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Abstract

Angiostrongylus cantonensis (rat lungworm) is the etiological agent of angiostrongyliasis,

mainly causing eosinophilic meningitis or meningoencephalitis in human. Although the biol-

ogy of A. cantonensis is relatively well known, little is understood about the mechanisms of

the parasite’s development and survival in definitive hosts, or its adaptation to a broad range

of snail intermediate hosts. Here, we generate a high-quality assembly of a well-defined lab-

oratory strain of A. cantonensis from Guangzhou, China, by using Illumina and PacBio

sequencing technologies. We undertake comparative analyses with representative helminth

genomes and explore transcriptomic data throughout key developmental life-cycles of the

parasite. We find that part of retrotransposons and gene families undergo multiple waves of

expansions. These include extracellular superoxide dismutase (EC-SOD) and astacin-like

proteases which are considered to be associated with invasion and survival of the parasite.

Furthermore, these paralogs from different sub-clades based on phylogeny, have different

expression patterns in the molluscan and rodent stages, suggesting divergent functions

under the different parasitic environment. We also find five candidate convergent signatures

in the EC-SOD proteins from flukes and one sub-clade of A. cantonensis. Additionally,

genes encoding proteolytic enzymes, involved in host hemoglobin digestion, exhibit expan-

sion in A. cantonensis as well as two other blood-feeding nematodes. Overall, we find sev-

eral potential adaptive evolutionary signatures in A. cantonensis, and also in some other

helminths with similar traits. The genome and transcriptomes provide a useful resource for

detailed studies of A. cantonensis-host adaptation and an in-depth understanding of the

global-spread of angiostrongyliasis.
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Author summary

Angiostrongylus cantonensis, rat lungworm, is a common pathogen that causes human

eosinophilic meningitis via eating contaminated food. Human angiostrongyliasis has been

reported globally. This worm has a complex life-cycle, which includes an especially wide

range of snails as intermediate hosts, making it more difficult to eradicate. In this study,

we sequenced the genome and transcriptome, and performed comparative analyses to

study the potential genetics of its biology using short-read and long-read sequencing tech-

nologies. We revealed some potential adaptive evolution in the genome, such as the

expansion of retrotransposons and gene families encoding antioxidant enzymes, invasion,

migration and digestion related proteases. Specifically, we found a potential clue suggest-

ing convergent evolution of EC-SODs in Angiostrongylus and flukes, all of which require

snails as intermediate hosts. These results provide an abundant data resource to study the

biology and evolution of A. cantonensis and showed some potential targets against A. can-
tonensis and helminths with similar traits.

Introduction

Angiostrongylus cantonensis (rat lungworm) is a parasitic roundworm (nematode) of the

superfamily Metastrongyloidea, with a complicated life cycle via a gastropod intermediate host

[1]. More than twenty species of Angiostrongylus have been discovered in rodents, carnivores

and insectivores, and two of them A. cantonensis and A. costaricensis are human parasites [1].

A. cantonensis is the most common infectious cause of eosinophilic meningitis in humans,

causing central nervous system (CNS) angiostrongyliasis [2]. Since the first human CNS

angiostrongyliasis case reported in 1945 [3], other clinical symptoms including ocular disease,

encephalitis and fever of unknown origin have been reported for this disease [4–6]. While

most cases were reported in Asia, the Pacific Basin and Australia, human angiostrongyliasis

has been found emerging worldwide in the past decades, including USA, France and the UK

[7–10] (Figure S1 in S1 Supporting Information).

The life cycle of A. cantonensis involves a molluscan intermediate host (various species) and

a definitive rodent host (cf. review [11], Fig 1). Briefly, the first-stage larvae (L1) are swallowed

by an intermediate host, they molt twice into third-stage larvae (L3). The infective L3 are

ingested by a definitive host, then they migrate to the brain and molt twice into young adults

(L5). Eventually, the L5 migrate to the lungs where develop to sexual maturity and lay eggs.

The eggs embryonate, develop and hatch to L1 and they are excreted in host feces, restarting

the life cycle. This worm can infect a very wide range of intermediate hosts, comprising at least

160 species belonging to 44 families of freshwater and land gastropods [12]. The two available

assemblies are highly fragmented in nature which has posed as an obstacle to detailed biologi-

cal and evolutionary investigations [13, 14].

