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Abstract

Background: Assigning every human gene to specific functions, diseases and traits is a grand challenge in modern
genetics. Key to addressing this challenge are computational methods, such as supervised learning and label propa-
gation, that can leverage molecular interaction networks to predict gene attributes. In spite of being a popular
machine-learning technique across fields, supervised learning has been applied only in a few network-based studies
for predicting pathway-, phenotype- or disease-associated genes. It is unknown how supervised learning broadly
performs across different networks and diverse gene classification tasks, and how it compares to label propagation,
the widely benchmarked canonical approach for this problem.

Results: In this study, we present a comprehensive benchmarking of supervised learning for network-based gene
classification, evaluating this approach and a classic label propagation technique on hundreds of diverse prediction
tasks and multiple networks using stringent evaluation schemes. We demonstrate that supervised learning on a
gene’s full network connectivity outperforms label propagaton and achieves high prediction accuracy by efficiently
capturing local network properties, rivaling label propagation’s appeal for naturally using network topology. We fur-
ther show that supervised learning on the full network is also superior to learning on node embeddings (derived
using node2vec), an increasingly popular approach for concisely representing network connectivity. These results
show that supervised learning is an accurate approach for prioritizing genes associated with diverse functions, dis-
eases and traits and should be considered a staple of network-based gene classification workflows.

Availability and implementation: The datasets and the code used to reproduce the results and add new gene
classification methods have been made freely available.

Contact: arjun@msu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A grand challenge in the post-genomic era is to characterize every
gene across the genome in terms of the cellular pathways they partici-
pate in, and which multifactorial traits and diseases they are associ-
ated with. Computationally predicting the association of genes to
pathways, traits or diseases—the task termed here as ‘gene classifica-
tion’—has been critical to this quest, helping prioritize candidates for
experimental verification and for shedding light on poorly character-
ized genes (Bernardes and Pedreira, 2013; Jiang et al., 2016; Pe~na-
Castillo et al., 2008; Piro and Cunto, 2012; Radivojac et al., 2013;
Sharan et al., 2007; Yang et al., 2011). Key to the success of these

methods has been the steady accumulation of large amounts of public-
ly available data collections, such as curated databases of genes and
their various attributes (Buniello et al., 2019; Kanehisa et al., 2017,
2019; Kanehisa and Goto, 2000; Liberzon et al., 2011; Pi~nero et al.,
2015, 2017; Smith et al., 2018; Subramanian et al., 2005; Wu et al.,
2013; Xin et al., 2016), controlled vocabularies of biological terms
organized into ontologies (Ashburner et al., 2000; Schriml et al.,
2012; Smith et al., 2004; The Gene Ontology Consortium, 2019),
high-throughput functional genomic assays (Athar et al., 2019; Edgar
et al., 2002; Leinonen et al., 2011) and molecular interaction net-
works (Greene et al., 2015; Huang et al., 2018; Li et al., 2017; Stark
et al., 2006; Szklarczyk et al., 2015).
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While protein sequence and 3D structure are remarkably inform-
ative about the corresponding gene’s molecular function (Altschul
et al., 1990; Jiang et al., 2016; Radivojac et al., 2013; Sleator and
Walsh, 2010; Whisstock and Lesk, 2003), the pathways or pheno-
types that a gene might participate in significantly depends on the
other genes that it works with in a context dependent manner.
Molecular interaction networks—graphs with genes or proteins as
nodes and their physical or functional relationships as edges—are
powerful models for capturing the functional neighborhood of genes
on a whole-genome scale (Karaoz et al., 2004; Leone and Pagnani,
2005; Vazquez et al., 2003). These networks are often constructed by
aggregating multiple sources of information about gene interactions
in a context-specific manner (Greene et al., 2015; Ideker and Sharan,
2008). Therefore, unsurprisingly, several studies have taken advan-
tage of these graphs to perform network-based gene classification
(Guan et al., 2010; Köhler et al., 2008; Leiserson et al., 2015; Park
et al., 2013; Vanunu et al., 2010; Warde-Farley et al., 2010).

