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Orphan receptors comprise nearly half of all members of the nuclear receptor superfamily. Despite having broad
structural similarities to the classical estrogen receptors, estrogen-related receptors (ERRs) have their own unique DNA
response elements and functions. In this study, we focus on 2 ERRb splice variants, short form ERRb (ERRbsf) and
ERRb2, and identify their differing roles in cell cycle regulation. Using DY131 (a synthetic agonist of ERRb), splice-variant
selective shRNA, and exogenous ERRbsf and ERRb2 cDNAs, we demonstrate the role of ERRbsf in mediating the G1
checkpoint through p21. We also show ERRbsf is required for DY131-induced cellular senescence. A key novel finding
of this study is that ERRb2 can mediate a G2/M arrest in response to DY131. In the absence of ERRb2, the DY131-
induced G2/M arrest is reversed, and this is accompanied by p21 induction and a G1 arrest. This study illustrates novel
functions for ERRb splice variants and provides evidence for splice variant interaction.

Introduction

A growing field of research focuses on the emerging role of
alternative splice variants in disease progression. Alternative splic-
ing occurs in almost 95% of all mammalian genes1 and repre-
sents an important source of functional diversity for the
proteome.2 Alternative splicing can dramatically alter the protein
profile of a cell, and defects in splicing regulation have been
directly linked to a variety of human diseases: bC-thalassemia,3,4

spinal muscular atrophy,5 acute myeloid leukemia,6 hepatocellu-
lar carcinoma,7 glioblastoma,8 and others.

Alternative splicing affects proteins of all functional classes,
including nuclear receptors.9-11 Orphan receptors comprise
nearly half of all members of the nuclear receptor superfamily.12

These transcription factors apparently lack endogenous ligands,
but their constitutive activity can be modulated by natural prod-
ucts, synthetic ligands, or the binding of coregulatory proteins.
Estrogen-related receptors (ERRs) have broad structural similar-
ity to canonical estrogen receptors a and b (ERa, ERb) though
they cannot bind estrogen, and are well-established transcrip-
tional regulators of mitochondrial biogenesis and function,
including fatty acid oxidation, oxidative phosphorylation, and
the tricarboxylic acid cycle.13

ERRb is required for proper placental formation in mice,14,15

and its conditional deletion in either the whole animal or specifi-
cally in neural progenitor cells increases lean body mass, energy
expenditure, and feeding frequency by altering stress response

signaling through the hypothalamic-pituitary-adrenal axis.16,17

Frame-shift and point mutations mapping to the DNA- and
ligand-binding domains of ERRb at the DFNB35 locus are asso-
ciated with autosomal recessive hearing loss.18

The murine Esrrb gene produces a single confirmed mRNA
encoding a protein of 433 amino acids, but in humans there exist
2 additional alternatively spliced forms of ESRRB with poten-
tially distinct biological functions.19-21 Short form ERRb
(ERRbsf) uses an intronic stop codon after exon 9 and is >90%
homologous to mouse and rat ERRb. ERRb2 has an extended
carboxyl-terminus encoded by exons 10, 11, and part of 12,
while ERRb-D10 splices exon 9 to exon 11 and includes all of
exon 12. Due to a frame shift that occurs during alternative splic-
ing, ERRb-D10 and ERRb2 each have a unique F domain which
is absent in ERRbsf.19

Exogenous expression of ERRbsf has transcription-dependent
tumor suppressor activities that engage the G1 checkpoint in
prostate cancer cell lines.22 However, the molecular function(s)
of endogenous ERRbsf, or the ERRb2 and ERRb-D10 splice
variants in other tumor types remain unknown. Here, we evalu-
ated a synthetic small molecule activator of ERRb (DY131)23,24

in cellular models of glioblastoma multiforme (GBM), where 2
ERRb splice variants (ERRbsf and ERRb2) are expressed. We
found that this agonist induces cell death in cancer, but not non-
transformed lines, and that apoptotic cell death in response to
DY131 requires mutation or loss/silencing of p53. Using splice
variant-selective shRNAs we determined that ERRb splice
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variants have opposing functions in cell cycle regulation. In A172
cells, suppression of ERRbsf, but not ERRb2, inhibits cell death
and G1 arrest. Silencing of ERRb2 abrogates a novel DY131-
induced G2/M arrest and cell death in T98G cells, while
suppression of ERRbsf enhances the arrest in G2/M. Lastly, we
demonstrate that DY-mediated cellular senescence requires
ERRbsf but is p53-independent. These results are the first to
describe a function for endogenous ERRb2 and reveal a novel
interplay between ERRb splice variants, which has broad impli-
cations for cell cycle control.

Results

DY131 inhibits cellular proliferation, induces cell death
and prevents colony formation in cancer cells, but not in
non-transformed control cells

Exogenous expression of ERRbsf inhibits the growth of pros-
tate cancer cells,22 but the molecular function(s) of endogenous
ERRbsf, or the other splice variants of this receptor, remain
unknown. To address this, we used the acyl hydrazone DY131
(DY), a synthetic agonist of ERRb,23 to activate endogenous
ERRb in 2 glioblastoma multiforme (GBM) cell lines. We cul-
tured A172, T98G (GBM) and HFF1 cells (non-transformed
human foreskin fibroblasts) in the presence of DY for up to 14 d
and stained total DNA with crystal violet at various time points
to measure the effects of DY on cellular proliferation (Fig. 1A).
DY selectively impaired growth in both cancer cell lines, but not
in HFF1 cells. To determine whether these results were due to
cytotoxic (cell death) versus cytostatic (cell cycle arrest) effects,
cells were treated with DY for 24 h and we measured the fraction
of dead cells by positive propidium iodide staining of fragmented
DNA (subG1) (Fig. 1B). DY induced cell death in the cancer
lines, but not in HFF1 cells. Similar to our proliferation assay
results, T98G cells were more sensitive to DY treatment than
A172 cells. We also tested whether DY could prevent colony for-
mation in cancer cell lines (Fig. 1C). DY significantly impaired
A172 and T98G cells’ ability to form colonies. We further veri-
fied that these differences in DY-induced cell death were not
attributable to variations in basal proliferation rates between the
2 cancer cell lines (Fig. 1D).