In the present study, we sequenced and assembled a high-quality reference genome of a

well-defined laboratory strain of A. cantonenis from Guangzhou, China. Through analyses of

comparative genomics and transcriptome, we explored potential molecules regarding the

nematode survival in intermediate host and/or definitive host.
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Methods

Ethics statement

Procedures involving animals and their care described here were approved by the Institutional

Animal Care and Use Committee of Sun Yat-sen University (Permit No: 2016–055) and fol-

lowed the National Guidelines for Experimental Animal Welfare (MOST, China, 2006).

Sample preparation and sequencing

The life-cycle of A. cantonensis was established and maintained in the Department of Parasitol-

ogy, Zhongshan School of Medicine. L1 larvae were separated from feces of rats. L3 were iso-

lated from experimentally infected snails using the method previously described by Zeng [15].

Sprague Dawley rats were challenged with L3 (200 per animal) via intragastric administration.

Procedures for animal care described herein were approved by the Institutional Animal Care

and Use Committee of Sun Yat-sen University. Other developmental worms (L4, L5 and

mature adults, including female and male) were harvested from rats at 21, 28, and 48 days

post-infection (dpi) respectively. Genomic DNA was extracted from ten adult worms. Seven

paired-end and mate-pair whole-genome shotgun libraries (250bp, 500bp, 800bp, 2kb, 5kb,

10kb, and 20kb, Table S1 in S2 Supporting Information) were constructed and then sequenced

using the Illumina HiSeq 2000 platform. Another 20 kb library for PacBio sequencing was con-

structed and sequenced using RSII. RNA was extracted from different developmental stages of

A. cantonensis (L1, L3, L4, L5 and mature adults, the Pomacea canaliculata used as an interme-

diate host), respectively. Seven cDNA libraries were sequenced using the Illumina Hiseq 2000

Fig 1. The complex life cycle of A. cantonensis. The complete life cycle of A. cantonensis requires two different hosts (snail and rat): L1 larvae are

excreted in the feces of a definitive host (rat). When ingested by an intermediate host, they develop into infective L3 after molting twice and are

maintained at that stage until they are eaten by a definitive host. The L3 are ingested by a rat and invade intestinal tissue and then migrate to the central

nervous system (CNS), where they molt twice and develop into L5. Finally, these worms leave the brain and then reach the pulmonary arteries, where

they become fully mature adults. Human infections are acquired by eating undercooked snails, paratenic hosts such as frogs, or contaminated

vegetables containing L3 of A. cantonensis. Since humans are non-permissive hosts of A. cantonensis, the larvae reach to the brain and cause

eosinophilic meningitis.

https://doi.org/10.1371/journal.pntd.0007846.g001
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platform. Another four cDNA libraries (L3 and L4, the Biomphalaria glabrata used as an inter-

mediate host) were constructed and sequenced using the Illumina HiSeq 4000 platform.

Genome assembly and annotation

We employed a hybrid assembly strategy by combining Illumina and PacBio data (Figure S3

in S1 Supporting Information). Illumina reads were first assembled into contigs using the Pla-

tanus [16] (v1.2.4) with default parameters. The resulting Illumina contigs and PacBio sub-

reads were further used to assemble with DBG2OLC [17] pipeline (release Jun 2015). Then,

correction of the assembly was performed twice with Pilon [18] (v1.22) by using Illumina

reads. To further link the corrected contigs, the corrected PacBio reads and Illumina mate-pair

reads were employed to extend and link into scaffolds using SSPACE-LongRead [19] (v1–1)

and SSPACE [20] (v2.0). Remaining gaps within these scaffolds were filled with GapCloser

available in SOAPdenovo2 [21]. CEGMA (Core Eukaryotic Genes Mapping Approach) [22]

(v2.4), BUSCO (benchmarking universal single-copy orthologues) [23] (v3.0.1), and de novo
assembled transcripts with Trinity [24] (v2.0.6) were used to assess the completeness of the

assembly.