The canonical principle of network-based gene classification is
‘guilt-by-association’, the notion that proteins/genes that are strongly
connected to each other in the network are likely to perform the same
functions, and hence, participate in similar higher-level attributes,
such as phenotypes and diseases (Wang et al., 2011). Instead of just
aggregating ‘local’ information from direct neighbors (Schwikowski
et al., 2000), this principle is better realized by propagating pathway
or disease labels across the network to capture ‘global’ patterns,
achieving state-of-the-art results (Cáceres and Paccanaro, 2019;
Cowen et al., 2017; Deng et al., 2004; Karaoz et al., 2004; Köhler
et al., 2008; Komurov et al., 2010; Leiserson et al., 2015; Leone and
Pagnani, 2005; Mostafavi et al., 2008; Murali et al., 2011; Nabieva
et al., 2005; Page et al., 1999; Tsuda et al., 2005; Vanunu et al.,
2010; Vazquez et al., 2003; Warde-Farley et al., 2010; Zhou et al.,
2003; Zhu et al., 2003). These global approaches belong to a class of
methods referred to here as ‘label propagation’. Distinct from label
propagation (LP) is another class of methods for gene classification
that relies on the idea that network patterns characteristic of genes
associated with a specific phenotype or pathway can be captured
using supervised machine learning (Barutcuoglu et al., 2006; Greene
et al., 2015; Guan et al., 2010; Krishnan et al., 2016; Lanckriet et al.,
2004; Park et al., 2013). While this class of methods—referred to
here as ‘supervised learning’—has yielded promising results in a num-
ber of applications, how it broadly performs across different types of
networks and diverse gene classification tasks is unknown.
Consequently, supervised learning (SL) is used far less compared to
LP for network-based gene classification.

The goal of this study is to perform a comprehensive, systematic
benchmarking of SL for network-based gene classification across a
number of genome-wide molecular networks and hundreds of diverse
prediction tasks using meaningful evaluation schemes. Within this
rigorous framework, we compare SL to a widely used, classic LP tech-
nique, testing both the original (adjacency matrix A) and a diffusion-
based representation of the network (influence matrix I; Fig. 1). This
combination results in four methods (listed with their earliest known
references): LP on the adjacency matrix (LP-A) (Schwikowski et al.,
2000), LP on the influence matrix (LP-I) (Page et al., 1999), SL on the
adjacency matrix (SL-A) (Barutcuoglu et al., 2006) and SL on the in-
fluence matrix (SL-I) (Lanckriet et al., 2004). Additionally, we evalu-
ate the performance of SL using node embeddings as features, as the
use of node embeddings is burgeoning in network biology.

Our results demonstrate that SL outperforms LP for gene-
function, gene-disease and gene-trait prediction. We also observe that
SL captures local network properties as efficiently as LP, where both
methods achieve more accurate predictions for genesets that are more
tightly clustered in the network. Lastly, we show that SL using the
full network connectivity is superior to using low-dimensional node
embeddings as the features, which, in turn, is competitive to LP.

2 Materials and Methods

2.1 Networks
We chose a diverse set of undirected, human gene/protein networks
based on criteria laid out in Huang et al. (2018) (Fig. 1): (i) networks

constructed using high- or low-throughput data, (ii) the type of
interactions the network was constructed from and (iii) if annota-
tions were directly incorporated in constructing the network. We
used versions of the networks that were released prior to 2017 so as
not to bias the temporal holdout evaluations. We used all edge
scores (weights) unless otherwise noted, and the nodes in all net-
works were mapped into Entrez genes using the MyGene.info data-
base (Wu et al., 2013; Xin et al., 2016). If the original node ID
mapped to multiple Entrez IDs, we added edges between all possible
mappings. The networks used in this study are BioGRID (Stark
et al., 2006), the full STRING network (Szklarczyk et al., 2015), as
well as the subset with just experimental support (referred to as
STRING-EXP in this study), InBioMap (Li et al., 2017) and the tis-
sue-naı̈ve network from GIANT (Greene et al., 2015), referred to as
GIANT-TN in this study. These networks cover a wide size range,
with the number of nodes ranging from 14 089 to 25 689 and the
number of edges ranging from 141 629 to 38 904 929. More infor-
mation on the networks can be found in the Supplementary Section
1.1.

2.2 Network representations
We considered three distinct representations of molecular networks:
the adjacency matrix, an influence matrix and low-dimensional
node embeddings. Let G ¼ V; E; Wð Þ denote an undirected mo-
lecular network, where V is the set of vertices (genes), E is the set of
edges (associations between genes) and W is the set of edge weights
(the strengths of the associations). G can be represented as a
weighted adjacency matrix Ai; j ¼Wi; j, where A 2 R

V�V. G can
also be represented as an influence matrix, F 2 R

V�V, which can
capture both local and global structure of the network. F was
obtained using a random walk with restart transformation kernel
(Leiserson et al., 2015),

F ¼ a I� ð1� aÞWD½ ��1 (1)

where a is the restart parameter, I is the identity matrix and WD is
the degree weighted adjacency matrix given by WD ¼ AD�1, where
D 2 R

V�V is a diagonal matrix of node degrees. A restart parameter
of 0.85 was used for every network in this study. Detailed
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Fig. 1. Workflow for gene classification pipeline. Four methods are compared: SL-A,

SL-I, LP-A and LP-I. Model performance on a variety of gene classification tasks is

evaluated over a number of different molecular networks, validation schemes and

evaluation metrics. Additionally, the performance of SL using node embeddings as

features (SL-E) is evaluated (not shown in this figure)
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information of how the restart parameter was chosen can be found
in Supplementary Section 1.2 and Figure S1.