DY is also an agonist for ERRgamma (ERRg),23 which is
77% identical to ERRbsf and whose exogenous expression can
also inhibit the growth of prostate cancer cells.25 The precise
mechanism by which DY enhances the constitutive transcrip-
tional activity of these orphan nuclear receptors is not known,
though a related compound (GSK4716) increases the overall sta-
bility of the ERRg ligand-binding domain in thermal stability
assays.26 We therefore measured basal, endogenous expression of
ERRb and ERRg protein in our cell lines (Fig. 1E) alongside
positive controls generated by exogenous expression of cDNAs
encoding specific splice variants (ERRb), or purified protein
(ERRg). Two commercially available antibodies from R&D Sys-
tems preferentially detect endogenous ERRb2 (500 amino acids,
predicted molecular weight D 55.6 kDa) and ERRbsf splice var-
iants (433 amino acids, predicted molecular weight D 48.0 kDa)

in A172 and T98G cells (cl.07 and cl.05, respectively). Under
exogenous expression conditions, cl.07 and cl.05 can each detect
both variants. Endogenous expression of the third splice variant
(ERRb-D10, 508 amino acids, predicted molecular weight
D 56.2 kDa) is not detected in these cells. Nontransformed
HFF1 cells express very low levels of all ERRb splice variants. By
contrast, ERRg expression is robust in both the GBM and non-
transformed cell lines.

Recently, DY has been shown to have “off-target” effects on
primary cilia formation through inhibition of the G-protein cou-
pled receptor Smoothened.27 To test whether the observed DY
cytotoxicity was attributable to Smoothened inhibition, we
treated T98G cells with 2 known Smoothened inhibitors, cyclop-
amine28 and GDC-044929 (Fig. 1F). We observed no cell death
with either compound, suggesting that the DY-induced cell death
phenotype is unlikely to involve Smoothened.

DY131 mediates cell cycle arrest
Given the anti-proliferative effects of DY and the difference in

p53 status between A172 (p53 wild type, wt) and T98G (p53
mutant, mut) cells, we examined whether these effects were also
accompanied by a cell cycle arrest. In A172 (p53 wt) cells, we
found DY induced a G1 arrest after 24 h (Fig. 2A). Interestingly,
the same treatment in T98G (p53 mut) cells caused a G2/M
arrest (Fig. 2B). We then identified specific G1 (p53 and p21)
and G2/M (phospho-H3ser10) protein markers to confirm cell
cycle arrest signaling in each cell line (Fig. 2C). A172 (p53 wt)
cells, which arrest in G1, showed a corresponding induction of 2
major G1 checkpoint regulators: p53 and its downstream target,
p21. In T98G (p53 mut) cells, we did not observe an induction
of G1 checkpoint mediators, but DY induced phosphorylation
of histone H3 at serine 10, previously shown to be a specific
phosphorylation site during prophase and important for chroma-
tin condensation.30,31 These data suggest DY induces a cell cycle
arrest specifically in mitosis in p53 mutant T98G cells. We also
observed no change in ERRbsf, ERRb2 or ERRg at the protein
level in DY-treated cells (Fig. 2C). To verify the cell cycle arrest
phenotypes were not due to Smoothened inhibition by DY, we
treated T98G cells with 2 Smoothened inhibitors and compared
their cell cycle profiles to the profile induced by DY (Fig. 2D).
Neither cyclopamine nor GDC-0449 caused any G2/M arrest;
however an increase in S-phase was observed.

Loss of p53 function promotes DY131 mediated apoptosis
To understand howDY causes cell death in A172 (p53 wt) and

T98G (p53 mut) cells, we first determined whether cells were
undergoing apoptosis. After 24 h of DY treatment, T98G cells
showed a significant increase in annexin and PI double-positive
cells, whereas the A172 cells did not (Fig. 3A). To confirm these
data, we examined PARP cleavage and observed a similar result;
DY induced PARP cleavage in T98G cells, but not A172 cells
(Fig. 3B). To test whether the magnitude of cell death and induc-
tion of apoptosis were dependent on p53, we stably silenced wild
type p53 in A172 cells using lentiviral delivery of shRNA.32 We
then measured the level of subG1 (Fig. 3C) and PARP cleavage
(Fig. 3D) after DY treatment. p53 knockdown significantly
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increased the amount of DY-induced cell death at 5 mM and
10 mM, and caused PARP cleavage at 10 mM. Because A172 and
T98G cells have molecular differences other than p53 status, and
PARP cleavage in A172-shp53 cells was not as robust as in paren-
tal T98G (p53 mut) cells, we used a secondmodel to more directly
test p53’s involvement in DY-mediated apoptosis: the RKO iso-
genic p53 null (p53¡/¡) system,33 where both p53 alleles have
been deleted by targeted homologous recombination. First, we
verified that DY protein targets (ERRb and ERRg) were detect-
ably expressed in these cell lines (Fig. 3E). Parental RKO cells and
the p53¡/¡ variant express the ERRb2 and ERRbsf splice var-
iants, but weak-to-undetectable levels of ERRg. Importantly,
RKO-p53¡/¡ cells showed a significantly higher percentage of cell
death than the RKO-p53C/C parental cells when treated with DY
(Fig. 3F). Similar to our GBM p53 wild type and p53 mutant
pair, the RKO-p53¡/¡ cells also showed a DY-mediated

induction of PARP cleavage whereas the RKO-p53C/C cells did
not (Fig. 3G). Finally, annexin staining showed DY induced apo-
ptosis in the RKO-p53¡/¡, but not the RKO-p53C/C cells
(Fig. 3H) Taken together, these 3 model systems support the con-
clusion that cells lacking wild type p53 (by mutation, silencing, or
deletion) die by apoptosis when treated with DY.

ERRb2 knockdown reverses DY-induced apoptosis and G2/
M cell cycle arrest in p53 mutant T98G cells

DY is a synthetic agonist for both ERRb and ERRg that, thus
far, we have demonstrated to cause cell cycle arrest, inhibit cellu-
lar proliferation, and induce death specifically in cancer cells.
Although DY has been reported to antagonize Smoothened, our
data do not support a role for this “off-target” activity in contrib-
uting to the observed cytotoxic and cytostatic effects of DY, since
these are not recapitulated by more specific Smoothened