Protein-coding gene models were predicted using a strategy to combine the homology-

based prediction and RNA-seq data as previously described [25] (cf. S1 Supporting Informa-

tion, Supplementary Methods and Results sections). The functional annotation of protein-cod-

ing genes was performed using BLASTP alignment to databases: Swiss-Prot (release Jun 2019),

TrEMBL (release Jun 2019), NCBI NR (release Sep 2017) and KEGG (release 89). InterPro

domains and GO terms were assigned with InterProScan [26] (release 5.3).

Repetitive elements (REs) in the assembly were identified using a combination of homol-

ogy- and ab initio-based approaches. RepeatMasker and RepeatProteinMask (http://www.

repeatmasker.org/, version open-4-0-5) were applied to detect homologous REs in the RepBase

database (v20.04). PILER [27] (v1.0), RepeatScout [28] (v1.0.5), and LTR-Finder [29] (v1.0.6)

were used to build a de novo repeat library. RepeatMasker was run against the de novo library.

The same pipeline was employed to predict REs in seven other nematode genomes (Ascaris
suum [30], Brugia malayi [31]; Caenorhabditis elegans [32],Haemonchus contortus [33, 34],

Necator americanus [35],Meloidogyne hapla [36]). For RTE-RTE transposable elements, pro-

teins of RTE-RTEs deposited in RepeatPep (RepeatMasker-open-4.0.6) were collected and

used to search in eight nematode genomes using homology-based prediction pipeline as delin-

eated in gene prediction, except with an alignment rate of more than 50%. Amino acid

sequences encoding a reverse transcriptase (RT, PF00078) domain were aligned using MUS-

CLE [37] (v3.8.31) and then were constructed a phylogenetic tree using FastTree [38] (v2.1).

Genome evolution

The OrthoMCL [39] pipeline was used to determine orthologous groups in A. cantonensis and

seven other represented nematode genomes (A. suum, B.malayi; C. elegans,H. contortus, N.

americanus,M. hapla and T. spiralis, related data was downloaded from the WormBase [40]

(version 246). 788 single-copy orthologous genes were extracted to build a phylogenetic tree.

Sequences from each single copy orthologs were aligned using MUSCLE and then filtered with

trimAl [41] (v1.2) with default parameters except “-gt 0.5”. RAxML [42] (v8.2) was used to

construct gene tree with “GTRGAMMA” model. Finally, ASTRAL [43] (v5.6.1) was used to

construct species tree based on 788 gene trees. Phylogenetic relationship among eight nema-

todes and six flatworms (Schistosoma japonicum [44], S.mansoni [45], S. haematobium [46],

Opisthorchis viverrini [47], Clonorchis sinensis [48] and Schmidtea mediterranea [49], related

data was downloaded from WormBase Parasite [50], WBPS5) was resolved using the method
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described above based on 173 single-copy orthologous genes. Species divergence time was esti-

mated using MCMCTREE, which is part of the PAML package [51] (v4.5). Published times for

T. spiralis and C. elegans (~428 million years ago, mya), and B.malayi and C. elegans (~241

mya) divergence were used to calibrate divergence time [52]. We investigated the expansion

and contraction of gene families using the CAFÉ [53] (Computational Analysis of gene Family

Evolution, v2.1), which infers the dynamics of the gene family under a stochastic birth and

death model.

Identification, evolution and expression of specific gene or gene families

To avoid systematic biases, for example, different methods in the annotation of the previously

published helminth draft genomes, we adopted a uniform strategy to re-annotate and check

candidate genes screened from the above comparative analysis. Generally, protein sequences

of superoxide dismutase (SOD) genes, astacin-like genes, and several hemoglobin digestion

proteases of nematodes deposited in Swiss-Prot or MEROPS [54] (download in Nov 2016)

databases were downloaded and mapped to the genomes using the homology-based gene pre-

diction. We also manually checked these putative genes and compared with the original gene

annotation (The associations of the gene IDs used in this study and the gene IDs in Wormbase

are listed in Table S9 in S2 Supporting Information). Phylogenomic analyses of the gene fami-

lies studied herein were based on protein sequences. The best model of amino acid replace-

ment was estimated using ProtTest [55] (v3.4.2) software. The phylogenetic trees of these

genes were constructed using PhyML [56] (v3.0) software, respectively. For EC-SODs, we also

reconstructed the phylogenetic trees using RAxML and IQ-TREE [57] (v1.6.5), and conducted

a hypergeometric test site by site at amino acid level to detect the potential convergent evolu-

tion [25] between the genus Angiostrongylus and flukes in a broad range of 141 EC-SODs from

62 species (43 nematodes and 19 platyhelminths, Table S10 in S2 Supporting Information).