G can also be transformed into a low-dimensional representation
through the process of node embedding. In this study, we used the
node2vec algorithm (Grover and Leskovec, 2016), which borrows
ideas from the word2vec algorithm (Mikolov et al., 2013a, 2013b)
used in natural language processing. The objective of node2vec is to
find a low-dimensional representation of the adjacency matrix,
E 2 R

V�d, where d� V. This is done by optimizing the following
log-probability objective function:

E ¼ max
f

X
u2V

log Pr NS uð Þje uð Þ
� �� �

(2)

where NS uð Þ is the network neighborhood of node u generated
through a sampling strategy S and e uð Þ 2 R

d is the feature vector of
node u. In node2vec, the sampling strategy is based on random
walks that are controlled using two parameters p and q, in which a
high value of q keeps the walk local (a breadth-first search), and a
high value of p encourages outward exploration (a depth-first
search). The values of p and q were both set to 0.1 for every network
in this study. Detailed information of how the node2vec hyperpara-
meters were chosen can be found in the Supplementary Section 1.2.

2.3 Prediction methods
We compared the prediction performance across four specific meth-
ods across two classes, LP and SL.

2.3.1 Label propagation

LP methods are the most widely used methods in network-based
gene classification and achieve state-of-the-art results (Cowen et al.,
2017; Köhler et al., 2008). In this study, we considered two LP
methods, LP-A and LP-I. First, we constructed a binary vector of
ground-truth labels, x 2 R

V�1, where xi ¼ 1 if gene i is a positively
labeled gene in the training set, and 0 otherwise. In LP-A, we con-
structed a score vector, S 2 R

V�1, denoting the predictions,

S ¼ Ax (3)

where A is the adjacency matrix. Thus, the predicted score for a
gene using LP-A is equal to the sum of the weights of the edges be-
tween the gene and its direct, positively labeled network neighbors.
In LP-I, the score vector, S, is generated using equation (3), except A
is by replaced by F, the influence matrix [equation (1)]. In both
LP-A and LP-I, only positive examples in the training set are used to
calculate the score vector S to reflect how LP is typically used in
practice (Cowen et al., 2017; Köhler et al., 2008; Picart-Armada
et al., 2019). Both positive and negative examples in the test set are
later used for evaluation.

2.3.2 Supervised learning

SL can be used for network-based gene classification by using each
gene’s network neighborhoods as feature vectors, along with gene
labels, in a classification algorithm. Here, we used logistic regression
with L2 regularization as the SL classification algorithm, which is a
linear model that aims to minimize the following cost function
(Pedregosa et al., 2011):

min
w; c

1

2
wTwþ C

Xn

i¼1

log exp �yi XT
i wþ c

� �� �
þ 1

� �
(4)

where w 2 R
m is the vector of weights for a model with m features,

C determines the regularization strength, n the number of examples,
y is the ground-truth label, X 2 R

n � m is the data matrix and c is
the intercept. After training a model using the labeled genes in the
training set, the learned model weights are used to classify the genes
in the testing set, returning a prediction probability for these genes
that is bounded between 0 and 1. The regularization parameter, C,
was set to 1.0 for all models in this study.

In this study, three different network-based gene-level feature
vectors were used to train three different SL classifiers: the rows of

the adjacency matrix (SL-A), the rows of the influence matrix (SL-I)
and the rows of the node embedding matrix (SL-E). Model selection
and hyperparameter tuning are described in detail in the
Supplementary Section 1.2.

2.4 Geneset-collections
We curated a number of geneset-collections to test predictions on a
diverse set of tasks: function, disease and trait (Fig. 1). Function pre-
diction was defined as predicting genes associated with biological
processes that are part of the Gene Ontology (referred to here as
‘GOBP’) (The Gene Ontology Consortium, 2019; Ashburner et al.,
2000) obtained from MyGene.info (Wu et al., 2013; Xin et al.,
2016), and pathways from the Kyoto Encyclopedia of Genes and
Genomes (Kanehisa et al., 2017, 2019; Kanehisa and Goto, 2000),
referred to ‘KEGGBP’ since disease-related pathways were removed
from the original KEGG annotations in the Molecular Signatures
Database (Liberzon et al., 2011; Subramanian et al., 2005). Disease
prediction was defined based on predicting genes associated with
diseases in the DisGeNET database (Pi~nero et al., 2015, 2017).
Annotations from this database were divided into two separate
geneset-collections: those that were manually-curated (referred to as
‘DisGeNet’ in this study) and those derived using the BeFree text-
mining tool (referred to as ‘BeFree’ in this study). Trait prediction
was defined as predicting genes linked to human traits from
Genome-wide Association Studies (GWAS), curated from a commu-
nity challenge (Choobdar et al., 2019), and mammalian phenotypes
(annotated to human genes) from the Mouse Gene Informatics
(MGI) database (Smith et al., 2018).