Figure 1. DY131 inhibits cellular proliferation, induces cell death and prevents colony formation in cancer cells, but not in non-transformed cells. (A) A
crystal violet assay staining total DNA (measured by absorption at 550 nm) of A172, T98G, and HFF1 to show growth rates in the presence or absence of
DY at indicated concentrations. (B) Fraction of cells containing fragmented DNA (PI positive) 24 h after DY treatment determined by flow cytometry (n D
3, one-way ANOVA). (C) Representative images and quantification of a colony formation assay. Cells were seeded on day 0, treated with indicated DY on
day 1 before drug was washed out on day 2. Plates were stained and colonies counted on day 10 (n D 4, one-way ANOVA). (D) Crystal violet assay dem-
onstrating basal cellular growth rates through a 14d assay. (E) Basal ERRb and ERRg protein expression. Lanes labeled D10, b2, and SFb2 contain whole
cell lysate from T98G cells transiently transfected with the indicated cDNA to demonstrate endogenous splice variant specificity of the ERRb antibodies.
(F) Fraction of T98G cells containing fragmented DNA (PI positive) 24 h after indicated drug treatments determined by flow cytometry (n D 3).
(*P < 0.05 ** P< 0.01 ***P< 0.001).
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inhibitors (Figs. 1F and 2D). To test whether DY-induced
growth inhibition and cell death is mediated by ERRb, we
stably transduced p53 mutant T98G cells with lentiviral vec-
tors containing 2 different shRNAs against ESRRB (shERRb-
1 and shERRb-2), or a scrambled control. We compared
these stable cell lines to positive controls for each of the 3
ERRb splice variants (lanes 5–7) to assess ERRb knockdown
at the protein level (Fig. 4A). Interestingly, each shRNA pref-
erentially targeted a different ERRb splice variant (ERRbsf
was silenced by shERRb-2 and ERRb2 by shERRb-1). In
these modified T98G cells, knockdown of ERRb2 signifi-
cantly reduced cell death caused by DY treatment (Fig. 4B).
Knockdown of ERRbsf also showed a modest reduction in

cell death, but only in the presence of 10 mM DY (Fig. 4B).
Strikingly, silencing of ERRb2 but not ERRbsf, completely
reversed the DY-mediated G2/M arrest in T98G cells
(Fig. 4C). These data are further supported by the reversal of
protein signaling indicative of apoptosis (PARP cleavage) and
G2/M arrest (phospho-H3 ser10) in the shERRb2 cells
(Fig. 4D). We also compared the basal growth rates of the
T98G stable cells to parental T98G cells (Fig. 4E) and saw
no difference in proliferation, confirming these results were
not due to a fundamental change in cellular proliferation
resulting from stable infection. Altogether, these data support
a role for ERRb2 in regulation of cell cycle arrest in mitosis
as well as apoptotic cell death in p53 mut T98G cells.

Figure 2. DY131-mediated cell cycle arrest differs between p53 wild type and p53 mutant GBM cells. (A) Cell cycle profile of p53 wild type A172 cells
24 h after DY treatment determined by flow cytometry (n D 3, one-way ANOVA). Corresponding subG1 data from same assay shown in Figure 1B. (B)
Cell cycle profile of p53 mutant T98G cells 24 h after DY treatment determined by flow cytometry (n D 3, one-way ANOVA). Corresponding subG1 data
from same assay shown in Figure 1B. (C) Protein expression for p53, p21, phospho-H3 ser10, ERRb2, ERRbsf and ERRg in A172 and T98G cells after 24 h
DY treatment. (D) T98G cell cycle profile 24 h after indicated drug treatments determined by flow cytometry (n D 3). (*P< 0.05 **P < 0.01 ***P < 0.001).
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ERRbsf knockdown reverses DY-induced cell death, p21
induction and G1 cell cycle arrest in p53 wild type A172 cells

We used the same approach to silence ERRb2 and ERRbsf in
A172 cells as discussed above for T98G cells. In A172 cells, stable
knockdown of ERRbsf reduced DY-mediated cell death, whereas
silencing of ERRb2 did not (Fig. 5A). Similarly, stable knock-
down of ERRbsf reversed the G1 arrest caused by DY (Fig. 5B)
and reduced the induction of p53 and p21 (Fig. 5C). We con-
firmed ERRb2 knockdown in A172 by shERRb-1 at the protein
level (Fig. 5D). Finally, we examined the basal growth rates of
the A172 stable cell lines and again found no significant differ-
ence (Fig. 5E). Because ERRg is also a target of DY and has been
shown to activate p21 causing a G1 arrest in a prostate cancer

model,25 we transiently knocked down ERRg in A172 cells
(Fig. 5F) to determine whether ERRg knockdown impacted the
DY-mediated G1 arrest observed (Fig. 5G). ERRg knockdown
caused no change to the DY-induced G1 arrest measured in
A172 cells. These data demonstrate that ERRbsf, but not ERRg,
activates a G1 checkpoint through p53 and/or p21 in A172 cells.

ERRb isoform, not p53 status, determines phase of DY131-
mediated cell cycle arrest

We next sought to determine if p53, in addition to its role in
apoptosis, also contributes to DY-induced cell cycle arrest. We
observed a significant reduction in the level of G1 arrest in DY-
treated A172-shp53 cells relative to the A172-pLKO.1 controls

Figure 3. Loss of wild type p53 function promotes DY131-mediated apoptosis. (A) Fold change of Annexin V and PI double positive cells after 24 h DY
treatment relative to DMSO control determined by flow cytometry (n D 3, 2-way ANOVA). (B) Protein expression of PARP (full length (FL) and cleavage
product (CP)) 24 h after DY treatment. (C) Percentage of A172-pLKO.1 and -shp53 stable cells in subG1 24 h after DY treatment determined by flow
cytometry (n D 3, 2-way ANOVA). (D) Protein expression of PARP in A172-pLKO.1 and -shp53 stable cells. (E) Basal protein expression of ERRb2 (cl.07),
ERRbsf (cl.05) and ERRg in RKO isogenic mutants. Lanes labeled D10, b2, and SFb2 contain whole cell lysate from T98G cells transiently transfected with
the indicated cDNA. (F) Fraction of RKO cells in subG1 after 24 h DY treatment determined by flow cytometry (n D 3, 2-way ANOVA). G, PARP protein
expression in RKO isogenic mutants 24 h post-DY treatment. H, Percentage of Annexin V positive RKO cells after 18 h DY treatment (n D 3, 2-way
ANOVA). (*P < 0.05 **P < 0.01 ***P < 0.001).
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(Fig. 6A). However, A172-shp53 cells still underwent a dose-
dependent G1 arrest in response to DY, and knockdown of p53
protein did not abolish the p21 induced by DY (Fig. 6B). This
may suggest that DY-activated ERRbsf can induce p21 indepen-
dent of p53, which would be consistent with work by Yu et al.,22

who show in a prostate cancer model that exogenous expression
of ERRbsf causes G1 arrest via direct transcriptional upregula-
tion of p21. However, the observed G1 arrest and p21 induction
in A172 shp53 cells could also be due to incomplete p53

knockdown. We therefore tested the ability of DY to activate the
p21 promoter in wild type and p53-silenced A172 cells, in the
presence or absence of p53 response elements34 (Fig. 6C). Dele-
tion of one (p21-2) or both (p21-4) p53 response elements dra-
matically reduced basal p21 promoter activity when compared to
the full-length promoter (p21-0) in A172-pLKO.1 cells. How-
ever, DY still showed a dose-dependent increase in p21-activity
on all 3 contructs, regardless of p53 binding ability. In A172-
shp53 cells, p53 knockdown reduced the basal activity of both