For RNA-seq analysis, we mapped RNA-seq reads to the genome with Tophat2 [58]

(v2.0.8). We quantitated the gene expression level using uniquely mapped reads and measure

in reads per kilobase per million reads (RPKM). The expression of EC-SOD and MTP-1 sub-

clade I and II genes were validated using real-time PCR (qPCR, primers are shown in Table S8

in S2 Supporting Information), with pooled larvae/adults isolated from multiple hosts for each

developmental stage. β-actin was used as an internal control. The relative changes in gene

expression were calculated by equation 2−ΔΔC
T, where ΔΔC

T = (CT,target—CT,Actin)Time x—

(CT,Target—CT, Actin)Time 0. Time x is any time point and Time 0 represents the 1 × expression

of the target gene normalized to β-actin [59].

Results

Genome assembly and annotation

The genome of A. cantonensis was sequenced using the Illumina HiSeq 2000 and PacBio RSII

platforms, yielding a total of ~267-fold and ~41-fold coverage, respectively (estimated genome

size: 290 Mb; Figure S2 in S1 Supporting Information and Table S1 in S2 Supporting Informa-

tion). The final genome assembly included 282 Mb in 816 contigs and 425 scaffolds, with a

contig N50 of 993 kb and a scaffold N50 of 1.8Mb (Table 1). The assembly covered more than

95% (coverage� 70%) of the assembled RNA-seq transcripts, indicating that the gene region

was well represented (Table S2 in S2 Supporting Information). In addition, both the CEGMA

and BUSCO methods were used, and the results showed that the assembly in this study was

more complete than the published fragment assemblies of A. cantonensis in the protein-coding

region (Table 1). Taken together, the results showed that the present genome assembly of

A. cantonensis represented a substantial part of the whole genome. Combined homology-
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based and RNA-seq methods, we predicted 13,473 protein-coding gene models (5.16% of the

assembly, spanning ~15 Mb) in A. cantonensis genome. Of these genes, 13,114 (97%) were sup-

ported by RNA-seq data (RPKM�1 at least one sample), and 12,407 (92.1%) genes either had

homologues in public databases (Swiss-Prot, KEGG, and NCBI NR).

Transposable elements (TEs) represented 54.61% of the assembled genome, representing a

greater percentage than most parasitic nematode genomes characterized to date (3.4–32.9%

using the same bioinformatics pipeline; Table S3 in S2 Supporting Information). RTE-RTE

retrotransposons, belonging to the long interspersed elements (LINEs), were the most abun-

dant group in A. cantonensis genome, representing 39.2% of the genome and 72% of repeats

respectively (Table S4 in S2 Supporting Information), a markedly higher percentage than the

genomes of other studied nematodes (0~5.1%; Table S3 in S2 Supporting Information).

Sequence divergence of extant RTE-RTE copies compared to the repeat consensus showed at

least two periods of element expansion in A. cantonensis (Fig 2a). The phylogeny showed that

the RTE-RTEs expanded independently in A. cantonensis, N. americanus, andH. contortus,
but the A. cantonensis displayed substantially higher divergence and abundance than the other

two strongyloids (Fig 2).

Genome evolution

To better understand the evolution of A. cantonensis genome and to infer genes or gene fami-

lies associated with parasitism, we performed a comparative analysis with seven other nema-

tode genomes representing clades I, III, IV and V (A. suum, B.malayi; C. elegans,H. contortus,
N. americanus,M. hapla and T. spiralis). We identified 788 one-to-one orthologous genes in

all eight nematodes and assessed the phylogenetic relationships using a coalescent-based

method [43]. The phylogenetic analysis showed that A. cantonensis was genetically closer to

H. contortus (Figure S5 in S1 Supporting Information), which was the same as the study of the

50 Helminths Genome Project [13]. We inferred that 26 and 119 gene families respectively

underwent significant expansion and contraction in the A. cantonensis lineage (Viterbi

P�0.05; Tables S6 and S7 in S2 Supporting Information, Figure S6 in S1 Supporting Informa-

tion). Expanded genes included protease (neprilysin-1 and legumain), transporter (sodium-

dependent high-affinity dicarboxylate transporter 3), receptor (acetylcholine receptor) and

ancylostoma secreted protein. Based on the OrthoMCL cluster result, we also identified 454

genes (159 groups; Table S5 in S2 Supporting Information) that appeared to be unique in A.

cantonensis, which were significantly enriched in GO terms of ˝Superoxide dismutase activity˝

Table 1. Statistics of the A. cantonensis assemblies.