Each of these six geneset-collections contained anywhere from
about a hundred to tens of thousands of genesets that varied widely
in specificity and redundancy. Therefore, each collection was pre-
processed to ensure that the final set of prediction tasks from each
source is specific, largely non-overlapping and not driven by multi-
attribute genes. First, if genesets in a collection corresponded to
terms in an ontology (e.g. biological processes in the GOBP collec-
tion), annotations were propagated along the ontology structure to
obtain a complete set of annotations for all genesets. Second, we
removed genesets if the number of genes annotated to the geneset
was above a certain threshold and then compared these genesets to
each other in order to remove genesets that were highly-overlapping
with other genesets in the collection, resulting in a set of specific,
non-redundant genesets. Finally, individual genes that appeared in
more than 10 of the remaining genesets in a collection were removed
from all the genesets in that collection to remove multi-attribute
(e.g. multi-functional) genes that are potentially easy to predict
(Gillis and Pavlidis, 2011). Detailed information on geneset pre-
processing and geneset attributes can be found in the Supplementary
Section 1.3, Table S2 and Figure S3.

Selecting positive and negative examples: In each geneset-collec-
tion, for a given geneset, genes annotated to that set were designated
as the set of positive examples. The SL methods additionally
required a set of negative genes for each given geneset for training,
and both SL and LP methods require a set of negative genes for each
geneset for testing. A set of negative genes was generated by: (i) find-
ing the union of all genes annotated to all genesets in the collection,
(ii) removing genes annotated to the given geneset and (iii) removing
genes annotated to any geneset in the collection which significantly
overlapped with the given geneset (P-value <0.05 based on the one-
sided Fisher’s exact test).

2.5 Validation schemes
We performed extensive and rigorous evaluations based on three
validation schemes: temporal holdout, study-bias holdout and 5-
fold cross validation (5FCV). In temporal holdout, within a geneset-
collection, genes that only had an annotation to any geneset in the
collection after January 1, 2017 were considered test genes, and all
other genes were considered training genes. Temporal holdout is the
most stringent evaluation scheme for gene classification since it
mimics the practical scenario of using current knowledge to predict
the future and is the preferred evaluation method used in the CAFA
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challenges (Jiang et al., 2016; Radivojac et al., 2013). Since the
Gene Ontology was the only source with clear date-stamps for all its
annotations, temporal holdout was applied only to the GOBP
geneset-collection. For study-bias holdout, genes were ranked by the
number of PubMed articles they were mentioned in, obtained from
Brown et al. (2015). The top two-thirds of the most-mentioned
genes were considered training genes, and the rest of the least-
mentioned genes were used for testing. Study-bias holdout mimics
the real-world situation of learning from well-characterized genes to
predict novel un(der)-characterized genes. The last validation
scheme is the traditional 5FCV, where the genes are split into five
equal folds in a stratified manner (i.e. in each split, the proportion of
genes in the positive and negative classes is preserved). In all these
schemes, only genesets with at least 10 positive genes in both the
training and test sets were considered. More information on the val-
idation schemes is available in the Supplementary Section 1.4.

2.6 Evaluation metrics
In this study, we considered three evaluation metrics: the area under
the precision-recall curve (auPRC), the precision of the top-K ranked
predictions (P@TopK) and, the area under the receiver-operator
curve (auROC). For P@TopK, we set K equal to the number of
ground-truth positives in the testing set. Since the standard auPRC
and P@TopK scores are influenced by the prior probability of find-
ing a positive example (equal to the proportion of positives to the
total of positives and negatives), we expressed both metrics as the
logarithm (base 2) of the ratio of the original metric to the prior.
More details on the evaluation metrics can be found in the
Supplementary Section 1.5.