Figure 4. ERRb2 knockdown reverses DY131-mediated cell death and G2/M arrest in T98G cells. (A) ERRbsf(cl.05) and ERRb2 (cl.07) protein expression in
T98G shERRb stable cells. Lanes labeled D10, b2, and SFb2 contain whole cell lysate from T98G cells transiently transfected with the indicated cDNA.
(C) Percentage of T98G shERRb stable cells in subG1 after 24 h DY treatment determined by flow cytometry (n D 3, 2-way ANOVA). (C) Percentage of
T98G shERRb stables cells in G2/M after 24 h DY treatment determined by flow cytometry (n D 3, 2-way ANOVA). (D) PARP and phospho-H3 ser10 protein
expression in control cells compared to shERRb2 cells after 24 h DY treatment. (E) Crystal violet assay staining total DNA (measured by absorption at
550 nm) to determine basal growth rates of T98G parental, stable scramble control and shERRb2 stable cells. (*P < 0.05 **P < 0.01 ***P < 0.001).
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p53 response element-containing promoters to the same level as
the p53 response element-deleted promoter, and all 3 p21 pro-
moter constructs showed the same magnitude of DY-mediated
activation. Altogether, these data imply that p53 is not the sole
contributor to DY-mediated G1 arrest and p21 induction. Fur-
ther evidence against a role for p53 status in dictating DY-medi-
ated cell cycle arrest is that p53C/C and p53¡/¡ isogenic variant
RKO cells both arrested in G2/M (Fig. 6D-E) and showed
increased phosphorylation of histone H3 at serine 10 (Fig. 6F).
We still observed an induction of p53 and p21 in the RKO-
p53C/C cells, even though there was not a corresponding G1
arrest.

Our data strongly suggest that the ERRb splice variants have
different functions in cell cycle regulation. In p53 mutant T98G
cells, silencing ERRb2 but not ERRbsf, completely reversed the
DY-mediated G2/M arrest (Fig. 4C, light gray bars).

Interestingly, this G2/M arrest reversal was accompanied by a G1
arrest (Fig. 7A) and p21 expression (Fig. 7B) not previously
observed in T98G parental cells. These data imply a potential
dominant inhibitory role for ERRb2, where in the absence of
this splice variant, ERRbsf-mediated p21 induction and G1
arrest now occur in the presence of mutant p53, consistent with
the ability of ERRbsf to regulate p21 directly.22 To confirm that
this G1 arrest was not driven by ERRg, we transiently knocked
down ERRg (Fig. S1A) in T98G-shERRb2 cells and observed
no change in G1 arrest (Fig. S1B). Moreover, silencing of
ERRbsf in T98G cells led to an enhanced G2/M arrest (Fig. 4C,
speckled bars), suggesting that removal of ERRbsf from the sys-
tem permits amplified signaling through ERRb2, leading to a
stronger arrest in G2/M after treatment with DY. To directly test
the potential dominant inhibitory role of ERRb2 on ERRbsf, we
measured p21 promoter activity in cells transfected with either or

Figure 5. ERRbsf knockdown reverses DY131-mediated cell death and G1 arrest in A172 cells. (A) Fold change vs DMSO control of A172 shERRb stable
cells in subG1 after 24 h DY treatment determined by flow cytometry (n D 3, 2-way ANOVA).(B) Fraction of A172 shERRb cells in G1 24 h after DY treat-
ment determined by flow cytometry (n D 3, one-way ANOVA). (C) Protein expression of p53, p21 and ERRbsf in A172 stable scramble control cells com-
pared to A172 shERRbsf stable cells. Densitometric values for the ratio of the indicated proteins to b-actin are normalized to the level of control
expression in lane 1. (D) Western blot of A172 shERRb stable cell lines using ERRb-cl. 07 antibody to demonstrate ERRb2 knockdown by shERRb-1. Lanes
labeled D10, b2, and SFb2 contain whole cell lysate from T98G cells transiently transfected with the indicated cDNA. (E) Crystal violet assay staining total
DNA (measured by absorption at 550 nm) to determine basal growth rates of A172 parental, stable scramble control and shERRb stable cells. (F) Western
blot of A172 ERRg protein expression 72 h after scramble or shERRg transient infection. (G) Percentage of A172 shERRg cells in G1 after 24 h DY treat-
ment determined by flow cytometry (n D 3) (*P < 0.05 **P < 0.01 ***P < 0.001).
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both receptors. Exogenous expression of ERRbsf activated p21
and this activation was enhanced by DY, whereas exogenous
ERRb2 did not affect p21 activity (Fig. 7C). Furthermore,
ERRbsf-induced p21 activity was significantly reduced in a dose-
dependent manner by co-transfected ERRb2. Together, these
data demonstrate that ERRb splice variant interaction is a critical
component of DY-mediated cell cycle regulation.

To confirm the specific function of ERRb2 and ERRbsf in
DY-mediated G2/M and G1 arrest, respectively, we rescued
ERRb-silenced cells by transient transfection of plasmids encod-
ing shRNA-resistant versions of the appropriate splice variant.
Exogenous expression of ERRb2 in T98G-shERRb2 cells res-
cued both the apoptotic response and G2/M arrest phenotype in
DY-treated cells (Fig. 7D). Similarly, exogenous expression of
ERRbsf in A172-shERRbsf cells restored p53 and p21 induction

by DY (Fig. 7E). Taken together, these data illustrate a dynamic
interplay between the cell cycle regulatory functions of these
ERRb splice variants, and demonstrate for the first time that
ERRb2 specifically drives G2/M arrest.

