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Diabetic kidney disease (DKD) is the leading cause of end-stage renal dis-

ease. However, because of shared complications between DKD and chronic

kidney disease (CKD), the description and characterization of DKD

remain ambiguous in the clinic, hindering the diagnosis and treatment of

early-stage DKD patients. Although estimated glomerular filtration rate

and albuminuria are well-established biomarkers of DKD, early-stage

DKD is rarely accompanied by a high estimated glomerular filtration rate,

and thus there is a need for new sensitive biomarkers. Transcriptome pro-

filing of kidney tissue has been reported previously, although RNA

sequencing (RNA-Seq) analysis of the venous blood platelets in DKD

patients has not yet been described. In the present study, we performed

RNA-Seq analysis of venous blood platelets from three patients with

CKD, five patients with DKD and 10 healthy controls, and compared the

results with a CKD-related microarray dataset. In total, 2097 genes with

differential transcript levels were identified in platelets of DKD patients

and healthy controls, and 462 genes with differential transcript levels were

identified in platelets of DKD patients and CKD patients. Through Kyoto

Encyclopedia of Genes and Genomes pathway enrichment analysis, we

selected 11 pathways, from which nine potential biomarkers (IL-1B, CD-

38, CSF1R, PPARG, NR1H3, DDO, HDC, DPYS and CAD) were identi-

fied. Furthermore, by comparing the RNA-Seq results with the GSE30566

dataset, we found that the biomarker KCND3 was the only up-regulated

gene in DKD patients. These biomarkers may have potential application

for the therapy and diagnosis of DKD, as well aid in determining the

mechanisms underlying DKD.

Chronic kidney disease (CKD) is highly prevalent,

with 850 million individuals suffering from the disease

and one in 10 adults possibly being at risk worldwide

[1]. In addition, CKD patients with renal insufficiency

are associated with a higher morbidity and mortality

of cardiovascular disease [2]. The main causes of CKD
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are varied, including diabetes, chronic glomeru-

lonephritis, chronic pyelonephritis and hypertension,

amongst others [3]. Up to 75% of CKD patients have

increased cardiovascular disease and infection before

renal replacement therapy [4]. Therefore, patients with

decreased renal function must be monitored and trea-

ted effectively to prevent the progression of CKD into

end-stage renal disease (ESRD) [5]. Diabetic kidney

disease (DKD), or diabetic nephropathy, occurs in

approximately 40% of diabetic patients and is the

leading cause of ESRD, accounting for the high mor-

bidity/mortality of cardiovascular diseases worldwide

[6]. Between 1990 and 2012, the number of deaths

attributable to DKD increased by 94% [5]. Poor blood

glucose control often leads to the occurrence and

development of DKD, in conjunction with the change

of glomerular feedback, the abnormality of polyol

metabolism and the formation of advanced glycation

end products.

Diabetic kidney disease occurs in patients with dia-

betes mellitus (DM). Different from primary CKD or

non-diabetic kidney disease in patients with DM, the

clinical diagnosis of DKD is based on the presence of

proteinuria and impaired kidney function in the setting

of diabetes, with a distinct histopathological pattern of

glomerular basement membrane (GBM) thickening,

mesangial matrix expansion, nodular glomerulosclero-

sis and arteriolar hyalinosis [7–9]. Clinical biomarkers

such as glomerular filtration rate (eGFR) and albu-

minuria, which are commonly used for monitoring

CKD progression, are not accurate in the diagnosis of

DKD or as a reflection of disease progression in DKD

patients, especially in the very early stage. Therefore,

highly sensitive biomarkers are urgently needed for

DKD diagnosis and therapies.

Advances in techniques make it possible for

researchers to identify new biomarkers in DKD.

Accordingly, a transcriptome analysis of kidney sam-

ples of DKD patients was performed by Woroniecka

et al.[10] aiming to identify differentially expressed

genes (DEGs) compared to healthy controls (HCs) via

a microarray. Subsequently, several companion studies

showed that the inflammation pathway is associated

with DKD, with the tumor necrosis factor receptors 1/

2 (TNFR1/2) and glycated hemoglobin A1c being

remarkable biomarkers for the progression of

advanced DKD [11–13]. In recent years, next-

generation sequencing technology, including high-

throughput RNA sequencing (RNA-Seq), has

developed rapidly [14,15]. Compared to microarray

technology, RNA-Seq can be used to quantify single-

nucleotide resolution transcripts in the whole genome,

thus detecting incomplete species in the genome

[16,17]. RNA-Seq also has the characteristics of a high

signal-to-noise ratio and wide application, which

makes it an important experimental method for ana-

lyzing DEGs at the transcriptional level [18].