This study Yong et al [14]. Avril et al [13].

Assembly size (Mb) 283 260 253

Scaffold numbera 425 16,326 18,635

Gaps (bp) 1,480,142 25,114,564 4,505,497

Contig N50 (kb); Scaffold N50 (kb) 993; 1,815 1.7;42.2 27.1;43.9

GC content % 41.7 41.2 41.5

Complete BUSCOs[Duplicated]b 84.3%[1.2%] 62.5%[0.8%] 70.0%[1.2%]

Fragmented BUSCOs 7.80% 12.30% 10.20%

Missing BUSCOs 7.90% 25.20% 19.80%

CEGMA completeness 97.98% 80.24% 82.66%

a, length cut-off: 500bp;
b, Nematoda_odb9 dataset was used

https://doi.org/10.1371/journal.pntd.0007846.t001
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(GO:0004784) and metallopeptidase activity˝ (GO:0008237) (adjusted P-value< 0.05,

Figure S4 in S1 Supporting Information). These ˝unique˝ genes included astacin-like metallo-

proteinase (M12A), Aspartic protease (A01) and Extracellular superoxide dismutase

(EC-SOD) which are likely related to the invasion, migratory and digestive processes, innate

immune of A. cantonensis. Those expanded or specific genes may provide novel clues to A.

cantonensis adaptation to hosts.

Expansion of EC-SOD genes related to host adaptation in A. cantonensis
Reactive oxygen species (ROS), such as oxygen radicals and superoxide, are generated by

phagocytes (vertebrates) or haemocytes (invertebrates), and represent an innate defense sys-

tem against pathogens [60–62]. Helminth parasites secrete antioxidant enzymes for defense

against host-generated ROS for survival in the host [60]. Extracellular superoxide dismutase

(EC-SOD, also known as SOD3) belongs to the SOD gene family, which converts superoxide

radical into hydrogen peroxide and represents the first step in the antioxidant enzyme system

to reduce ROS [60].

Eleven tandem EC-SOD genes were identified in the A. cantonensis genome, which were

also confirmed by PCR using genomic DNA from A. cantonensis (Figure S9 in S1 Supporting

Information), which was four times more than the number in the other seven nematodes stud-

ied herein (1–2 copies, Fig 3b and Figure S7 in S1 Supporting Information). Phylogenetic anal-

ysis revealed that paralogous EC-SOD genes in A. cantonensismight likely arise via two

evolutionary events (Fig 3b), reflected by three paralogs (cluster I) in one clade with other

nematodes and eight paralogs in another clade (cluster II, Fig 3b and Figure S7 in S1 Support-

ing Information). In addition, transcription analysis revealed two expression patterns occurred

in these two clusters (Fig 3b). The genes in cluster I were relatively highly upregulated in the

Fig 2. RTE-RTE retrotransposons expansion in A. cantonensis. (a), The genomic portion of the RTE-RTEs in eight nematodes (three of which lack

RTE-RTEs using the same criterion) at different given divergence generated by the de novo prediction. The divergence is adjusted for multiple

substitutions using the Jukes-Cantor distance. (b), The phylogenetic tree depicting the relationship of RTE-RTEs among five nematodes. The branches

of five species of nematodes are colored in blue for A.suum, red for A. cantonensis, light blue for C. elegans, orange forH.contorus and green forN.

americanus.

https://doi.org/10.1371/journal.pntd.0007846.g002
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mammalian stage of A. cantonensis (L4 and L5 in Fig 3b), indicating these genes may be related

to defend against definitive host-derived ROS. We examined the gene expression level of