3 Results

We systematically compare the performance of four gene classifica-
tion methods (Fig. 1): SL-A, SL-I, LP-A and LP-I. We choose six
geneset-collections that represent three prominent gene classification
tasks: gene-function (GOBP, KEGGBP), gene-disease (DisGeNet,
BeFree) and gene-trait (GWAS, MGI) prediction. We use three dif-
ferent validation schemes: temporal holdout (train on genes anno-
tated before 2017 and test on genes annotated in 2017 or later; only
done for GOBP as it has clear timestamps), holdout based on study
bias (train on well-studied genes and predict on less-studied genes)
and the traditional 5FCV. Temporal holdout and study-bias holdout
validation schemes are presented in the main text as they are more
stringent and reflective of real-world tasks as compared to 5FCV
(Kahanda et al., 2015). To ascertain the robustness of the relative
performance of the methods to the underlying network, we choose
five different genome-scale molecular networks that differ in their
content and construction. To be in concert with temporal holdout
evaluation and curtail data leakage, all the networks used through-
out this study are the latest versions released before 2017. We pre-
sent evaluation results based on the auPRC in the main text and
results based on the P@topK and auROC in the Supplementary
Figures S4–S8. We note that the 5FCV, P@topK and auROC results
in the Supplementary Material are, for the most part, consistent
with the results presented in the main text of this study.

Our first analysis was to directly compare all four prediction
methods against each other for each geneset in a given collection.
For each geneset-collection–network combination, we rank the four
methods per geneset (based on auPRC) using the standard competi-
tion ranking and calculate each method’s average rank across all the
genesets in the collection (Fig. 2). For function prediction, SL-A is
the top-performing method by a wide margin (particularly clear
based on GOBP temporal holdout), with SL-I being the second best
method. For disease and trait prediction, SL-A and SL-I still outper-
form LP-I, but to a lesser extent. In all cases, LP-A is the worst per-
forming method. The large performance difference between the SL
and LP methods in the GOBP temporal holdout validation is note-
worthy since temporal holdout is the most stringent validation
scheme and the one employed in community challenges, such as
CAFA (Jiang et al., 2016; Radivojac et al., 2013).

Following the observation that SL methods outperform LP meth-
ods based on relative ranking, we use a non-parametric paired test
(Wicoxon signed-rank test) to statistically assess the difference be-
tween specific pairs of methods (Fig. 3A). For each geneset-collec-
tion–network combination, we compare the two methods in one
class to the two methods in the other class (i.e. we compare SL-A to
LP-A, SL-A to LP-I, SL-I to LP-A and SL-I to LP-I). Each comparison
yields a P-value along with the number of genesets in the collection
where one method outperforms the other. After correcting the four
P-values for multiple hypothesis testing (Benjamini et al., 2006), if a
method from one class outperforms both methods from the other

A

B

C

Fig. 2. Average rank across the four methods. Each point in each boxplot represents

the average rank for a geneset-collection–network combination, obtained based on

ranking the four methods in terms of performance for each geneset in a geneset-col-

lection using the standard competition ranking. (A) Functional prediction tasks

using GOBP temporal holdout, (B) functional prediction tasks using study-bias

holdout for GOBP and KEGGBP and (C) disease and trait prediction tasks using

study-bias holdout for DisGeNet, BeFree, GWAS and MGI. The results are shown

for auPRC where different colors represent different networks and different marker

styles represent the different geneset-collections. SL methods outperform LP meth-

ods for all prediction tasks
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class independently (in terms of the number winning genesets), and if
both (corrected) P-values are <0.05, we consider a method to have
significantly better performance compared to the entire other class.

Additionally, we track the percentage of times the SL methods
outperform the LP methods across all four comparisons within a
geneset-collection–network combination.

The results show that for function prediction SL is almost always
significantly better than LP when considering auPRC (Fig. 3B).
Based on temporal holdout on GOBP, both SL-A and SL-I are al-
ways significantly better than both LP methods. Based on study-bias
holdout, in the 10 function prediction geneset-collections–network
combinations using GOBP and KEGGBP, SL-A is a significantly bet-
ter method 8 times (80%) and SL-I is a significantly better method 6
times (60%). Neither LP-I nor LP-A ever significantly outperforms
the SL models. The performance of SL and LP is more comparable
for disease and trait prediction, but SL methods still perform better
in a larger fraction of genesets. For the 20 disease and trait geneset-
collection–network combinations, SL-I is a significantly better
method 8 times (40%), and SL-A is a significantly better method 6
times (30%), LP-I is a significantly better method once (5%), and
LP-A is never a significantly better method.

