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Abstract
Triticale is a cereal of high economic importance; however, along with the increase in the area of this cereal, it is more often 
infected by the fungal pathogen Blumeria graminis, which causes powdery mildew. The rapid development of molecular 
biology techniques, in particular methods based on molecular markers may be an important tool used in modern plant 
breeding. Development of genetic maps, location of the QTLs defining the region of the genome associated with resistance 
and selection of markers linked to particular trait can be used to select resistant genotypes as well as to pyramidize several 
resistance genes in one variety. In this paper, we present a new, high-density genetic map of triticale doubled haploids (DH) 
population “Grenado” × “Zorro” composed of DArT, silicoDArT, and SNP markers. Composite interval mapping method 
was used to detect eight QTL regions associated with the area under disease progress curve (AUDPC) and 15 regions with 
the average value of powdery mildew infection (avPM) based on observation conducted in 3-year period in three different 
locations across the Poland. Two regions on rye chromosome 4R, and single loci on 5R and 6R were reported for the first 
time as regions associated with powdery mildew resistance. Among all QTLs, 14 candidate genes were identified coded 
cyclin-dependent kinase, serine/threonine-protein kinase-like protein as well as AMEIOTIC 1 homolog DYAD-like protein, 
DETOXIFICATION 16-like protein, and putative disease resistance protein RGA3. Three of identified candidate genes were 
found among newly described QTL regions associated with powdery mildew resistance in triticale.
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Introduction

Triticale (xTriticosecale Wittm.) is a human-made wheat-
rye hybrid commercialized in the late 1960s (Ammar et al. 
2004). Currently cultivated, hexaploid triticale (2n = 6x = 42, 
AABBRR) accumulates important traits determined by 
wheat (A and B) and rye (R) genomes (Walker et al. 2011; 

Klocke et al. 2013). In the last years, triticale has raised 
its economic importance mainly in Europe. Poland with 
triticale cultivation area of 1.3 million ha contribute to 1/3 
of world production and remains the top producer of this 
crop (Faostat 2020). Simultaneously, risk of infection by the 
biotrophic fungal pathogen Blumeria graminis (DC.) Speer 
which causes powdery mildew has recently increased.

The epidemic appearance of powdery mildew on trit-
icale has been observed in several European countries, 
including Belgium, France, Germany, and Poland as well 
(Walker et al. 2011). An epidemics of powdery mildew 
causes yield drop and requires preventive use of fungi-
cides. The cultivation of triticale varieties resistant to 
pathogenic fungi offers the most economical and envi-
ronmentally friendly alternative to chemical protection. 
So far, 50 loci with more than 78 genes/alleles associ-
ated with powdery mildew resistance have been identi-
fied on 18 chromosomes of bread wheat and its relatives 
(Yang et al. 2017) and only 8 resistance genes have been 
identified in rye (Tyrka and Chelkowski 2004; Schlegel 
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and Korzun 2021). Many of these resistance genes were 
broken down by the new races of B. graminis (Menardo 
et al. 2016), and triticale can benefit both from genes pre-
sent in rye and introduced into wheat from alien species 
(Tyrka and Chelkowski 2004; Alam et al. 2013; Schlegel 
and Korzun, 2021).

Techniques based on DNA molecular markers has 
become an indispensable tool in modern plant breeding 
used to monitor introgression and for accumulation of 
desired genes in breeding materials (Yang et al. 2015). A 
number of methods based on DNA hybridization (Jaccoud 
et al. 2001; Cavanagh et al. 2013; Jordan et al. 2015) and 
next generation sequencing (Vikram et al. 2016; Riaz et al. 
2016; Baloch et al. 2017) have been developed and used 
for wheat or triticale genotyping. Recently, sequencing 
efforts resulted in assembling of wheat and rye genome 
(IWGSC 2014, 2018; Bauer et al. 2017; Rabanus-Wallaceet 
al. 2021). However, in species with sequenced genomes, 
genetic maps are useful for detecting chromosomal rear-
rangements (Wingen et al. 2017) and necessary for quan-
titative trait loci (QTLs) localization (Vinod 2009; Holtz 
et al. 2016). Therefore, a number of genetic maps have 
already been developed for wheat (Somers et al. 2004; 
Mantovani et al. 2008), rye (Korzun et al. 2001; Milczarski 
et al. 2011), and triticale (Alheit et al. 2011; Tyrka et al. 
2011, 2015; Karbarz et al. 2020; Wąsek et al. 2021).

The aims of this study were to (1) develop a high-den-
sity genetic map for hexaploid winter triticale composed of 
diversity arrays technology (DArT), silicoDArT, and DArT-
based single nucleotide polymorphism (SNP) markers using 
DH population of lines derived from two triticale cultivars 
and (2) identify QTL regions and candidate genes respon-
sible for an adult-plant resistance of triticale (xTriticose-
cale Wittm.) to powdery mildew infection in natural field 
conditions.

Materials and methods

Experimental population

The mapping population used in this study consisted 168 
doubled haploid (DH) lines derived from F1 hybrid “Gre-
nado” × “Zorro.” “Grenado” was resistant parent and 
“Zorro” was highly susceptible to infection of B. graminis. 
These cultivars were registered by Strzelce Plant Breeders 
Ltd (Plant Breeding and Acclimatization Institute Group, 
Poland) and Danko Plant Breeders Ltd, respectively. The 
DH lines were obtained at the Department of Cell Biology 
of Institute of Plant Physiology Polish Academy of Science 
(IPP PAS) in Kraków by the anther culture method accord-
ing to Wędzony (2003).