EC-SOD in A. cantonensis recovered from its nonpermissive host (mice) and permissive host

(rat) using qPCR. We observed significantly higher transcription of the gene in cluster I

Fig 3. Phylogenomic analysis of EC-SOD in different species of nematodes and flatworms. (a), Phylogenic tree

depicts a cladogram of eight nematodes and six flatworms profiled in this study. Number at the node indicates

ASTRAL supporting value while the branches with the sketch of snails represents intermediate hosts. Specifically, the

number of ˝+˝ shows the increasing spectrum of suitable intermediate hosts. (b), Maximum likelihood tree of

EC-SODs in 14 species and the mRNA expression patterns of A. cantonensis’s EC-SODs. GBH: the EC-SOD clustered

in gastropod-borne helminths. (c), The multiple sequence alignment of EC-SODs from sequences in Fig 3b. (d),

Convergent study at amino acids levels in the EC-SODs from gastropod-borne helminths at an extended background

of 62 species. The x-axis shows multiple sequence alignment position in Fig 3c.

https://doi.org/10.1371/journal.pntd.0007846.g003
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(termed P51547-D2 herein) in A. cantonensis collected from rats compared with the one har-

vested from mice using qPCR (Figure S11 in S1 Supporting Information).

In contrast, the EC-SODs in cluster II (six out of eight) were transcribed at significantly

higher levels in L3, recovered from infected intermediate host compared with the other devel-

opmental stages (Fig 3b and Figure S10 in S1 Supporting Information), suggesting that these

genes might be related specifically to parasite survival in the intermediate gastropod hosts.

Excluding the genus Angiostrongylus from the phylum Nematoda, five well-studied and

sequenced digenean trematodes (S. japonicum, S. haematobium, S.mansoni, O. viverrini, and

C. sinensis), are gastropod-borne helminths that require snails as the intermediate host or first

intermediate host [63]. We then analyzed and compared SODs of these five digenean trema-

todes and S.mediterranea (a free-living planarian) to determine whether some similarities

existed among EC-SODs from the gastropod-borne helminths. Interestingly, the phylogenetic

analyses showed that while EC-SOD in cluster II and the EC-SODs from parasitic flukes clus-

tered into one clade, in which only contained the gastropod-borne flatworms and nematode

(A. cantonensis) (GBH, Fig 3b and Figure S7 in S1 Supporting Information), which conflicts

with the species topology (Fig 3a). Further, both the maximum-likelihood and Bayesian analy-

ses recovered trees in which EC-SOD in cluster II and EC-SODs from digenean trematodes

grouped together in one clade based on the conserved domain (“Sod_Cu”, Figure S8 in S1 Sup-

porting Information). The multiple sequence alignment of the EC-SODs from 14 species

showed some over-represented amino acid sites existed in the most members in the GBH

clade (Fig 3c). Further, we extended the examination in 62 species (43 nematodes including 2

gastropod-borne nematodes, and 19 flatworms including 12 gastropod-borne flukes) and

detected five amino acid sites that were significantly enriched in EC-SODs from the gastro-

pod-borne helminths (Fig 3d, adjust P-value< 1e-5). This finding suggests that EC-SOD from

cluster II may experience a convergent evolution at some sites with the EC-SODs of flukes.

Proteases related to hemoglobin and tissue digestion in A. cantonensis
Adults of A. cantonensis dwell in the pulmonary arteries of the definitive host, where worms

mature and lay eggs. The parasite digests blood and other tissue components of the host for

major protein synthesis [64] (Fig 4a). Hematophagous nematodes employ an ordered pathway

with distinct proteases to degrade host hemoglobin or other serum proteins [65] (Fig 4a).