However, there are few studies employing RNA-Seq

of platelets in the blood of patients with CKD and

DKD. A study has shown that there is overactivation

of platelets in patients with diabetes, and the subse-

quent released platelet products can cause damage to

the blood vessel wall and microcirculatory bed (includ-

ing the kidney) [19]. Furthermore, microalbuminuria

observed in preclinical DKD may also be related to

platelet activation [20]. Therefore, platelet RNA-Seq

may be a good way of investigating the potential

mechanism of DKD and providing better therapies for

DKD patients.

In the present study, RNA-Seq was performed to

characterize the transcriptome profiles in the platelets

of healthy individuals and patients with CKD and

DKD. In total, 2097 genes with differential transcript

levels (GDTLs) were identified in HCs compared to

DKD patients, and 462 GDTLs were identified in

CKD patients compared to DKD patients. To evalu-

ate the changes in gene splicing and signaling path-

ways, we carried out Gene Ontology (GO)

terminology to predict the potential function of these

DEGs, and Kyoto Encyclopedia of Genes and Gen-

omes (KEGG) analysis to evaluate the potential regu-

latory pathways of these DEGs. We identified 11

pathways and nine potential biomarkers: IL-1B, CD-

38, CSF1R, PPARG, NR1H3, DDO, HDC, DPYS and

CAD. Furthermore, we compared the RNA-Seq data

with the microarray data set related to CKD. KCND3

is the only up-regulated genes in DKD patients. In

sum, we have identified many potential molecular tar-

gets and signal pathways, providing a potential and

comprehensive theoretical basis for the treatment and

diagnosis of DKD patients.

Materials and methods

Ethical approval and informed consent

The overall research route is oulined in Fig. 1. None of the

patients who participated in this study had a genetic history

or other complications. Ten healthy individuals, three

CKD patients (the primary disease was chronic glomeru-

lonephritis) and five DKD patients were recruited at

Shanghai Pudong Hospital between May 2017 and Febru-

ary 2018. DKD was defined clinically by the presence on

two occasions of a ratio of urinary albumin to urinary cre-

atinine from a first morning specimen of at least 300, or

albuminuria >300 mg/24 h, or by a 24 h urinary protein
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concentration > 500 mg, accompanied by diabetic retinopa-

thy. Patients were excluded if they had received a diagnosis

of type 1 diabetes or non-diabetic renal disease. This study

was approved by the ethics committee of Shanghai Pudong

Hospital and written informed consent was obtained from

all subjects. The study was conducted according to the

guidelines set by the Declaration of Helsinki. The charac-

teristics of the 18 subjects are summarized in Tables 1 and

2.

Platelet isolation

Blood samples drawn from peripheral veins were stored in

EDTA-containing tubes. Platelet-rich plasma was first

obtained via centrifugation at 114 g for 10 min at 4 °C and

then centrifuged again to further remove hemocytes. The

supernatant was transferred to a 1.5-mL Eppendorf tube

and centrifuged at 2880 g for 20 min to obtain white pre-

cipitate platelets. Phosphate-buffered saline solution was

used to wash the platelets, which were subsequently re-

suspended in RNAlater (Thermo Fisher Scientific, Wal-

tham, MA, USA) and then frozen at �20 °C.

RNA extraction

Total platelet RNA was extracted using the RNeasy Micro

Kit (cat. no. 74004; Qiagen, Hilden, Germany) in accor-

dance with the manufacturer’s instructions. Total RNA

was qualified and quantified using model 2100 Bioanalyzer

(Agilent, Santa Clara, CA, USA) and a Qubit RNA BR

assay kit (Q10211; Invitrogen, Carlsbad, CA, USA), respec-

tively. RNA with RIN ≥ 7 was considered high-quality.