Plant growth conditions and phenotyping

For the first year of field experiment, lines were repro-
duced in greenhouse and healthy leaves were sampled for 
DNA isolation. Seeds of parental lines and each DH line 
were germinated in plastic pots (3.7 dm3; nine seeds per 
pot), previously filled with a homogeneous mixture of sand 
and soil (3:1; v/v). The pots were placed for 8 weeks in a 
cool chamber at 4 °C (± 1 °C), photoperiod 10-h light/14-h 
dark. Next, the plants were transferred into a greenhouse 
chambers with air temperature 26–28/18  °C (± 2  °C) 
day/night and relative air humidity 40%. All plants 
were irrigated once a week with a Hoagland’s solution 
(Hoagland 1948). The seeds were obtained from individ-
ual DH lines and their parents from bagged spikes in the 
greenhouse in the IPP PAS in Kraków. Seed material for 
the second and the third year of experiment was obtained 
in field conditions in Danko Plant Breeders Ltd by isola-
tion of five spikes per each DH line before flowering.

Powdery mildew (PM) resistance was assessed in field 
conditions for three years (2013–2015) in three localiza-
tions spread across Poland: Choryń (52° 2′ 26″ N 16° 46′ 
59″ E; all three seasons), Laski (51° 47′ N 21° 12′ E; sea-
son 2012/2013 and 2013/2014) and Modzurów (50° 9′ 20″ 
N 18° 7′ 52″ E; season 2014/2015). The lines were sown in 
two 1-m long rows at the 20 × 2.5 cm spacing. Susceptible 
cultivar “Zorro” was sewed as spreader every 20 plots. The 
chemical protection was not applied during plant growth 
and powdery mildew infection was measured under natural 
infection. Disease was assessed on a whole plot basis using 
a 0–9 scale (McNeal et al. 1971), where 0 is immune and 9 
is very susceptible (Ziems et al. 2014). Observations were 
made in periods of heading, flowering, and seed forma-
tion. Depending on the weather conditions during field 
experiments (high temperature and drought) which led to 
death of some plants, field observations of the PM degree 
were conducted in one, two, or three stages. Data which 
were recorded 3 times during one vegetative season in 
Choryń were used to calculate area under disease progress 
curve (AUDPC) (Shaner and Finney 1977; Finckh et al. 
1999; Jeger and Viljanen-Rollinson 2001), whereas data 
recorded once or 2 times were used to determine the aver-
age value of powdery mildew infection (avPM) according 
to the 9-grade scale.

DNA isolation and genotyping

Genomic DNA was isolated from a 90- to100-mg sample 
of two leaves per each DH line and both parents. The sam-
ples were frozen in liquid nitrogen and stored at − 60 °C 
until the isolation was made. Total genomic DNA isolation 
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for each sample was carried out using the GeneJET Plant 
Genomic DNA Purification Mini Kit (Thermo Scientific, 
Waltham, USA). The concentration and purity of the DNA 
was evaluated using a UV–Vis Q500 (Quawell, San Jose, 
USA) spectrophotometer. DNA was sent to Diversity 
Arrays Technology (Yarralumla, Australia) both for pro-
filing using triticale high -resolution array (DArT) with 
probes representing markers from rye, wheat, and triticale 
(rPt, wPt, and tPt, respectively) and for DArTseq analysis.

Construction of the genetic map

De novo mapping approach was used to construct genetic 
map for “Grenado” × “Zorro” DH population. Markers of 
unknown parental origin and present the frequency < 5% 
and > 95% were removed from the dataset. All types of 
DArT markers were binned with QTL IciMapping (Wang 
et al. 2016). Segregation data were analyzed using JoinMap4 
(Van Ooijen 2006) to group all markers using the logarithm 
of odds (LOD) > 3. Markers within these groups were recur-
rently ordered using the maximum likelihood option of Join-
Map and the RECORD program (Van Os et al. 2005). To 
establish the marker order, all linkage groups identified for 
“Grenado” × “Zorro” DH population were compared to ref-
erence genetic maps of triticale (Tyrka et al. 2015), reference 
genome of wheat at URGI (https://​urgi.​versa​illes.​inra.​fr) and 
partial rye genome (Bauer et al. 2017).

Statistical, QTL, and candidate genes analysis

Mean values from all observations were used to calculate 
the Pearson’s correlations. The Shapiro–Wilk test was per-
formed to assess deviations from a normal distribution as 
well as skewness and kurtosis were calculated using Statis-
tica version 12.0 (StatSoft, Inc. USA). High-density genetic 

map and complete phenotyping data of the degree of pow-
dery mildew infection intriticale were exploited in QTL 
analysis using WinQTLCartographer2.5 software (Wang 
et al. 2012). Composite interval mapping (CIM) analysis 
with a 1000-permutation test and walk speed of 1.0 cM were 
performed to declare a significant QTL. The LOD thresh-
old was between 2.1 and 8.3 depending on the trait. The 
percentage of the phenotypic variation covered by QTL 
was calculated with a single factor regression (R2) and the 
favorable alleles in each QTL region were selected, based 
on the additive (Add) effect (negative additive effect refers 
to cv. “Zorro” while positive to cv. “Grenado”). Candidate 
genes analysis was performed according to method detailed 
described by Wąsek et al. (2021). 