Through annotation and comparative analysis of eight nematode genomes, we found that

genes encoding proteases such as nematode-specific aspartic proteases (e.g., necepsin-1),

cathepsin B-like, legumain (Lgmn) and neprilysin (e.g., NEP-1), inferred to be involved in

hemoglobin digestion, are expanded in A. cantonensis (Fig 4 and Figures S13–16 in S1 Support-

ing Information). For instance, necepsin-1 (known as APR-2 in N. americanus) belongs to the

aspartic proteases (MEROPS: A01A), and it is likely involved in the initial cleavage of hemoglo-

bin [66]. Cysteine peptidases (including cathepsin B-like proteases) are likely involved in the

second step of digestion. In addition, A. cantonensis has at least six genes encoding legumain,

which likely activate cysteine proteases by specific hydrolysis of peptide bonds following aspar-

agine residues [67]. In the final digestion step, metalloproteases, such as NEP-1, likely degrade

small peptide fragments to dipeptides. Interestingly, the proteases necepsin-1, cathepsin B-like,

legumain and NEP-1 are also expanded in N. americanus and/orH. contortus with respect to

the five other nematodes studied herein (Fig 4, Figures S13–16 in S1 Supporting Information).

Expansion of astacin-like genes in A. cantonensis
Astacin-like metalloproteases are involved in molting, feeding and/or host tissue penetration

in nematodes [68–70]. The number of genes encoding astacin-like protease (M12A,
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metalloproteases) in A. cantonensis (n = 75) was greater than that in C. elegans (n = 40). One

subfamily, with the highest sequence similarity to the MTP-1 of Ancylostoma caninum [71],

had only one gene in C. elegans, but had 63 genes in A. cantonensis. The expanded MTP-1

genes of A. cantonensis separated into two large subclades (subclade I: n = 22; subclade II:

Fig 4. Phylogenomic analysis of three proteases related to hemoglobin digestion in eight nematodes. (a), H&E stained longitudinal section of the

digestive tract from a female adult (on the upper left) shows the presence of red blood cells. The possible hemoglobin digestion pathway in the

nematodes is illustrated on the right panel [65] with subfamily of enzymes (aspartic protease, cysteine protease and metalloprotease) related to

hemoglobin and/or tissue digestion highlighted in yellow background. Specifically, the expanded subfamilies of enzymes from A. cantonensis are

highlighted in red. Maximum likelihood phylogenies of necepsin-1 (b), Lgmn (c) and Nep-1(d) show expansion of these proteases in A. cantonensis,N.

americanus and/orH. contortus, all of which are blood-feeding nematodes.

https://doi.org/10.1371/journal.pntd.0007846.g004
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n = 41; Fig 5a) and ten amino acid sites that were relatively specifically between the two sub-

clades (Figure S19 in S1 Supporting Information). Additionally, genes in subclade I were

mainly expressed in the L1 or L3, which was also supported by qPCR (Fig 5b and Figure S18 in

S1 Supporting Information). The genes in subclade II had relatively low transcription com-

pared with subclade I (Fig 5 and Figure S18 in S1 Supporting Information). MTP-1 has been

reported to be associated with tissue migration in A. caninum [71], suggesting that the

expanded MTP-1s may be related to the survival and/or infectivity of A. cantonensis. Addition-

ally, the sequence divergence and distinct RNA expression of these two subclades suggest that

A. cantonensismay have acquired multiple related abilities. A study has shown that an expan-

sion of astacin-like genes was also discovered in Strongyloides and Parastrongyloides species

[72] (Clade IV). But our phylogenetic analysis showed that the expanded astacin-like genes in

S. ratti formed a single and distinct clade that diverged from the above mentioned MTP-1

clade (Figure S20 in S1 Supporting Information). Recently, another study of comparative

Fig 5. Evolution of astacin-like genes and expression pattern across in the life-cycles of A. cantonensis. (a), Phylogenetic analysis of the astacin-like

genes containing the astacin domain (PF01400). We named the purple cluster MTP-1 because it shows the best hit with MTP-1 in the MEROPS

database. (b), Expression patterns of expanded sub-clade I astacin-like genes in A. cantonensis. The genes in sub-clade I are upregulated in L1 or L3,

which are two stages of invasion into intermediate host or mammalian hosts. c, mRNA expression pattern of expanded sub-clade II astacin-like genes in

A. cantonensis.

https://doi.org/10.1371/journal.pntd.0007846.g005
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analysis of the major parasitic worms also identified the expansion of astacin-like genes in the

clades IVa, Vc and Vb [13] (including A. cantonensis), which is consistent with our findings.

Discussion

Parasite adaptation to the host is a key factor for its success [73]. The increasing genomic data

for parasitic worms provides resources to explore biological and genetic differences between

free-living and parasitic nematodes of plants and animals, shedding light on genomic adap-

tions [74]. These resources also offer unique opportunities to explore the fundamental biology

of parasitic helminths and to identify potential interventions for diseases caused by worms.