Fig. 1. Platelet RNA-Seq workflow and the bioinformatics analysis steps.
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PolyA-mRNA purification and fragment

In accordance with the manufacturer’s instructions, poly-(A)-

containing mRNA was purified using oligo (dT) magnetic

beads (Thermo Fisher Scientific), as well as Oligotex mRNA

Kits (Qiagen). Then, the purified products were fragmented

at 94 °C for 15 min. The first-strand cDNA was synthesized

using the fragmented and primed mRNA, as well as Proto-

Script reverse transcriptase (New England Biolabs, Ipswich,

MA, USA) and the program was 25 °C for 10 min, 42 °C for

50 min and 70 °C for 15 min. The second-strand cDNA was

synthesized using the first-strand cDNA and NEBNext

second-strand synthesis enzyme mix, and the program was

16 °C for 1 h. Then, the end repair/dA-tail was performed by

using NEBNext End Prep Enzyme Mix (New England Bio-

labs) and the program was 20 °C for 30 min, followed by

65 °C for 30 min. Adaptor ligation was also performed using

dA-Tailed cDNA, blunt/TA Ligase master mix and diluted

NEBNext adaptor, and the program was 20 °C for 15 min,

followed by 37 °C for 15 min. After end repair process and

ligation of adapters, the cDNA fragments were amplified by

using PCR Master Mix (Thermo Fisher Scientific). The PCR

products were quantified using a Qubit DNA HS Assay Kit

(Q32854; Invitrogen). The fragment size was detected using a

model 2100 bioanalyzer chip (Agilent) and the concentration

was analyzed using the KAPA kit (catalog. no. kk4602;

Roche, Basel, Switzerland). The mixed library was stored at

�80 °C.

Study of generated data

The FASTQ-files of raw data were aligned in RNA-Seq, as

reported previously [21]. Briefly, quality trimming of the 50-
end and removal of sequence adapters were performed

using Trimmomatic, version 0.22 [22] on the RNA-Seq

reads. Then, using STAR, version 2.5.1b [23], the reads

were mapped to the Ensembl version 91 of the human

reference genome. The summary of only reads spanning the

introns was prepared using HTSeq, version 0.6.0 [24],

applying the union intersection of uniquely aligned reads,

and guided by version 75 of Ensembl gene annotation. Sub-

sequently, all statistical and analytical evaluations were car-

ried out in R, version 3.3.0, and R-studio, version 0.99.902

(R Foundation for Statistical Computing, Vienna, Austria).

Analysis of differential expression was carried out using the

edgeR package, version 1.10.1 (https://bioconductor.org),

for colorectal cancer and control groups. The read counts

were corrected and were changed to counts-per-million,

translated in the log2 format and multiplied by the TMM-

normalization factor determined by the calcNormFactors-

function of edgeR [25]. The statistically significant values

selected for RNAs were those that were rectified for multi-

ple hypotheses testing (false discovery rate; P < 0.05).

GO and KEGG enrichment analysis

GO is a structured, controlled vocabulary for systematic anal-

ysis of gene function at the molecular and cellular levels [26].

KEGG is a collection of databases for biological interpreta-

tion of large-scale datasets generated by transcriptome

sequencing [27]. GO and KEGG pathway enrichment analy-

sis was performed to functionally assign DEGs to specific

terms and pathways via the R package clusterProfiler.

Database mining

Raw data from the microarray dataset GSE30566 were down-

loaded from the Gene Expression Omnibus database (https://

www.ncbi.nlm.nih.gov/geo) and normalized with GeneSpring

software (Agilent) as log2 values. The normalized data were

Table 1. Clinical characteristics of CKD and DKD patients, as well

as HCs.

Characteristics DKD (n = 5) CKD (n = 3) HC (n = 10)

Gender (male/

female)

2/3 3/0 7/3

Age (mean � SD) 68.60 � 7.20 73.00 � 2.16 58.90 � 9.09

Diabetic during

(year)

8 � 3 – No

Kidney function

(stage)

Stage 4 Stage 4 No

Glucose-lowing

medication

Insulin – No

Antihypertensive

drug

ARB ARB No

Lipid-lowing therapy No No No

Aspirin prescribed No No No

Table 2. Clinical information.