Results

Phenotypic analysis

Phenotypic variation in powdery mildew infection was 
assessed for all lines of the “Grenado” × “Zorro” DH pop-
ulation and for both parental lines in Choryń, Laski, and 
Modzurów during all three vegetative seasons (Table 1, 
Fig. S1). According to Shapiro–Wilk test, distributions of 
AUDPC and avPM values over locations and seasons not 
deviated significantly from a normal distribution. Skewness 
and kurtosis values also confirmed the proper distribution 
of observations for the experiments (Table 1). AUDPC val-
ues varied significantly depending on the year of experi-
ment. Although, maximum values of AUDPC between years 
were similar and amounted to 2675.6 and 2530.6, different 
dynamics of disease development was observed and mini-
mum AUDPC values ranged from 65.2 and 1678.3 in 2015 
and 2013, respectively. Average avPM values ranged from 

Table 1   The values range of powdery mildew resistance measured in 
9-grade scale for all 168 DH lines of “Grenado” × “Zorro” mapping 
population evaluated in all localizations in three years, mean value 

and standard deviation, the normality test using Shapiro–Wilk statis-
tics as well as skewness and kurtosis values

Exp. location Exp. season Exp. term Trait Minimum–maximum Mean value ± SD Normality Skewness Kurtosis

Choryń 2013 1 AUDPC 1678.3–2675.6 2196.1 ± 185.6 0.98  − 0.5532  − 0.1012
2 0.96 0.6779 0.0929
3 0.85 0.7487  − 0.0256

2014 1 avPM 2.0–8.0 5.6 ± 1.2 0.89  − 0.3021 0.0314
2015 1 AUDPC 0.97  − 0.5442 0.7658

2 65.2–2530.6 760.6 ± 481.1 0.96  − 0.3177 0.2544
3 0.98 0.1285 0.8870

Laski 2014 1 avPM 2.0–8.0 5.2 ± 1.6 0.96 0.2154  − 0.8918
2 1.0–7.0 3.3 ± 1.4 0.98 0.3913  − 0.4199

2015 1 avPM 1.0–7.0 3.9 ± 1.4 0.95 0.1573  − 0.4424
Modzurów 2015 1 avPM 3.0–7.0 5.7 ± 0.9 0.98  − 0.8587 0.3902
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3.3 to 5.7 (Table 1). Besides, statistically significant highly 
positive correlations between different powdery mildew 
scores were found within locations that reflect disease pro-
gression. Powdery mildew distribution for Choryń in 2015 
was significantly, positively correlated also with observa-
tions in Modzurów and Laski (Table 2).

The “Grenado” × “Zorro” linkage map

A total of 1891 unique markers (1443 silicoDArT, 326 
DArT, and 122 SNP) were assigned to 21 linkage groups 
corresponding to all triticale chromosomes (Table S1). How-
ever, for chromosomes 7A and 1B, additional separate link-
age groups were discerned (7A.1 and 1B.1, respectively). 
These groups were left separate because combining them 
into a single linkage group was connected with the inser-
tion of large gaps (above 30 cM). The genetic linkage map 
spanned 5249.9 cM with average marker density of 2.8 cM 
(Table 3). The A, B, and R genomes covered total distances 
of 1556.0, 1906.9, and 1787.0 cM, respectively. The A 
genome had the fewest markers assigned (538) and the high-
est markers saturation (3.0) comparing to the other triticale 
genomes. The total number of markers assigned the B and R 
genomes was 691 and 662, respectively with the correspond-
ing maps saturation of 2.7 and 2.8 (Table 3).

Detection of QTLs for powdery mildew resistance 
in triticale in all seasons and localizations

QTLs were calculated from the mean values of data 
obtained for each experiment separately. Identification of 
QTL associated with powdery mildew infection was car-
ried out based on the genetic map created de novo for the 
“Grenado” × “Zorro” DH population. Composite inter-
val mapping (CIM) identified total of 23 QTLs with LOD 

values ≥ 2.0 on 6 wheat (A and B) chromosomes: 4A, 7A, 
7A.1, 2B, 3B, and 7B and 10 on rye (R) chromosomes: 1R, 
4R, 5R, and 6R (Table 4, Fig. S2, Fig. S3).

Loci associated with AUDPC evaluated in Choryń in 
2013 and 2015 were located on chromosomes 7A, 7A.1, 
4R, and 6R (Table 4, Fig. S2, Fig. S3). Those loci explained 
up to 15.2% and 16.2% of phenotypic variation for Qpm.
gz.4R.1 and Qpm.gz.7A1.1 respectively. The highest LOD 
values were observed for Qpm.gz.4R.1 (6.8), Qpm.gz.7A1.1 
(6.8 and 5.7), and Qpm.gz.7B.2 (6.5, Table 4). Also, com-
mon QTL regions for both AUDPC measured in 2013 and 
2015 were found on chromosomes 4R and 7A.1. Locus Qpm.
gz.4R.1 was co-located with Qpm.gz.4R.6 on chromosome 
4R between 60.5 cM and 68.9 cM as well as Qpm.gz.7A1.1 
with Qpm.gz.7A1.4 on chromosome 7A.1 between 5.9 and 
16.3 cM (Table 4, Fig. S2, Fig. S3).