ERRbsf induces cellular senescence independent of p53
Thus far, we and others22 have demonstrated that ERRbsf can

cause G1 arrest and induce p21. Given the critical role for p21 in
cellular senescence,35 either downstream of p53 or in a p53-inde-
pendent manner, we asked whether DY could also induce senes-
cence associated b-galactosidase in p53 wt A172 cells (Fig. 8A,
quantified in Fig. S2A). We detected a dose-dependent relation-
ship for cellular senescence caused by DY. DY did not induce
senescence in p53 mut T98G cells (Fig. 8B). To establish that
this phenotype required ERRbsf expression, we performed the

Figure 6. ERRb isoform determines phase of cell cycle arrest, not p53 status. (A) Percentage of A172-pLKO.1 and -shp53 stable cells in G1 determined by
flow cytometry (nD 3, 2 way ANOVA) after 24 h DY treatment. (B) Protein expression of p53 and p21 in A172-pLKO.1 and -shp53 24 h after DY treatment.
(C) p21 promoter reporter assay. Schematic of the p21 promoter constructs used containing both p53 binding sites (p21-0), deletion of one p53 binding
site (p21-2) or deletion of both p53 binding sites (p21-4) (top). A172 pLKO.1 and -shp53 stable cells transfected with indicated p21 promoter deletion
constructs (24 h) and treated with DY131 (20 h). (D) Cell cycle profile of RKO p53 wild type cells (n D 3, one-way ANOVA) after 24 h treatment deter-
mined by flow cytometry. (E) Cell cycle profile of RKO p53 null isogenic mutant (n D 3, one-way ANOVA) after 24 h treatment determined by flow cytom-
etry. (F) Protein expression of p53, p21 and phospho-H3 ser10 in RKO isogenic mutants 24 h after DY treatment. (*P < 0.05 **P < 0.01 ***P < 0.001).
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same assay in our A172-shERRbsf stable cells, and found that
knockdown of ERRbsf significantly reduced the level of senes-
cence caused by 5 mMDY (Fig. 8C and S2B).

To determine whether p53 plays any role in the observed
senescent phenotype, we first measured senescence in RKO-
p53C/C and RKO-p53¡/¡ cells treated with DY (Fig. 8D).
Despite clear p53 and p21 induction in RKO-p53C/C cells fol-
lowing DY exposure (Fig. 6F), these cells did not undergo senes-
cence. Furthermore, when we assayed our A172-shp53 cells, we
saw no reduction in DY-induced cellular senescence (Fig. 8E and
S2C), possibly because of the remaining p21 induction
(Fig. 6B). Collectively, these data demonstrate that DY-mediated
cellular senescence requires ERRbsf, and imply that while p53 is
neither necessary nor sufficient for the senescent phenotype, p21
may be required.

Discussion

Exogenous overexpression studies with one of the 3 alterna-
tively spliced forms of ERRb have suggested a role for this recep-
tor in growth inhibition and cell cycle arrest in prostate cancer,
but the molecular function(s) of endogenous ERRb splice var-
iants in this and other tumor types remain unknown. Here, using
a synthetic, small molecule activator of ERRb, we demonstrate
novel cellular functions for the ERRb2 and ERRbsf splice

variants that have broad implications for cell death and cell cycle
control.

We used stable transduction of 2 different ESRRB-targeted
shRNAs to selectively silence ERRb2 and ERRbsf in A172 and
T98G cells. However, the target sequences for both shRNAs are
present in both splice variants. Local structure of target mRNA is
known to contribute to the efficiency of RNA interference.
shERRb-2 targets a sequence in the ESRRB gene close to the end
of exon 9, where use of an intronic stop codon yields ERRbsf
but conventional splicing produces ERRb2. Using Mfold,36 we
demonstrate that the predicted secondary structure in this region
differs notably between the 2 splice variants (Fig. S3), with the
shERRb-2 target site taking a more favored loop structure37,38 in
ERRbsf (where silencing is observed) vs. a less favored stem-like
structure in ERRb2 (where silencing is not observed). Structural
differences between splice variants do not explain ERRb2-selec-
tive silencing by shERRb-1 since the predicted secondary
structures for the target sequence of this shRNA are the same in
both. Additional factors such as tertiary structure, pre-mRNA
binding proteins, and/or loading of shRNAs into the RISC com-
plex may contribute to this selectivity.39

The tumor suppressor p53 is widely considered to positively
regulate apoptosis, particularly in cancer where restoration of
p53 function is an ongoing therapeutic challenge.40 However,
using 3 different models, we comprehensively show that loss of
wild type p53 function, coupled with a reduction in or the
absence of p21 induction, is required for DY-mediated apoptosis.

Figure 7. ERRb2 inhibits ERRbsf activation of p21. (A) Fraction of T98G shERRb stable cells in G1 determined by flow cytometry (nD 3, one-way ANOVA).
(B) Corresponding p21 protein expression in T98G shERRb2 stable cells 24 h after DY treatment. (C) p21 promoter reporter assay. HeLa cells co-trans-
fected with psg5, ERRbsf and/or ERRb2 (24 h) and then treated with DY (20 h). Experiment was performed in triplicate (2-way ANOVA). (D) Protein
expression of PARP, ERRb2 and phospho-H3 ser10 in T98G-shERRb2 cells transfected with the shRNA-resistant ERRb2 plasmid (28 h) and treated with DY
(24 h). (E) Protein expression of p53, p21 and ERRbsf in A172-shERRbsf cells transfected with the shRNA-resistant ERRbsf plasmid (28 h) and treated with
DY (24 h). (*P< 0.05 **P < 0.01 ***P < 0.001).
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p21 has been shown to suppress both p53-dependent and p53-
independent apoptosis, although the precise mechanisms remain
unclear.41,42 Our data are consistent with a cytoprotective role
for p21. In cell lines where DY induces p21 expression - A172
(Fig. 2C), RKO-p53C/C (Fig. 6D) and T98-shERRb2
(Fig. 7B) – apoptosis does not occur. In contrast, where DY fails
to induce a p21 response – parental T98G and RKO-p53¡/¡
cells - or the p21 induction is dampened (A172-shp53 cells),
there is significantly enhanced apoptosis when compared to p21-
inducing cells (Table 1).

Our data suggest that DY-mediated activation of ERRbsf and
the subsequent G1 arrest are required for cellular senescence that
is independent of p53. Cell enlargement and senescence-associ-
ated b–galactosidase staining are only induced in G1-arresting
A172 cells, not in G2/M-arresting RKO cells, both of which are
p53 wt (Fig. 8A and D). In addition, silencing of ERRbsf in
A172 cells significantly reduces the senescent phenotype at 5 mM
DY treatment, while silencing of p53 does not (Fig. 8D and E).
Although p53 and its upstream regulator ARF are often consid-
ered the predominant inducers of cellular senescence, a number

of p53-independent mechanisms can contribute to this tumor
suppressive mechanism,35 and the CDKN2A/B locus that enco-
des ARF shows homozygous deletion in A172 cells.43 Direct reg-
ulation of p21 by ERRbsf could be responsible for DY-mediated
senescence, given that many ARF/p53-independent senescence
mechanisms still rely on p21, and that p21 upregulation in
response to DY is prevented by ERRbsf silencing (Fig. 5C) vs.
modestly inhibited by knockdown of p53 (Fig. 6B) in A172 cells.