Disease staging Sample name Gender Age Group

NA HC01 Female 73 HC

NA HC02 Male 73 HC

NA HC03 Male 64 HC

NA HC04 Female 52 HC

NA HC05 Male 54 HC

NA HC06 Male 50 HC

NA HC07 Male 60 HC

NA HC08 Male 52 HC

NA HC09 Male 65 HC

NA HC10 Female 46 HC

Stage 4 CKD01 Male 70 CKD

Stage 3 CKD02 Male 74 CKD

Stage 4 CKD03 Male 75 CKD

IV1 DKD01 Female 77 DKD

V3 DKD02 Male 60 DKD

V2 DKD03 Female 74 DKD

II1 DKD04 Male 72 DKD

V1 DKD05 Female 60 DKD
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compared with our platelet RNA-Seq data to select co-DEGs

using VENNY, version 2.1 (https://bioinfogp.cnb.csic.es/

tools/venny). GO and KEGG enrichment analyses were per-

formed again to functionally cluster the co-GDTLs.

Protein–protein interaction network analysis

To identify and understand functional protein interactions

in human cells, as well as to systematically investigate the

molecular mechanism of disease and identify new drug tar-

gets, we used STRING database (https://version11.string-

db.org) [28] to search known protein interactions and pre-

dict protein interactions and constructed a protein–protein
interaction network.

Statistical analysis

Student’s t-test was performed using SPSS, version 21.0

(IBM Corp., Armonk, NY, USA). Receiver operating char-

acteristic (ROC) curve drawing, the Pearson related test

and other data visualizations were all carried out on the R

studio platform. Data are presented as the mean � SD of

triplicate samples.

Results

Sample quality assessment

The platelet transcripts of 10 healthy individuals, three

CKD patients and five DKD patients were quantita-

tively analyzed by the RNA-Seq technique. On aver-

age, each of the 18 libraries produced 38.62 million

reads. With FastQC (http://www.bioinformatics.babra

ham.ac.uk/projects/fastqc) evaluating the quality of

sequencing reads, the results showed that the percent-

age of bases with Phred values were > 20 and 30 in

the total bases, the values of Q20 (%) and Q30 (%)

were more than 90%, the percentage of unidentifiable

bases was less than or equal to 0.02%, and the sum of

bases G and C accounts for about 50% of the total

bases, indicating that the data output was well quali-

fied. The result of reference sequence alignment

showed that the total mapping percentage was more

than 80%, whereas the data percentage of multiple

mapping was < 10%, indicating that the data of this

study was better than the reference genome and met

the requirements of the next analyses.

Transcriptome profiles in platelets of healthy

controls are distinct from platelets of patients

The results of 18 platelet sequencing samples were ana-

lyzed by systematic cluster analysis and heat mapping.

As shown in Fig. 2A, the heat map results remarkably

vary for gene transcriptions between the disease group

and the HC group, although there were few differences

between CKD and DKD. The volcano map was used

to visualize GDTLs in HCs compared to DKD

patients and CKD patients compared to DKD

patients, with P < 0.05 and |log2 fold change| ≥ 2

(Fig. 2B). Specifically, 2097 GDTLs were identified in

the DKD and HC groups, with 396 genes up-regulated

and 1701 genes down-regulated. In the DKD and

CKD groups, 462 GDTLs were identified, of which

317 genes were up-regulated and 145 genes were

down-regulated. The top 10 up- and down-regulated

GDTLs in both groups are listed in descending order

of |log2 fold change| values in Table 3.

GO and KEGG pathway enrichment analysis

To understand more about the roles of the GDTLs

between DKD with CKD patients, or DKD patients

with HCs, GDTLs were assigned to GO terms, includ-

ing biological processes (BP), cellular components

(CC) and molecular function (MF) terms. As shown in

Fig. 3A, In the DKD and HC groups, the most

enriched BP terms were translational elongation, trans-

lation and positive regulation of apoptosis. The most

enriched MF terms were cytosolic ribosome, ribosomal

subunit and cytosolic part. The most enriched CC

terms were cytosolic ribosome, ribosomal subunit and

cytosolic part. In the DKD and CKD groups, the

most enriched BP terms were cell cycle, pyrimidine

base metabolic process and WNT receptor signaling

pathway. The most enriched MF terms were transition

metal ion binding, zinc ion binding and extracellular

matrix structural constituent. The most enriched CC

terms were clathrin-coated vesicle membrane, extracel-

lular region part and collagen.