The avPM which was measured within 2-year time period 
in three different locations revealed total of 15 loci associ-
ated with that trait on chromosomes 4A, 7A.1, 2B, 3B, 7B, 
1R, 4R, 5R, and 6R (Table 4, Fig. S2, Fig. S3). Among of all 
15 loci, the most significant QTLs are those stable over years 
and locations. On chromosome 7A.1, loci Qpm.gz.7A1.2 and 
Qpm.gz.7A1.5 were detected for avPM measured in Choryń 
location in 2014 and Laski in 2015 (Table  4, Fig. S2). 
These QTLs covered the same region on 7A.1 chromosome 
(5.9–29.8 cM) and explained 15.2% of phenotypic variation 
for Qpm.gz.7A1.5 (Table 4). On chromosome 7B loci, Qpm.
gz.7B.1 and Qpm.gz.7B.3 were detected between 174.3 and 
190.2 cM in Choryń 2014 and Modzurów 2015 (Table 4, 
Fig. S2). It explained up to 17.3% of phenotypic variation 
and also, the same markers have peaked to the maximum 
LOD position (4,344,428 and 3,623,588). Additionally, on 
rye chromosome 5R one QTL Qpm.gz.5R.1 was identified. 
This locus was composed of three regions—between 0.0 and 
34.6 cM, 45.7–60.5 cM and 95.2–109.7 cM but all of them 

Table 2   The Pearson’s correlation between mean values of powdery 
mildew resistance measured in 9-grade scale for all 168 DH lines of 
“Grenado” × “Zorro” mapping population evaluated in all localiza-

tions in three years (Ch, L, M—locations Choryń, Laski, and Mod-
zurów respectively; 2013, 2014, 2015—season of experiments; 1, 2, 
3—terms of observations)

*, **, *** Significant at P < 0.05, P < 0.01 and P < 0.001, respectively.

Ch 2013_1 Ch 2013_2 Ch 2013_3 Ch 2014_1 Ch 2015_1 Ch 2015_2 Ch 2015_3 L 2014_1 L 2014_2 L 2015_1

Ch 2013_2 0.5117 **
Ch 2013_3 0.4165 ** 0.8097 ***
Ch 2014_1  − 0.0857 0.0013  − 0.0942
Ch 2015_1  − 0.1969 -0.0642  − 0.0882 0.6687 **
Ch 2015_2  − 0.1403 0.0142  − 0.0271 0.6772 ** 0.9451 ***
Ch 2015_3  − 0.2169 *  − 0.0277  − 0.0725 0.6236 ** 0.8992 *** 0.9114 ***
L 2014_1 0.0181 0.1149 0.0159 0.7870 *** 0.4849 ** 0.5422 ** 0.4970 **
L 2014_2  − 0.1574 0.0687 0.0203 0.5787 ** 0.5568 ** 0.5848 ** 0.6085 *** 0.5903**
L 2015_1  − 0.0309  − 0.1757 *  − 0.2088 * 0.3550 * 0.5059 ** 0.4698 ** 0.4554 ** 0.2052 * 0.2537 *
M 2015_1  − 0.1110  − 0.2993 *  − 0.3308 * 0.3089 * 0.4912 ** 0.4352 ** 0.4770 ** 0.0780 0.2680 * 0.6529 **
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have a very similar additive effects and phenotypic variation 
(Table 4). Therefore, Qpm.gz.5R.1 can be considered as one 
locus with effect split into three parts.

Candidate genes for adult‑plant resistance

Fourteen candidate genes were detected within 11 QTL 
regions identified in this study on chromosomes: 7A (3), 
2B (1), 3B (2), 7B (2), 1R (1), 4R (1), 5R (3), and 6R (1) 
(Table 5). Among them, two gene records were repeated 
in different experiments. The first gene encoding GDSL 
esterase/lipase At4g28780-like (LOC119328445) was 
identified within Qpm.gz.7A1.1, Qpm.gz.7A1.2, and Qpm.
gz.7A1.5 found for AUDCP Choryń 2013, avPM Choryń 
2014, and avPM Laski 2015 experiments. The second 
gene encoding CLAVATA3/ESR (CLE)-related protein 
3-like (LOC119335261) was common for Qpm.gz.4R.2 
and Qpm.gz.4R.5. The four other candidate genes from 
QTLs Qpm.gz.6R.1, Qpm.gz.1R.1, Qpm.gz.3B.2, and Qpm.
gz.7B.3 coded different kinases like cyclin-dependent kinase 

A-2-like (LOC119314733), G-typelectin S-receptor-likeser-
ine/threonine-protein kinase At2g19130 (LOC119294828), 
receptor-like protein kinase At3g47110 (LOC119266893) as 
well as serine/threonine-protein kinase-like protein ACR4 
(LOC119325260), respectively. The remaining genes 
encoded: protein AMEIOTIC 1 homolog DYAD-like pro-
tein (LOC119308950), protein DETOXIFICATION 16-like 
(LOC119339835), putative disease resistance protein RGA3 
(LOC119347815), sodium transporter HKT7-A1, unchar-
acterized F-box family protein (LOC109735658), unchar-
acterized ATP-dependent protease ATP asa subunit HslU 
(LOC119311530) as well as two uncharacterized proteins 
LOC109764755 and LOC113333611 (Table 5).