Table 1. Summary results of the cytoprotective role of p21 in preventing
apoptosis, independent of p53 status

Cell Line p53 status p21 induction DY-induced apoptosis

A172 wt C ¡
RKOC/C wt C ¡
T98G-shERRb2 mut C ¡
T98G mut ¡ C
A172-shp53 kd ¡ C
RKO¡/¡ null ¡ C

wt D wild type, mut Dmutant, kd D knockdown.

Figure 8. ERRbsf induces cellular senescence independent of p53 status. (A) SA-b-galactosidase assay in A172 parental cells after 24 h DY treatment. (B)
SA-b-galactosidase assay in T98G parental cells after 24 h DY treatment. (C) SA-b-galactosidase assay comparing A172-scramble and –shERRbsf cells
after 24 h DY treatment. (D) SA-b-galactosidase assay in RKO isogenic mutant cells after 24 h DY treatment. (E) SA-b-galactosidase assay comparing
A172-pLKO.1 and -shp53 cells after 24 h DY treatment.
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However, RKO-p53C/C cells, which do not senesce, still show
induction of p21 in response to DY, so we must consider that i.
pro-senescence signaling downstream of p21 is fundamentally
different in RKO cells, or ii. ERRbsf drives a p21-independent
senescence pathway. The latter mechanism is more likely, given
that others have shown p21-associated senescence can occur in
RKO-p53C/C cells.44

The most novel finding of our study is that ERRb2 can medi-
ate G2/M arrest in response to DY. Silencing of ERRb2 but not
ERRbsf in T98G cells blocks G2/M arrest (Fig. 4C), and this is
rescued by exogenous expression of shRNA-resistant ERRb2
(Fig. 7D). To our knowledge, this is the first demonstrated func-
tion for endogenous ERRb2. Our data also suggest that ERRb2
is dominant-inhibitory for ERRbsf. In T98G cells, silencing of
ERRb2 suppresses DY-mediated G2/M arrest and apoptosis
(Fig. 4A–C), which now permits G1 arrest and p21 induction
(Fig. 7A and B). Furthermore, exogenous expression of ERRb2
directly inhibits ERRbsf-mediated p21 activity in a reporter assay
competition experiment (Fig. 7C). Results based on splice vari-
ant dominance are summarized in Table 2. Splice variants often
have opposing roles (e.g., pro-survival BclXL vs. pro-apoptotic
BclXS)45 and/or serve as dominant-negative inhibitors of each
other (e.g., Ets-1 p51 and p27).46 This is also true of nuclear
receptor splice variants, including other orphan receptors such as
the pregnane X receptor (PXR),10 where the dominant-inhibitory
variant of PXR has a deletion in the ligand-binding domain. By
comparison, ERRb2 differs from ERRbsf by the presence of 68
additional amino acids at the extreme carboxyl-terminus (F
domain) of the receptor. In ligand-regulated receptors like ERb,
amino acid changes in the F domain have been shown to inhibit
hormone-induced transcriptional activity.47

We propose that ligand-activated ERRb2 promotes G2/M
arrest through non-transcriptional mechanisms. Zhou et al.19

have reported that exogenous ERRb2 is largely cytoplasmic in
interphase COS-1 cells, with only 30% of cells showing predomi-
nantly nuclear staining. This is in direct contrast to ERRbsf,
which is >90% nuclear. The presence of 2 pools of ERRb2 –
one nuclear, one cytoplasmic – supports a scenario in which
nuclear ERRb2 can repress ERRbsf transcriptional activity, while
cytoplasmic ERRb2 participates in novel protein/protein interac-
tions and signaling events via the unique carboxyl-terminal F
domain. Within this region there is a proline-rich sequence that
forms a consensus binding site for the src homology 3 (SH3)
domains of c-Src and the actin binding protein cortactin (both of
which have key roles in mitosis). There is also a strong consensus

sequence for the substrates of the mitotic cyclin-dependent kinase
Cdk1/CDC2, an important mediator of the G2/M transition.
While these features may not independently determine why
ERRb2 is dominant over ERRbsf in T98G, but not A172 cells,
differences in other putative binding partners and regulatory kin-
ases are likely essential for splice variant dominance in different
cell contexts. Indeed, exploiting the role of novel splice variants
in disease is an emerging, viable therapeutic strategy.48 In this
study, we focused on understanding the function of ERRb splice
variants in the context of glioblastoma multiforme (GBM),
where 2 ERRb splice variants (ERRbsf and ERRb2) are
expressed and where alterations in splicing factor abundance can
promote tumorigenicity by attenuating the formation of tumor
suppressive splice variants.8

Methods and Materials

Cell lines, culturing conditions, and reagents
A172 and T98G cells were provided by Dr. Todd Waldman

(Lombardi Comprehensive Cancer Center (LCCC), Georgetown
University, Washington, DC). HEK293T and HeLa cells were
acquired from the LCCC Tissue Culture Shared Resource.
HFF1 cells were obtained from Dr. Louis Weiner (LCCC, Geor-
getown University, Washington, DC). RKO cells and variants
were provided by Dr. Bert Vogelstein (Johns Hopkins Univer-
sity, Baltimore, MD). All cells tested negative for Mycoplasma
spp. contamination, and were maintained in a humidified incu-
bator with 95% air: 5% carbon dioxide. A172, T98G, and
T98G stable cell lines were fingerprinted by the LCCC Tissue
Culture Shared Resource to verify their authenticity using the
standard 9 STR loci and Y-specific amelogenin. A172, T98G
HeLa and HEK293T cells were grown in IMEM supplemented
with 10% FBS. HFF1 cells were grown in high glucose
Dulbecco’s Modified Eagles Medium (DMEM; Thermo Scien-
tific) supplemented with 15% FBS.