To visually inspect not only the relative performance of all four
methods, but to also see how well the models are performing in an
absolute sense, we examined the boxplots of the auPRC values for
every geneset-collection–network combination (Fig. 4). The first
notable observation is that, regardless of the method, function pre-
diction tasks have much better performance results than disease/trait
prediction tasks (Fig. 4B). Based on temporal holdout for function
prediction (GOBPtmp), SL-A is the top-performing model based on
the highest median performance for every network. Additionally,
for all networks except STRING-EXP, SL-I is the second best per-
forming model. For the 10 combinations of five networks with
GOBP and KEGGBP, the top method based on the highest median
performance is an SL method all but once, with SL-A being the top
model 7 times (70%), SL-I being the top model 2 times (20%,
GOBP and KEGGBP on GIANT-TN) and LP-A being the top model
once (10%, KEGGBP on STRING-EXP). As noted earlier, for dis-
ease and trait prediction, SL and LP methods have more comparable

performance. Of the 20 geneset-collection–network combinations,
each of SL-A, SL-I, LP-I and LP-A is the top method based on me-
dian performance 5 (25%), 10 (50%), 4 (20%) and 1 (5%) times,
respectively.

Although the boxplots in Figure 4 can give an idea of effect sizes,
to further quantify this, we looked at the ratios of auPRC values
across all genesets (Supplementary Section 2.2 and Fig. S10). The
results show that SL-A and SL-I both have a substantial effect size
compared to LP-I for function prediction. Also, for all prediction
tasks, the effect size of SL methods over LP-I is equal to or greater
than the effect size of LP-I over LP-A, where LP-I is widely consid-
ered a much better model than LP-A and thus, the comparison be-
tween LP-I and LP-A can be viewed as a baseline effect size.

Among the two classes of network-based models—SL and LP—it
is intuitively clear how LP directly uses network connections to
propagate information from the positively labeled nodes to other
nodes close in the network. On the other hand, while SL is an accur-
ate method for gene classification, it has not been studied if SL’s per-
formance is tied to any traditional notion of network connectivity.
To shed light on this problem, we investigated the performance of
SL-A and LP-I as a function of three different properties of individ-
ual genesets in a collection: the number of annotated genes, edge
density (a measure of how tightly connected the geneset is within it-
self) and segregation (a measure of how isolated the geneset is from
the rest of the network). While the performance of neither SL-A nor
LP-I has a strong association with the size of the geneset, the

Fig. 3. Testing for a statistically significant difference between SL and LP methods.

(A) A key on interpreting the analysis. For each network–geneset combination, each

method is compared to the two methods from the other class (i.e. SL-A versus LP-I,

SL-A versus LP-A, SL-I versus LP-I, SL-I versus LP-A). If a method was found to be

significantly better than both methods from the other class (Wilcoxon ranked-sum

test with an FDR threshold of 0.05), the cell is annotated with that method. If both

models in that class were found to be significantly better than the two methods in

the other class, the cell is annotated in bold with just the class. The color scale repre-

sents the fraction of genesets that were higher for the SL methods across all four

comparisons. The first column uses GOBP temporal holdout, whereas the remaining

six columns use study-bias holdout. (B) SL methods show a statistically significant

improvement over LP methods, especially for function prediction

A

B

Fig. 4. Boxplots for performance across all geneset-collection–network combina-

tions. (A)The performance for each individual geneset-collection–network combin-

ation is compared across the four methods; SL-A (red), SL-I (light red), LP-I (blue)

and LP-A (light blue). The methods are ranked by median value with the highest

scoring method on the left. Results show SL methods outperform LP methods, espe-

cially for function prediction. (B) Each point in the plot is the median value from

one of the boxplots in (A). This shows that both SL and LP methods perform better

for function prediction compared to disease/trait prediction. (Color version of this

figure is available at Bioinformatics online.)
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performance of SL-A has a strong positive correlation with both
edge density and segregation of the geneset, similar to what is seen
for LP-I (Fig. 5). For visual clarity, Figure 5 presents results for just
the STRING network, but very similar results are seen in the other
networks as well (Supplementary Fig. S9). Detailed information on
how the geneset and network properties are calculated can be found
in the Supplementary Section 1.3.

Finally, since machine learning on node embeddings is gaining
popularity for network-based node classification, we compared the
top SL and LP methods tested here to this approach. Specifically, we
compared LP-I and SL-A to an SL method using embeddings (SL-E)
obtained from the node2vec algorithm (Grover and Leskovec, 2016)
(Fig. 6). For function prediction, we observe that SL-E substantially
outperforms LP-I. For GOBP temporal holdout, SL-E is always sig-
nificantly better than LP-I. For the GOBP and KEGGBP study-bias
holdout, out of the 10 geneset-collection–network combinations,
SL-E is significantly better than LP-I 5 times (50%), whereas the
converse is true only once (10%). These patterns nearly reverse for
the 20 disease/trait prediction tasks, with LP-I performing signifi-
cantly better than SL-E 6 times (30%), and SL-E significantly out-
performing LP-I 3 times (15%). The comparison between SL-E and
SL-A showed that SL-A demonstrably outperforms SL-E for both
function and disease/trait prediction tasks. Among the 30 geneset-
collection–network combinations, SL-A is a significantly better
model 20 times (67%), whereas SL-E comes out on top just once

(3%). This shows that although methods that use node embeddings
are a promising avenue of research, they should be compared to the
strong baseline of SL-A when possible.