Discussion

Based on de novo mapping using unique silicoDArT, DArT, 
and SNP set of markers, the genetic map for triticale was 
constructed. This map was used to locate quantitative trait 

Table 3   Summary of 
“Grenado” × “Zorro” linkage 
map containing silicoDArT, 
DArT, and SNP markers

Genome Linkage group Chrom. 
length (cM)

No. of markers Markers 
satura-
tionSilicoDArT DArT SNP All

A 1A 249.5 49 12 19 80 3.2
2A 212.8 52 4 11 67 3.2
3A 184.4 44 11 7 62 3.0
4A 162.5 47 9 3 59 2.8
5A 197.6 48 3 13 64 3.1
6A 298.9 95 11 7 113 2.7
7A 152.5 47 12 2 61 2.5
7A.1 97.8 24 5 3 32 3.2

A genome 8 1556.0 406 67 65 538 3.0
B 1B 157.4 53 4 4 61 2.6

1B.1 28.5 14 3 0 17 1.8
2B 335.0 103 21 10 134 2.5
3B 368.4 92 28 9 129 2.9
4B 117.7 29 7 3 39 3.1
5B 365.9 102 20 12 134 2.8
6B 333.6 89 18 5 112 3.0
7B 200.4 44 15 6 65 3.1

B genome 8 1906.9 526 116 49 691 2.7
R 1R 156.8 52 15 2 69 2.3

2R 143.6 31 17 0 48 3.1
3R 176.1 53 14 0 67 2.7
4R 306.1 86 21 0 107 2.9
5R 320.2 95 20 2 117 2.8
6R 571.7 168 46 3 217 2.6
7R 112.5 26 10 1 37 3.1

R genome 7 1787.0 511 143 8 662 2.8
Total 23 5249.9 1443 326 122 1891 2.8
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Table 4   Characteristics of the quantitative traits loci associated with powdery mildew resistance in triticale located for AUDCP and avPM evalu-
ated in all locations in all experimental years

QTL name Flanking markers (position in cM) LOD LOD max. 
position (in 
cM)

Marker closest 
to the LOD peak

R2 (%) Add Favorable allele

AUDCP Choryń 2013
Qpm.gz.4R.1 3624369: 3614262

(60.5: 93.7)
6.8 61.1 4372141 15.2 207.82 G
4.2 85.6 4354376 8.5  − 165.24 Z

Qpm.gz.4R.2 3622032: 3608596
(161.9: 217.2)

2.4 170.9 4200528 4.5 42.95 G

Qpm.gz.7A1.1 3046658: 4343552
(5.9: 29.8)

5.7 6.4 4371107 14.5 76.11 G
6.8 18.9 4358018 16.2 79.88 G

avPMChoryń 2014
Qpm.gz.4R.3 rPt-400377: rPt-401230

(104.8: 116.4)
5.3 105.7 rPt-401239 13.6  − 0.46 G

Qpm.gz.6R.1 4341045: rPt-506054
(55.8: 77.1)

3.4 67.0 3608346 7.9 -0.34 Z

Qpm.gz.7A1.2 3046658: 4343525
(5.9: 29.8)

2.1 6.4 4371107 5.9  − 0.31 Z

Qpm.gz.7B.1 4339655: 3606676
(162.5: 190.2)

2.3 177.6 4344428 5.3  − 0.33 Z
3.5 181.4 3623588 8.6  − 0.39 Z

avPM Laski 2014
Qpm.gz.1R.1 4353991: 3609994

(67.3: 91.2)
3.9 70.1 4342196 6.2 0.43 G
4.1 80.3 3041555 7.4 0.47 G

Qpm.gz.4R.4 3612451: 4342913
(58.1: 68.9)

5.6 61.6 4372141 9.2 0.55 G

Qpm.gz.4R.5 3622032: rPt-400365
(161.9: 189.7)

4.2 161.9 3622032 7.1 0.44 G
5.5 175.2 4347207 8.8 0.49 G

Qpm.gz.5R.1 4357257: 4218107
(95.2: 109.7)

2.8 115.5 4206452 4.4  − 0.43 Z

4357414: rPt-401500
(45.7: 60.5)

3.1 50.7 3614922 4.3  − 0.41 Z

4352431: 4348906
(0.0: 34.6)

3.0 21.8 4349220 4.2  − 0.38 Z
3.0 2.0 4348000 4.2  − 0.40 Z

Qpm.gz.7A1.3 4364739: wPt-0494
(69.4: 76.4)

8.3 70.3 4350780 14.4 0.64 G

AUDCP Choryń 2015
Qpm.gz.4R.6 3612451: 4342913

(58.1: 68.9)
5.2 65.0 3610370 11.7  − 196.2 Z

Qpm.gz.6R.2 rPt-411293: 4354701
(203.2: 222.7)

3.3 203.2 rPt-411293 11.1 166.6 G
3.0 215.5 4341667 6.4 137.2 G

Qpm.gz.7A.1 4210062: 4221410
(33.0: 43.0)

2.7 34.0 4344186 5.8  − 141.3 Z

Qpm.gz.7A1.4 wPt-6147: wPt-0745
(0.0: 16.3)