G418 was purchased from the LCCC Tissue Culture Shared
Resource and used at a final concentration of 1.2 mg/ml for
A172- and T98G-shERRb stable cells. Puromycin was purchased
from Life Technologies (http://www.lifetechnologies.com/order/
catalog/product/A1113803) and used at a final concentration of
2 mg/ml for A172-shp53 stable cells. DY131 (Tocris Bioscience,
http://www.tocris.com/dispprod.php?ItemId D 132020#.U43-
Fy_yuM4) was dissolved in dimethyl sulfoxide (DMSO), stored
as 10 mM stocks at ¡20�C, and used at the concentrations indi-
cated. Hexadimethrine bromide (polybrene) was purchased from
Sigma (http://www.sigmaaldrich.com/catalog/product/sigma/
h9268?langDenandregionDUS). Cyclopamine provided by Dr.
Insoo Bae (LCCC, Georgetown University, Washington, DC)
and GDC-0449 was purchased from Selleckchem (http://www.
selleckchem.com/products/GDC-0449.html).

Cell cycle analysis
Cells were seeded at a density of 75,000–100,000 cells per

well in 6-well plastic tissue culture dishes on day 0. The following
day cells were treated with vehicle or drug. On day 2, floating

Table 2. Summary of ERRb splice variant dominance and resulting
phenotype

Dominant Splice Variant Phenotype Cell Line

ERRb2 G2/M arrest
p-H3 serine 10 induction

T98G
RKOC/C
RKO¡/¡

ERRbsf G1 arrest
p21 induction

A172
A172-shp53

T98G-shERRb2
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cells were collected. Adherent cells were trypsinized and added to
the collected, floating cells. Cells were pelleted by centrifuging
for 5 min at 1,000 RPM. Media was aspirated and cells were
washed once with cold 1£ PBS and centrifuged again. PBS was
aspirated and the cells were then fixed in 75% ethanol. SubG1
(propidium iodide (PI) staining) and cell cycle (DNA content)
analyses were performed by the LCCC Flow Cytometry and Cell
Sorting Shared Resource.

Cell proliferation assay
Cells were seeded at a density of 1,000 cells per well in 5,

96-well plastic tissue culture dishes per cell line on day 0.
On day 1, one plate was stained with crystal violet (Sigma,
http://www.sigmaaldrich.com/catalog/product/sigma/c0775?
langDenandregionDUS) (untreated). The remaining plates
were dosed with vehicle or DY at the specified concentra-
tions. Plates were re-dosed every 72 h and stained on days 3,
6, 10 and 14. For staining, plates were rinsed 1£ with 1£
PBS to remove excess cellular debris. After, 100 ml of 0.5%
crystal violet in 25% methanol was added to each well and
incubated at 4C for 10 min. The stain was then removed
and the plate was rinsed 4–6£ with diH2O to remove excess
stain. The plates were left to air-dry at least overnight. On
day 15, all plates were rehydrated with a 0.1 M sodium cit-
rate buffer solution in 50% ethanol and read at an absor-
bance of 550 nm.

Colony formation assay
Cells were seeded at a density of 250 (A172) or 200 (T98G)

cells per well in a 12-well plastic tissue culture dish on day 0. On
day 1, cells were treated with the indicated doses of DY. The
drug was removed on day 2, cells were washed 1£ with 1£ PBS
before returning the cells to their normal culture media (in the
absence of DY) for the remainder of the assay. Media was
changed one time throughout the assay. Wells were stained on
day 10 with 1 ml crystal violet (as above) and left to dry over-
night before counting colonies. Images were taken on a Nikon
SMZ1500 fluorescence stereoscope at 0.375£ magnification.

Immunoblotting
Cells were lysed in modified radioimmunoprecipitation assay

(RIPA) buffer49 supplemented with CompleteMini protease inhibi-
tor (http://lifescience.roche.com/shop/products/complete-mini-
3271372-1) and PhosSTOP phosphatase inhibitor tablets (http://
lifescience.roche.com/shop/products/phosstop) (Roche Applied
Science). Polyacrylamide gel electrophoresis and protein transfer
were performed as described previously.49,50 Membranes were
blocked in 5% nonfat dry milk buffer, unless otherwise noted, and
incubated overnight at 4�C with primary antibodies for: PARP
(1:1000, http://www.cellsignal.com/products/primary-antibodies/
9542), phospho-H3 serine 10 (1:1000, http://www.cellsignal.com/
product/productDetail.jsp?productIdD 3377) (all from Cell Sig-
naling), p53 (1:1000, Millipore, http://www.millipore.com/cata
log/item/05-224) p21 (1:300, Santa Cruz Biotechnology, http://
www.scbt.com/datasheet-756-p21-h-164-antibody.html), ERRb
(1:1000, clone H6707 (cl.07) http://www.rndsystems.com/Prod

ucts/PP-H6707-00) and 1:500 clone H6705 (cl.05) http://www.
rndsystems.com/Products/PP-H6705-00), R&D Systems manu-
factured by Perseus Proteomics), ERRg (1:100, Abcam, http://
www.abcam.com/estrogen-related-receptor-gamma-antibody-
ab82319.html). ERRg purified protein (transcript variant 2) was
purchased from Origene (http://www.origene.com/protein/
TP312143.aspx). As a loading control, all membranes were re-
probed with b–actin primary antibody (1:10,000, Sigma, http://
www.sigmaaldrich.com/catalog/product/sigma/a5316?langDenan
dregionDUS) for �1 hour at room temperature. Horseradish per-
oxidase-conjugated secondary antibodies (1:5000, GE Healthcare
Life Sciences, http://www.gelifesciences.com/webapp/wcs/stores/
servlet/catalog/en/GELifeSciences/products/AlternativeProductStr
ucture_16827/25005173#) and enhanced chemiluminescent
detection HyGLOTM Quick Spray Chemiluminescent (Denville,
http://www.denvillescientific.com/node/1213) were used for detec-
tion as decribed in.50

Annexin V assay
On day 0, cells were seeded at a density of 100,000 cells per

well in 6-well plastic tissue culture dishes. Cells were treated with
DY on day 1 for 18 h (RKO) or 24 h (A172 and T98G). Float-
ing cells were collected. Adherent cells were trypsinized and
added to the collected, floating cells. Cells were pelleted by
centrifuging for 5 min at 1,000 RPM. Media was aspirated and
cells were washed once with 1£ PBS and centrifuged again. PBS
was aspirated and cells were washed once with 500 ml binding
buffer (BioLegend, http://www.biolegend.com/annexin-v-bind
ing-buffer-5162.html) and centrifuged. Binding buffer was aspi-
rated and 5 ml of Annexin V antibody conjugated with FITC
(BioLegend, http://www.biolegend.com/fitc-annexin-v-5161.
html) was added to the cell pellets and lightly vortexed. Samples
were incubated for 15 min at room temperature, in the dark,
before adding 400 ml of binding buffer. PI was added and levels
of FITC and PI were measured by the LCCC Flow Cytometry
and Cell Sorting Shared Resource.

