TP attenuated the inflammatory response by inhibiting
inflammatory cell infiltration through the NF-κB pathway and ameliorated pancreatic damage
by improving antioxidant activities through the Nrf2 pathway during AP (Figure 5). Our
findings suggest the therapeutic potential of TP as a natural drug for treating acute pancreatitis.

4. Material and Methods
4.1. Chemicals and Reagents

Triptolide (purity >98%) was purchased from Bide Pharmatech Ltd. (Shanghai, China).
Caerulein was purchased from Nanjing Peptide (Nanjing, China). LPS was purchased
from Aladdin (Shanghai, China). Antibodies against β-actin were obtained from Beyotime
Biotechnology (Shanghai, China). Antibodies against NF-κB(p65) and Nrf2 were obtained
from Cell Signaling Technology, Inc. (Beverly, MA, USA).

4.2. Animal Model of Acute Pancreatitis and Treatment

All animal experiments were approved by the Animal Research Committee of Jiang-
nan University (JN.No20201130i0240131[348]). Male ICR mice (20 ± 2 g) were purchased
from Cavens (Changzhou, Jiangsu, China). Mice were divided randomly into experimental
groups (n = 6) as follows: (1) Control, (2) AP Model, (3) TP preventive administration
(50 µg/kg, preTP50), (4) TP preventive administration (100 µg/kg, preTP100), (5) TP
therapy group (50 µg/kg, TP50), (6) TP therapy group (100 µg/kg, TP100) and (7) tan-
shinone IIA therapy group (25 mg/kg, TSA). The acute pancreatitis model was induced
by hourly intraperitoneal injection of caerulein (200 µg/kg) for 10 h and intraperitoneal
injection of LPS (5 mg/kg) at 1 h after the last caerulein injection. TP was dissolved by 0.5%
carboxymethylcellulose sodium (CMC-Na) suspension. The preventive administration
groups were pretreated with TP 0.5 h in advance by gavage. The treatment groups were
intragastrically administrated TP one hour after the first caerulein injection. Then, serum
and pancreas tissues were harvested for subsequent assays. Twelve hours after the first
caerulein injection, mice were euthanized with phenobarbital sodium by intraperitoneal
injection, and serum and pancreatic tissues were harvested for subsequent assays.
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4.3. Cell Culture and Treatment

Next, 266-6 cells were purchased from Cobioer Biosciences Co, Ltd. (Nanjing, China)
and were cultured in DMEM with 10% FBS and 1% Penicillin-Streptomycin solution. Cell
cultures were then maintained in a humidified atmosphere at 37 ◦C with 5% CO2. The cells
were pretreated with TP (25–100 nM, 0.5 h) before stimulation with caerulein (10 nM) for
12 h. Supernatants and cells were then collected for subsequent assays.

4.4. Measurement of Serum Lipase and α-Amylase Activity

Blood from mice was collected and centrifuged (4000 rpm, 10 min, 4 ◦C) to obtain the
supernatant for further detection. Serum activity of α-amylase and lipase were detected
using assay kits (Jiancheng Biotech, Nanjing, China). All kits were used according to the
manufacturer’s instructions.

4.5. HE Staining

Fresh pancreas samples were fixed in 4% paraformaldehyde, embedded in paraffin
for hematoxylin and eosin staining (H&E) and examined by light microscopy (400×). Two
investigators who were blinded to the experimental treatment scored the degree of tissue
injury; the scoring standards were described previously [37].

4.6. Determination of ROS

Cells were incubated with the fluorescence dye DCFH-DA (Beyotime, Nantong, China)
in the dark at 37 ◦C for 20 min, washed with PBS 3 times, and detected at an excitation
wavelength of 488 nm and an emission wavelength of 525 nm.

4.7. Determination of SOD, GSH and MDA

The total SOD, GSH and MD activity in 266-6 cells and pancreatic tissues were
analysed using the SOD kit, the GSH kit and the MDA kit (Jiancheng Biotech, Nanjing,
China), respectively.

4.8. Determination of Serum TNF-α and IL-6 Levels

The serum levels of TNF-α and IL-6 were measured by enzyme-linked immunosorbent
assay (ELISA) kits (Proteintech, Wuhan, China) according to the manufacturer’s protocols.

4.9. Western Blot Analysis

Cells or pancreatic tissues were homogenized in RIPA buffer with protease and phos-
phatase inhibitors. Protein concentrations were evaluated by the BCA Protein Assay
Kit (Beyotime, Nantong, China). Equal amounts of protein were separated in 10% SDS-
polyacrylamide gel and transferred to polyvinylidene difluoride membranes. After block-
ing with non-fat milk or BSA for 1 h, the membranes were probed with primary antibodies,
followed by the addition of HRP-labelled secondary antibodies. The bands were visualized
with the ECL reagents. The band density was quantified using Image J software.

4.10. RNA Isolation and Quantitative Real-Time PCR

Total RNA was obtained with TRIzol reagent (Invitrogen, CA, USA), and cDNAs
were synthesized by a reverse transcription reagent kit (Vazyme Biotech, Nanjing, China).
Quantitative reverse transcription-PCR was performed using a SYBR Green qPCR Master
Mix (Vazyme Biotech, Nanjing, China). Primer sequences are given in Table 1. The
relative mRNA expression levels were evaluated by the 2−∆∆CT method, using β-actin as a
reference gene.
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Table 1. Primer sequences [38].

Target Gene The Expected
Product Size Forward Reverse

β-actin 1469 bp 5′-GGCTGTATTCCCCTCCATCG-3′ 5′-TGTAGACCATGTAGTGGTCA -3′

HO-1 211 bp 5′-AACAAGCAGAACCCAGTCTATGC-3′ 5′-AGGTAGCGGGTATATGCGTGGGCC-3′

SOD1 2348 bp 5′-TGGGTTCCACGTCCATCAGTA-3′ 5′-ACCGTCCTTTCCAGCAGTCA-3′

GPx1 341 bp 5′-TCAGTTCGGACACCAGGAGAA-3′ 5′-CTCACCATTCACTTCGCACTTC-3′

NQO1 110 bp 5′-CAAGTTTGGCCTCTCTGTGG-3′ 5′-AAGCTGCGTCTAACTATATGT-3′

Nrf2 106 bp 5′-TCCGCTGCCATCAGTCAGTC-3′ 5′-ATTGTGCCTTCAGCGTGCTTC-3′

4.11. Statistical Analysis

Data are expressed as the mean ± SEM. Differences among multiple groups were
assessed using one-way analysis of variance followed by Bonferroni’s multiple comparison
Test. The results are considered statistically significant at p < 0.05. All analyses were
conducted using GraphPad Prism 8 software.
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