4 Discussion

We have conducted the first comprehensive benchmarking of SL for
network-based gene classification, establishing it as a leading ap-
proach.. Further, to the best of our knowledge, neither the studies
that propose new methods nor those that systematically compare
existing approaches have directly compared the two classes of meth-
ods—SL and LP—against each other. Our work provides this sys-
tematic comparison and shows that SL methods demonstrably
outperform LP methods for network-based gene classification, par-
ticularly for function prediction.

Both SL and LP methods are, in general, more accurate for func-
tion prediction than disease and trait prediction. This trend is likely
due to the fact that molecular interaction networks are primarily
intended, either through curation or reconstruction, to reflect
biological relationships between genes/proteins as they pertain to
‘normal’ cellular function. The utility of network connectivity to
gene–disease or gene–trait prediction is incidental to the information
the network holds about gene–function associations. This notion is
supported by the observation that genesets related to function gene-
sets are more tightly clustered than disease and trait genesets in the
genome-wide molecular networks used in this study (Supplementary
Fig. S3). Further analysis of prediction accuracy of genesets as a
function of their network connectivity lends credence to the use of
network structure by SL (Fig. 5 and Supplementary Fig. S9). Part of
LP’s appeal, widespread use and development is this natural use of
network topology to predict gene properties by diffusing informa-
tion from characterized genes to uncharacterized genes in their net-
work vicinity. Therefore, we expect that genes associated with

A

B

C

D

E

F

Fig. 5. Performance versus network/geneset properties. SL-A (A–C) is able to cap-

ture network information as efficiently as LP-I (D–F), for the STRING network.

There is no correlation between the number of genes in the geneset versus perform-

ance (A, D), but there is a strong correlation between the performance and the edge

density (B, E) as well as segregation (C, F). The different colored dots represent

function genesets (red, GOBP and KEGGBP), disease genesets (blue, DIGenet and

BeFree) and trait genesets (black, GWAS and MGI). The vertical line is the 95%

confidence interval. Similar trends can be seen for the other networks

(Supplementary Fig. S9). (Color version of this figure is available at Bioinformatics

online.)

A

B

Fig. 6. Performance of SL-E versus LP-I and SL-A. We compare the performance of

SL on the embedding matrix (SL-E) versus LP-I and SL-A using a Wilcoxon ranked-

sum test. The performance metric is auPRC, the color scale represents the fraction

of terms that were higher for the SL-E model (with purple meaning that SL-E had a

higher fraction of better performing genesets compared to either LP-I or SL-A) and

an ‘x’ signifies that the P-value from the Wilcoxon test was below 0.05. (A) Shows

that SL-E is quite competitive with the classic method of LP-I and (B) shows that

SL-A outperforms SL-E in a majority of cases. (Color version of this figure is avail-

able at Bioinformatics online.)
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tightly clustered pathways, traits or diseases will be easier to predict
using LP, which is observed in our analysis (Fig. 5 and
Supplementary Fig. S9). On the other hand, since SL (based on the
full network) is designed to use global gene connectivity, it has been
unclear if there is any association between the local clustering of
genesets and their prediction performance using SL. Here, we show
that the performance of SL, across networks and types of prediction
tasks, is highly correlated with local network clustering of the genes
of interest (Fig. 5 and Supplementary Fig. S9). This result substanti-
ates SL as an approach that can accurately predict gene attributes by
taking advantage of local network connectivity.