Lentiviral shRNA and stable cell lines
Short hairpin RNA (shRNA) directed against human TP53

(pLKO-p53-shRNA-941) and the empty pLKO.1 vector were pro-
vided by Dr. Todd Waldman.32 Customized shRNAs directed
against ERRb, ERRg and the control scrambled inserts in psiLv-
mU6 (ERRb) and psiLv-U6 (ERRg) were purchased from Gene-
copeia. The lentiviral helper plasmids for pLKO viral packaging,
pHR08.2DR and pCMV-VSV-G, were provided by Dr. Chunling
Yi (LCCC, Georgetown University, Washington, DC). To prepare
viral stocks, HEK293T cells were seeded at a density of 1.5 million
cells per 100 mm plastic tissue culture dish. Packaging cells were
triply transfected using Lipofectamine LTX and Plus reagent (Life
Technologies, http://www.lifetechnologies.com/us/en/home/life-
science/protein-expression-and-analysis/transfection-selection/lipo
fectamine-ltx-reagent.html) and the following ratios of plasmids:
4 mg pLKO-p53-shRNA-941 or empty pLKO.1, 3 mg
pHR08.2DR and 2 mg pCMV-VSV-G. For production of
shERRb-containing virus, cells were co-transfected with shRNA or
scrambled control plasmids using the Lenti-Pac FIV Expression
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Packaging Kit (Genecopoeia, http://www.genecopoeia.com/prod
uct/lentiviral-packaging-kit-cells/#order) according to man-
ufacturer’s instructions. Media was changed the next day. Superna-
tant was collected 48 h post-transfection, centrifuged, aliquoted
and stored at¡80�C. Knockdown was assessed at the protein level
by immunoblotting.

shp53: CACCATCCACTACAACTACAT
shERRb-1: TGAGGACTACATCATGGAT
shERRb-2: TGCAGCACTTCTATAGCGT
shERRg¡1: GGATGATGGTAGAGCAATA
shERRg¡2: GTTAAGAGGTGTAATCTAA

ERRb expression constructs
ERRbsf (murine ERRb, >90% homology to human ERRbsf)

was initially purchased from Addgene (plasmid #40798).51 The
insert was amplified by PCR, purified using a GE Illustra GFX kit
(http://www.gelifesciences.com/webapp/wcs/stores/servlet/product
ById/en/GELifeSciences/28903470), digested with EcoRI and
BamHI restriction enzymes (Promega, http://www.promega.com/
products/product-subcategory-search-results/?fDcaf9d273-9242-
48c5-877e-7c42c91b23c7andsDtitle) and cloned into the recipient
pSG5 vector that was also digested with EcoRI and BamHI using
standard molecular biology techniques. Proper insertion was con-
firmed by automated DNA sequencing (Genewiz) and this plasmid
has been re-deposited at Addgene (http://www.addgene.org/
52188/). The ERRb2 and ERRb-D10 splice variants were synthe-
sized and cloned into pSG5 by Genewiz with codon optimization
to confer resistance to shERRb-1 and shERRb-2, and have also
been deposited at Addgene (http://www.addgene.org/52186/ and
http://addgene.org/52187/).

Transfection of ERRbsf and ERRb2
Cells were seeded at a density of 100,000 (T98G) or 150,000

(A172) cells per well in 6-well plastic tissue culture dishes on day
0. On day 1, cells were transfected using either jetPRIME
(T98G, Polyplus, http://www.polyplus-transfection.com/2009/
08/jetprime%C2%AE/) or Lipofectamine LTX and Plus reagent
(A172, Life Technologies, http://www.lifetechnologies.com/us/
en/home/life-science/protein-expression-and-analysis/transfecti
on-selection/lipofectamine-ltx-reagent.html) according to man-
ufacturer’s instructions. After 4 h, transfection complexes were
removed and media was added containing either DMSO or indi-
cated concentrations of DY. Protein was harvested 24 h post-DY
treatment.

Dual-luciferase reporter assay
Cells were seeded at 75,000 cells per well in 24-well plastic tis-

sue culture dishes on day 0. On day 1, cells were triply-transfected
with 139 ng of reporter plasmid (p21-luc http://www.addgene.
org/21723/,34 360 ng of expression plasmid (psg5, ERRbsf and/
or ERRb2), and 1 ng of pRL-SV40-Renilla (https://www.prom
ega.com/products/reporter-assays-and-transfection/reporter-vec
tors-and-cell-lines/prl-renilla-luciferase-control-reporter-vectors/)
using jetPRIME (Fig. 7) or 499 ng of reporter plasmid (p21-0
http://www.addgene.org/21723/, p21-2 http://www.addgene.

org/21724/, p21-4 http://www.addgene.org/21725/)34 and 1 ng
of pRL-SV40-Renilla (Fig. 6). Four hours post-transfection, cells
were treated with specified concentrations of DY131. On day 3,
18–20 h after DY treatment, cells were harvested using the dual-
luciferase reporter assay system (https://www.promega.com/prod
ucts/reporter-assays-and-transfection/reporter-assays/dual_lucifer
ase-reporter-assay-system/) according to the manufacturer’s
instructions. Luciferase activity was normalized to Renilla activity.
The experiment was performed in triplicate.

Senescence assay
Cells were seeded at 15,000–20,000 cells per well in 12-well

plastic tissue culture dishes on day 0. The following day cells
were treated with vehicle or drug and then a senescence associated
b-galactosidase staining kit (Cell Signaling, http://www.cellsig
nal.com/product/productDetail.jsp?productId D 9860) was used
24 h post-treatment to detect cellular senescence. Images were
taken on an Olympus IX-71 inverted epifluorescence microscope
at 20£ magnification in brightfield. The percentage of SA- b-gal
positive cells was calculated for 5–12 fields per experiment
(»100 cells per field).

Image analysis and statistics
NIH Image J (http://rsbweb.nih.gov/ij/) was used to perform

densitometry. Statistics were performed using GraphPad Prism
software 5.0. Analyses used in this study include one-way
ANOVA followed by Tukey’s multiple comparisons posttest or
2-way ANOVA followed by Bonferroni’s posttest. In all figures,
data are presented as the mean § standard deviation (SD) unless
otherwise specified. Statistical significance is defined by a P value
of �0.05.
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