4.6 6.4 4371107 10.8  − 179.3 Z

Qpm.gz.7B.2 4360157: 4220857
(179.5: 185.1)

6.5 181.4 3623588 14.9 216.2 G

avPM Laski 2015
Qpm.gz.2B.1 wPt-4072: 4366322

(308.9: 335.0)
2.6 308.9 wPt-4072 8.4 0.43 G
3.0 326.2 4357651 7.7 0.43 G

Qpm.gz.3B.1 3608740: wPt-1159
(93.2: 115.3)

2.1 94.5 3610490 5.7  − 0.35 Z
2.5 105.5 4344791 5.9  − 0.36 Z

Qpm.gz.7A1.5 3046658: 4343552
(5.9: 29.8)

4.8 18.9 4358018 15.2 0.60 G

avPMModzurów 2015
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loci (QTL) associated with powdery mildew infection which 
was measured in a field conditions during 3-year period in 
three different locations across the Poland.

The genetic map created for “Grenado” × “Zorro” DH 
population was composed of 1891 markers assigned to 21 
chromosomes which corresponds to triticale genome. The 
majority of this map was constructed of unique 1443 sili-
coDArT markers with 326 DArT and 122 SSR markers. 
DArT technique which is quick and highly reproducible can 
produce thousands of polymorphic loci in a single assay 
(Wenzl et al. 2004; Alam et al. 2018) that is why is widely 
used in genetic map construction for multiple crop species 
(Nsabiyera et al. 2020). However, DArT markers differ in 
intensity which may have an impact in some applications 
(Bolibok-Brągoszewska et  al. 2009) that is why, a new 
genotyping technique, SNP chips has been developed and 
designed for a large number of SNPs (Nsabiyera et al. 2020; 
von Thaden et al. 2020). SNP chip method enables identi-
fication of quantitative trait loci (QTL) for different traits 
in various plant species (Ballesta et al. 2020; von Thaden 
et al. 2020). The total length of genetic map described in 
this paper was 5249.9 cM with the mean markers saturation 
2.8 (3.0 for A, 2.7 for B, and 2.8 for R genome). Up to date, 
not many genetic maps were constructed and described for 
triticale (González et al. 2005; Alheit et al. 2011; Tyrka et al. 
2011, 2015, 2018; Karbarz et al. 2020; Wąsek et al. 2021). 
The results of total marker number and mean map density are 
very similar to the genetic map of “Saka3006” × “Modus” 
DH mapping population described by Tyrka et al. (2011). 
From all markers, the highest number of them was assigned 
to the B genome (691) which is not corresponding to 
other described triticale genetic maps in contrast to the A 
genome with the lowest total number of markers (538). The 
A genome was previously described by Tyrka et al. (2011, 
2015), Karbarz et al. (2020) and Wąsek et al. (2021) as the 
one with the lowest number of markers assigned, regardless 
of marker type used in map construction.

Based on the genetic map, detection of quantitative trait 
loci (QTL) associated with many important traits can be 
performed. Studies on localization of genomic regions in 

crops associated with resistance to fungal pathogens most 
often focused on fusarium head blight (Buerstmayr et al. 
2002, 2003; Giancaspro et al. 2016; Clinesmith et al. 2019) 
and rusts (Melichar et al. 2008; Prins et al. 2011; Rosewarne 
et al. 2012; Li et al. 2020) especially in wheat. Regard-
ing to powdery mildew resistance, identification of QTL 
was widely reported in wheat (Lan et al. 2010; Ren et al. 
2017; Liu et al. 2020; Xu et al. 2020) in contrast to triticale  
(Karbarz et al. 2020). In this paper, detection of QTL regions 
linked to B. graminis resistance was tested in natural field 
conditions. Based on field results of triticale resistance, the 
area under disease progress curve (AUDPC) and the average 
value of powdery mildew infection (avPM) were calculated 
to obtain genomic regions associated with these traits.

On chromosome 4A, one locus Qpm.gz.4A.1 was detected 
in observations conducted in Modzurów in 2015 that 
explained 13.7% of phenotypic variation (Table 4). On this 
chromosome, regions with high importance for wheat health 
were previously described (Chantret et al. 2001; Mingeot 
et al. 2002; Jakobson et al. 2012). Chromosome 4A has been 
reported a source of resistance genes not only to powdery 
mildew (Pm16) but also to leaf stripe and rust resistance 
(Reader and Miller 1991; Marone et al. 2012, 2013).

Six QTL regions were detected for both AUDPC and 
avPM in almost all experiments (except Modzurów location 
in 2015). Wheat chromosome 7A is known as a source of 
multiple Pm resistance genes (Yang et al. 2017;Nordestgaard 
et al. 2020) as well as QTL regions associated with powdery 
mildew resistance. Three of them, Qpm.gz.7A1.1, Qpm.
gz.7A1.2, and Qpm.gz.7A1.5 were found for AUDPC and 
avPM on the same position in a distance between 5.9 
and 29.8 cM (Table 4, Fig. S2). Additionally, locus Qpm.
gz.7A1.4 was located between 0.0 and 16.3 cM for AUDPC 
with maximum LOD at the position of 6.4 cM (Table 4). 
Karbarz et al. (2020) reported locus QPm-7A in triticale 
associated with AUDPC of B. graminis infection in a 
distance between 0.0 and 23.3 cM which is very similar to 
results obtained in this study. Also, Chantret et al. (2001) 
described loci involved in adult-plant resistance (APR) on 
7A in wheat F2:3 population which position of one of them 