Here we sequenced and assembled a high-quality reference genome of the Guangzhou

strain of A. cantonensis, which were superior in quality to previous drafts for this species [13,

14] and published draft genomes for other strongylid nematodes [33–35]. We also employed

transcriptomic data from multiple different developmental stages to reliably predict protein-

coding genes and to underpin the subsequent analyses. We found that some of the genomic

elements experienced multiple waves of expansion in A. cantonensis, including non-coding

regions (e.g., RTE-RTE retrotransposons) and protein coding genes (e.g. EC-SOD and asta-

cin-like genes). The paralogs of EC-SODs and astacin-like genes from different sub-clades,

have different expression patterns in the molluscan stage and mammalian stage. Thus, the

results may partly explain the adaptive evolution of the complex life cycle of A. cantonensis,
such as the two different parasitic environments (mollusc and definitive rodent host).

Extracellular/secreted SOD of helminth parasite is one of the main components in excre-

tory-secretory (ES) and plays a key role in fighting against host-produced ROS [60]. Our study

showed that the cluster I EC-SODs of A. cantonensismainly expressed in the mammalian

stage, and expressed higher in the permissive host (rat) than in non-permissive host (mice). A

previous investigation showed the high activity of EC-SOD in ES from rat-originated A. canto-
nensis [75]. And another study showed the higher SOD activity inHeligmosomoides polygyrus
(mice is non-permissive hosts) than in Nippostrongylus brasiliensis (mice is non-permissive

hosts) when they infected the mice [76]. These results suggested that some of parasitic nema-

tode EC-SOD may be important for its survival in permissive mammalian hosts.

In contrast, the cluster II EC-SODs of A. cantonensis showed significant higher expression

in the L3 (mollusc-dwelling). Moreover, the cluster II EC-SODs may experience convergent

evolution at several amino acids with the EC-SODs of flukes. In Fasciola hepatica, EC-SOD

was also identified in ES products from intra-molluscan larval stages [77]. The SOD showed

the most significant differential expression patterns of three antioxidant enzymes (SOD, gluta-

thione peroxidase, glutathione-S-transferase) in S.mansoni recovered from the susceptible

snail than that from resistant snail [78]. Taken together, sequence convergence and expression

similarity suggested the EC-SODs from gastropod-borne helminths might be related to their

survival in gastropod species. Further, we observed that the liver flukes (O. viverrini: the family

Bithyniidae and C. sinensis: the family Thiaridae and Bithyniidae) [79] with 3–4 copies of

EC-SODs have a relatively broad spectrum of intermediate snail hosts than blood flukes

(S. japonicum: Oncomelania hupensis, S. haematobium: the genus Bulinus and S.mansoni: the

genus Biomphalaria) [63] with 1–2 copies of EC-SODs. While A. cantonensis has 7 paralogs in

the GBH clade and has the broadest spectrum of snail hosts (the order Gastropod) [12] among

the six species in this study. The largest copy number and diverged EC-SODs in A. cantonensis
may provide more resources as well as possibilities for it to escape from host immune attack,

which may therefore be a potential explanation for its survival in a variety of intermediate

hosts. We also discovered some proteases involved in Hb digestion that were expanded in A.

cantonensis and the other two blood-feeding nematodes. This result reveals a comparable

Genome and adaptive evolution of Rat Lungworm

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007846 November 21, 2019 12 / 17

https://doi.org/10.1371/journal.pntd.0007846


spectrum of essential proteases involved in hemoglobin and possible tissue digestion among

three haematophagous nematodes (i.e. A. cantonensis, N. americanus andH. contortus). These

two instances merit further investigations as they may provide clues to broad-spectrum inter-

vention to not only A. cantonensis control but also other parasites control. The high-quality

genome and abundant transcriptomes of A. cantonensis should provide a deeper exploration

of the co-evolution in the complex life cycles and host adaptability for helminths, which can be

used as a resource to identify regions of genetic diversity in this species and help to deeply

understand the global-spread of angiostrongyliasis in order to explore novel anthelmintic

agents and/or vaccines.
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