To explore the pathways involved in the develop-

ment of CKD and DKD, the GDTLs were submitted

to KEGG analysis. In the DKD and HC groups, we

selected six meaningful pathways, which were

Hematopoietic cell lineage, Mammalian target of rapa-

mycin (mTOR) signaling pathway, Type I DM, Ubiq-

uitin mediated proteolysis, Regulation of autophagy

and Glycosylphosphatidylinositol (GPI)-anchor

biosynthesis. In the DKD and HC groups, we selected

five meaningful pathways, which were Alanine, Aspar-

tate and glutamate metabolism, Pyrimidine metabo-

lism, peroxisome proliferator-activated receptor

(PPAR) signaling pathway, Janus kinase-signal trans-

ducer and activator of transcription (JAK-STAT) sig-

naling pathway and Histidine metabolism. The first 15

pathways in both groups are listed in Fig. 3B.
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Date mining from microarray datasets

To improve our understanding and acquire further

information that was relevant to CKD and DKD, we

searched the Gene Expression Omnibus database for

the datasets similar to renal diseases. Fortunately, we

found the GSE30566 dataset, a microarray analysis

dataset for identifying gene expression profiles in

human CKD, which included 53 renal biopsy samples

from CKD patients and eight normal renal biopsy

samples from healthy individuals. Among this set,

909 down-regulated and 80 up-regulated signatures

were identified. We carried out co-expression analysis

with this dataset compared to our data from the pla-

telet RNA-Seq. Finally, by drawing the Venn dia-

gram for analysis, we visualized the co-expression

gene KCND3 (P < 0.05, log2 fold change ≥ 1)

(Fig. 4A). Some recent studies have shown that the

mutation of KCND3 is closely related to cerebellar

ataxia, Brugada syndrome and long QT syndrome

[29,30].

A bar chart of KCND3 changes in all datasets is

shown in Fig. 4B. According to the Venn plot, heat

maps were drawn using 66 GDTLs (overlapping CKD

and DKD group and GSE30566), 17 GDTLs (overlap-

ping HC and DKD group and GSE30566) and 71

GDTLs (overlapping the two groups), as shown in

Fig. 4C. According to the GSEA enrichment analysis

of all the genes enriched by HCs vs. DKD, we selected

five pathways: mTOR signaling pathway, Type I DM,

Ubiquitin mediated proteolysis, Regulation of autop-

hagy, GPI-anchor biosynthesis. As shown in Fig. 4D,

mTOR signaling pathway, Ubiquitin mediated proteol-

ysis and Regulation of autophagy are down-regulated

pathways. According to the GSEA enrichment analysis

of all the genes enriched by CKD vs. DKD shown in

Fig. 2. Gene expression profile of DKD, CKD and HCs. (A) Cluster analysis of DEGs and the heat map drawing according to DEG

expression. Red for higher level, blue for a lower level. (B) Maps of the volcano drawn by all the DEGs. The dotted line represents the

setting condition: |log2 fold change| ≥ 2 (vertical dotted line) and P < 0.05 (horizontal dotted line). Red represents significantly up-regulated

DEGs; blue represents significantly down-regulated DEGs; black represents genes that do not meet the set conditions.
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Fig. 4E, the JAK-STAT signaling pathway is down-

regulated.

Diagnostic potential of crucial genes and

correlation analysis between nine key biomarkers

Next, ROC analysis (Fig. 5A and Table 4) was used

to further verify the diagnostic potential of nine key

biomarkers: IL-1B, CD-38, CSF1R, PPARG, NR1H3,

DDO, HDC, DPYS and CAD. The results showed

that, except for KCND3, the area under the curve

(AUC) values of the other eight key biomarkers were

all > 0.8, which means that the biomarkers we selected

have good applicability.

In addition, we carried out Pearson rank correlation

analysis (Fig. 5B) among the nine key biomarkers. The

Pearson correlation coefficients of r > 0.6 and r ≤ �0.6

represent a significant positive correlation and negative

correlation, respectively. We found that, in the HC

and DKD groups, there was a positive correlation

between CD-38 and NR1H3 (r = 0.67) and a negative

correlation between CSF1R and KCND3 (r = �0.61).

In addition, in the CKD and DKD groups, we found

that DPYS was positively correlated with HDC

Table 3. Top 10 up-regulated and down-regulated genes for DKD vs. HC and DKD vs. CKD.