Table 4   (continued)

QTL name Flanking markers (position in cM) LOD LOD max. 
position (in 
cM)

Marker closest 
to the LOD peak

R2 (%) Add Favorable allele

Qpm.gz.3B.2 3613639: 3609225
(104.0: 133.0)

3.0 115.3 wPt-1159 10.1  − 0.29 Z

Qpm.gz.4A.1 4351892: 4343692
(90.1: 111.4

4.4 100.7 4350881 13.7 0.39 G
3.4 107.5 4373643 11.5 0.33 G

Qpm.gz.7B.3 4354063: 3606676
(174.3: 190.2)

4.5 177.6 4344428 14.8  − 0.41 Z
5.4 181.4 3623588 17.3  − 0.43 Z
3.3 185.1 4220857 11.7  − 0.34 Z
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coincides with locus Qpm.gz.7A1.4. Furthermore, the Pm1 
gene associated with the stem and leaf rust resistance genes 
Sr15 and Lr20 as well as gene Pm37 are already reported 
on chromosome 7A (Neu et al. 2002; Marone et al. 2013). 
Additionally, genes associated with cellular hydrolase 
activity, acting on ester bonds, lipid catabolic process, 
ADP, ATP nucleic acid binding, and zinc ion binding were 
localized within QTLs on chromosome 7A (Table 5).

On chromosome arm 2BL, six powdery mildew resist-
ance genes: Pm6, Pm26, MlZec1, Pm33, MlLX9, and Pm51 
were previously located (Zhan et al. 2014). In presented 
study, locus Qpm.gz.2B.1 with LOD value 3.0 was found 
for avPM (Table 4) with a candidate gene TraesCS2B-
01G868700LC encoded cation transmembrane transporter 
activity (Table 5). Marone et al. (2013) also localized QTL 
region on this chromosome with marker Xcdo244 cor-
responding to a NBS-LRR gene. Also, Asad et al. (2014) 
identified QTL for maximum disease severities (MDS) on 
this chromosome. Locus QPm.caas-2BS.2 was mapped in 
a position which has a pleiotropic effect on both powdery 
mildew and stripe rust responses (Guo et al. 2008; Carter 
et al. 2009).

Two regions on chromosome 3B, Qpm.gz.3B.1 and Qpm.
gz.3B.2 were found for avPM measured in 2015 in two dif-
ferent locations with a common chromosome region between 
104.0 and 115.3 cM (Table 4, Fig. S2). The highest LOD 
value (3.0) and phenotypic variation (10.1%) were for 
Qpm.gz.3B.2 with maximum LOD marker wPt-1159 peak 
at 115.3 cM. Also, putative receptor-like protein kinase 
At3g47110 (LOC119266893) gene was located between 
104.0 and 133.0 cM on this locus (Table 5). Two loci on 
a short and long arm of chromosome 3B were described 
by Asad et al. (2014) explained 9.1% and 18.1% of pheno-
typic variation. Both of those regions were in close location 
to Pm13 and Pm41 genes. Another locus on chromosome 
3B was reported by Marone et al. (2013) with the marker 
F103 peak on 3.9 cM position. Although, regions reported 
so far differ in a genetic position on 3B chromosome from 
QTL regions described in this paper, comparison of physi-
cal regions is necessary to suggest that both loci with high 
phenotypic variation effect can be a new source of powdery 
mildew resistance.

Three regions for both, AUDPC and avPM values from 
2 years and two different locations were found on chromo-
some 7B. Those QTL have a common region in a distance 
from 174.3 to 185.1 cM with the highest LOD value (6.5) 
and phenotypic variation (14.9%) for Qpm.gz.7B.2 (Table 4, 
Fig. S2). Genes in this region were involved in the trans-
membrane antiporter activity, xenobiotic transmembrane 
transporter activity, and plant epidermal cell differentiation 
(Table 5). Keller et al. (1999) identified locus on the position 
134 cM to 158 cM in four out of the five environments. It 
was located on a long arm of this chromosome and linked 

to Pm5 gene. Region described by Marone et al. (2013) was 
flanked by wPt-8938 and PmTm4 in a position of 137.7 cM 
on 7B. That locus can be confirmed by Qpm.gz.7B.1 as this 
region starts from marker 4,339,655 in a position 162.5 cM 
which is in a close position to wPt-8938 at 159.7 cM of 
“Grenado” × “Zorro” map (Tab. S1). Additionally, Chantret 
et al. (2001) and Mingeot et al. (2002) described locus on 
this chromosome associated with the resistance. These 
regions on 7B may correspond to Qpm.gz.7B.1 to Qpm.
gz.7B.3.