While being accurate, training a SL model on the adjacency ma-
trix (SL-A) can take some computational time and resources as the
size of the molecular network increases, thus, considerably differing
in speed for, say, STRING-EXP (14 089 nodes and 141 629
unweighted edges) and GIANT-TN (25 689 nodes and 38 904 929
weighted edges). Worthy of note in this context is the recent excite-
ment in deriving node embeddings for each node in a network, con-
cisely encoding its connectivity to all other nodes, and using them as
features in SL algorithms for node classification (Cai et al., 2018;
Cui et al., 2018; Goyal and Ferrara, 2018; Grover and Leskovec,
2016; Hamilton et al., 2017; Perozzi et al., 2014; Wang et al.,
2016). Although we show that SL-A markedly outperforms SL-E
(Fig. 6), the unique characteristics of SL-E methods call for further
exploration. For instance, the greatly reduced number of features
allows SL-E methods to be more readily applicable to classifiers
more complex than logistic regression, such as deep neural net-
works, which are typically ill-suited for problems where the number
of features is much greater than the number of training examples.
Further, since the reduced number of features allow SL-E methods
to be trained orders of magnitude faster than SL-A or SL-I, they can
be easily incorporated into ensemble learning models, which com-
bine the results from many shallow learning algorithms. Akin to LP
(Valdeolivas et al., 2019; Warde-Farley et al., 2010; Zhao et al.,
2019), node embeddings also offer a convenient route to incorporat-
ing multiple networks into SL approaches. While methods such as
SL-I and SL-A may require concatenating the original networks or
integrating them into a single network before learning, recent work
has shown that SL-E-based methods can embed information from
multiple molecular/heterogeneous networks and learn gene classi-
fiers in tandem (Alshahrani and Hoehndorf, 2018; Ata et al., 2018;
Bai et al., 2019; Cho et al., 2016; Gligorijevi�c et al., 2018; Li et al.,
2019b; Nelson et al., 2019; Yang et al., 2018; Zitnik and Leskovec,
2017). However, none of these studies have compared the variety of
SL-E methods to learning directly on the adjacency matrix. Given
our finding here that SL-A greatly outperforms SL-E for function,
disease and trait prediction, we advise and urge that every new SL-E
method should be compared to SL-A for network-based gene
classification.

In past work, SL methods for gene classification have mostly
relied on hand-crafting features from graph-theory metrics, such as
degree and centrality measures, or combining metrics to expand the
feature set, resulting in a feature set size of �30 or less (Li et al.,
2019a; Zhang et al., 2016). We do not include a comparison to
these types of methods in this study because predicting genes to
functions or diseases based on generic network metrics, such as high
degree, does not capture anything unique about specific functions or
diseases. On the other hand, SL models with individual genes as fea-
tures contain information biologically relevant to the specific predic-
tion task (Lee et al., 2013, 2019).

Critical to all these conclusions is the rigorous preparation of di-
verse, specific prediction tasks and the choice of meaningful valid-
ation schemes and evaluation metrics. Temporal holdout and study-
bias holdout validations help faithfully capture the performance of
the computational methods when a researcher uses them to priori-
tize novel uncharacterized genes in existing molecular networks for
experimental validation based on a handful of currently known
genes. Although we provide all the results for the auROC metric in
the Supplementary Materials for completion (Supplementary Figs
S4, S5 and S8), we base our conclusions on metrics driven by preci-
sion: auPRC and P@topK. While auROC is still commonly used in

genomics, it is ill-suited to most biological prediction tasks including
gene classification since they are highly imbalanced problems, with
negative examples far outnumbering positive examples (Saito and
Rehmsmeier, 2015). Optimizing for precision-based metrics, on the
other hand, helps control for false-positives among the top candi-
dates (Davis and Goadrich, 2006), an important consideration when
providing a list of candidate genes for further study. Accompanying
the results in this manuscript, we are providing our comprehensive
evaluation framework in the form of data—networks, prediction
tasks and evaluation splits—on Zenodo and the underlying code on
Github to enable other researchers to not only reproduce our results
but also to add new network-based gene classification methods for
comparison. Together, the data and the code provide the community
a systematic framework to conduct gene classification benchmark-
ing studies. See ‘Availability of data and materials’ for more
information.

In this study, we have presented conclusive evidence that SL is an
accurate method for gene classification. However, there exist many
possible avenues for future exploration including studying how
negative example selection affects gene classification. Although
negative example selection has been studied for function prediction
in a few studies (Youngs et al., 2013, 2014), there is room for ex-
haustive testing of how to best generate and incorporate negative
examples for gene classification in both LP and SL methods. To
begin to address this, we included an analysis using negative exam-
ples for LP (Supplementary Section 2.3 and Figs S11–S14), where
we show using negative examples slightly improves the performance
of LP models, but not enough to change any of the findings in this
work. Another avenue of exploration is performing a large model se-
lection and hyperparameter tuning benchmarking study, including
more non-linear models and embedding techniques. Lastly, it will be
of interest to try network-based SL on other types of tasks, such as
predicting enhancer roles in gene regulatory networks or predicting
amino acid residue properties from 3D protein structures.

In conclusion, we have established that SL outperforms LP for
network-based gene classification across networks and prediction
tasks (functions, diseases and traits). We show that SL, in which
every gene is its own feature, is able to capture network information
just as well as LP. Finally, we show that SL-A demonstrably outper-
forms SL using node embeddings, and thus we strongly recommend
that future work on using node embeddings for gene classification
draws a comparison to using SL-A.
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