Localization of QTL regions and genes associated with 
powdery mildew resistance in rye is poorly described so far, 
comparing to wheat. But close relationship between wheat 
and rye allows the introduction of desirable agronomic 
traits from rye to wheat, such as tolerance to various abiotic 
factors, resistance to pests and fungal diseases, including 
resistance to powdery mildew (Crespo-Herrera et al. 2017). 
Long arm of 1R rye chromosome is widely used to obtain a 
new varieties of wheat using chromosomal translocation of 
1BL.1RS or 1AL.1RS and transferring Pm8 and Pm17 genes 
into the wheat (Duan et al. 2017; Schlegel and Korzun 2021). 
Remaining rye chromosomes also contain genes which can 
be used to improve wheat cultivars (Landjeva et al. 2006). 
Genes Pm7 and Pm20, from rye chromosomes 2RL and 
6RL have been already transferred to many wheat cultivars 
causing powdery mildew resistance (Huang and Röder 
2004; An et al. 2013, 2015; Guo et al. 2017; Schlegel and 
Korzun 2021).

In presented study, QTL regions for AUDCP and avPM 
have been identified on rye chromosomes 1R, 4R, 5R, and 
6R (Table 4, Fig. S3). Locus Qpm.gz.1R.1 on chromosome 
1R, covered by markers in a distance 67.3 cM to 91.2 cM 
was detected for avPM in Laski in 2014. It explained up 
to 7.4% of phenotypic variation with the LOD value 4.1. 
The short arm of this chromosome is an important source of 
genes carrying resistance to leaf and stem rust, yellow rust, 
and powdery mildew (Schlegel and Meinel 1994; Landjeva 
et al. 2006) that may correspond to QTL region associated 
with powdery mildew resistance.

Total of six loci for both, AUDCP and avPM were 
found on chromosome 4R with the highest LOD value 
6.8 and 15.2% of phenotypic variation for Qpm.gz.4R.1. 
For those, two common regions were identified on a 
distance 60.5–68.9  cM and 161.9–189.7  cM (Table  4, 
Fig. S3). Within all identified loci on 4R, CLAVATA3/ESR 
(CLE)-related protein 3-like protein was found in SEC-
CE4Rv1G0263150 candidate gene (Table 5). It has been 
reported that rye chromosome 4R contains the elite pool 
of genes which are applicable for wheat cultivar improve-
ment (Duan et al. 2017). Up to date, five Pm genes derived 
from rye have been identified and transferred into the wheat 
genome, especially Pm8 which is one of the most effec-
tive and has made a contribution to control wheat powdery 
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mildew (Huang and Röder 2004; Ma et al. 2020). Addition-
ally, Karbarz et al. (2020) described a locus on 4R triticale 
chromosome, detected for AUDPC which flanking marker 
rPt-505620 in a position of 175.2 cM is in a close distance 
to flanking marker rPt-401230 of Qpm.gz.4R.3 at 116.4 cM. 
We can infer that two new resistance loci to powdery mildew 
corresponding to three QTLs common with Qpm.gz.4R.1 
and two QTLs from region of Qpm.gz.4R.2 were identified.

Qpm.gz.5R.1 region, identified for avPM in Laski in 
2014 consisted of three regions separated from each other 
by 11.1 cM and 34.7 cM (Table 4, Tab. S1). But due to 
very similar phenotypic and additive effects, it has been 
considered as one locus on 5R chromosome. Most of the 
genes located within QTL on chromosome 5R were involved 
in building the proper chromosome structure at the begin-
ning of meiosis, transition from leptotene to zygotene and 
homologous chromosome pairing (Table 5). These genes can 
potentially be important for maintaining the proper function-
ing of the plant genome despite the ongoing stress associated 
with powdery mildew infection and defense processes. No 
QTL for powdery mildew has been detected on the 5R rye 
chromosome to date so it might be reported as a new source 
of resistance. To make this effect stronger, the existence of 
Pm4 gene on this chromosome was confirmed as well as 
a genes controlling resistance to leaf rust (Baranova et al. 
2002; Tyrka and Chelkowski 2004).

Two regions on 6R chromosome were detected for 
AUDCP and avPM in Choryń in a 2-years period (2014 
and 2015). Those loci were in a different position on this 
chromosome and explained up to 11.1% of phenotypic vari-
ation for Qpm.gz.6R.2 and LOD value 3.4 for Qpm.gz.6R.1. 
Also, for Qpm.gz.6R.1, gene encoded cyclin-dependent 
kinase A-2-like (LOC119314733) protein was identified 
(Table 5). The Pm20 gene has been identified and derived 
from 6RL of Prolific rye (Zhuang 2003; An et al. 2015) that 
may correspond to one QTL region on the 6R rye chromo-
some associated with powdery mildew resistance, while the 
second locus on this chromosome is new.

In conclusion, availability of the winter triticale DH pop-
ulation allowed to create a new, high-density genetic map 
for this crop specie. Based on this map, a total of 23 QTL 
regions were identified based on a 3-year field experiment on 
triticale resistance to powdery mildew infection conducted 
in three different locations across the Poland. Among those 
regions, two found on rye chromosome 4R and single loci 
on 5R and 6R were reported for the first time as regions 
associated with powdery mildew resistance. The informa-
tion of significant QTL regions associated with powdery 
mildew resistance together with candidate gene–coded pro-
teins taking part in triticale defense against fungal pathogen 
can be an important tool used in modern breeding programs. 
Molecular markers against Blumeria graminis after care-
ful validation in available triticale varieties can be used for 

pyramiding two or more than two APR genes or QTLs from 
donor to recipient parent. To assist molecular breeding pro-
grams, described in this paper, regions associated with PM 
resistance can be used in marker-assisted selection (MAS) as 
well as in marker-assisted recurrent selection (MARS) and 
genomic selection (GS).
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