Group AccID Gene name log2FC P-value Trend

DKD vs. HC ENSG00000236894 AL160287.1 �22.93631683 7.62 9 10�13 Down

DKD vs. HC ENSG00000228056 CFL1P3 �22.93072315 7.72 9 10�13 Down

DKD vs. HC ENSG00000270093 AP000473.2 �22.92620774 7.80 9 10�13 Down

DKD vs. HC ENSG00000213754 AL356317.1 �22.91959247 7.92 9 10�13 Down

DKD vs. HC ENSG00000278988 AL356490.1 �22.9154346 7.99 9 10�13 Down

DKD vs. HC ENSG00000101746 NOL4 �22.91329386 8.03 9 10�13 Down

DKD vs. HC ENSG00000169154 GOT1L1 �22.91329386 8.03 9 10�13 Down

DKD vs. HC ENSG00000199845 RNA5SP375 �22.91329386 8.03 9 10�13 Down

DKD vs. HC ENSG00000201300 SNORD115-27 �22.91329386 8.03 9 10�13 Down

DKD vs. HC ENSG00000205667 ARSH �22.91329386 8.03 9 10�13 Down

DKD vs. HC ENSG00000271043 MTRNR2L2 8.196865419 8.75 9 10�38 Up

DKD vs. HC ENSG00000164687 FABP5 8.008051887 4.66 9 10�9 Up

DKD vs. HC ENSG00000210156 MT-TK 6.68941899 5.92 9 10�5 Up

DKD vs. HC ENSG00000170891 CYTL1 6.680930183 0.030197128 Up

DKD vs. HC ENSG00000198868 MTND4LP30 6.296012728 7.69 9 10�12 Up

DKD vs. HC ENSG00000269028 MTRNR2L12 6.25398937 4.11 9 10�18 Up

DKD vs. HC ENSG00000229807 XIST 6.141886561 0.000232031 Up

DKD vs. HC ENSG00000244921 MTCYBP18 6.123859794 8.00 9 10�8 Up

DKD vs. HC ENSG00000160791 CCR5 5.958165204 0.000452019 Up

DKD vs. HC ENSG00000122861 PLAU 5.866520384 0.002593308 Up

DKD vs. CKD ENSG00000260804 LINC01963 �6.365999331 0.000902434 Down

DKD vs. CKD ENSG00000168646 AXIN2 �6.198352713 0.001455783 Down

DKD vs. CKD ENSG00000126861 OMG �6.129516793 0.006457074 Down

DKD vs. CKD ENSG00000143502 SUSD4 �6.12080688 0.006435488 Down

DKD vs. CKD ENSG00000132744 ACY3 �5.966452952 0.004423797 Down

DKD vs. CKD ENSG00000089723 OTUB2 �5.965811853 0.010085279 Down

DKD vs. CKD ENSG00000280385 AP000648.3 �5.77485476 0.002340397 Down

DKD vs. CKD ENSG00000154065 ANKRD29 �5.745925825 0.045825865 Down

DKD vs. CKD ENSG00000162490 DRAXIN �5.740880972 0.000874395 Down

DKD vs. CKD ENSG00000161328 LRRC56 �5.69520794 0.04963958 Down

DKD vs. CKD ENSG00000229807 XIST 9.009742697 0.001161334 Up

DKD vs. CKD ENSG00000162598 C1orf87 7.714297968 0.027241706 Up

DKD vs. CKD ENSG00000276566 IGKV1D-13 6.909868648 0.00012734 Up

DKD vs. CKD ENSG00000282608 ADORA3 6.837508535 4.50 9 10�5 Up

DKD vs. CKD ENSG00000147647 DPYS 6.829925687 1.28 9 10�6 Up

DKD vs. CKD ENSG00000108691 CCL2 6.828087851 0.001177822 Up

DKD vs. CKD ENSG00000128567 PODXL 6.788531091 0.000893057 Up

DKD vs. CKD ENSG00000134955 SLC37A2 6.754352046 0.000234756 Up

DKD vs. CKD ENSG00000161888 SPC24 6.669035062 0.002202706 Up

DKD vs. CKD ENSG00000129038 LOXL1 6.633684803 0.001268092 Up
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(r = 0.72) and ODD (r = 0.79). Moreover, protein–
protein analysis (PPI) analysis is an effective way of

identifying new drug or therapeutic targets for various

diseases [31,32]. The PPI network analysis that we car-

ried out showed the tight relationships of these

biomarkers (Fig. 5C). We further visualized the rela-

tionships on pathway levels (Fig. 6).

Discussion

Although eGFR and albuminuria have been the main

biomarkers for DKD diagnosis in the clinic, DKD

patients in the very early stage are always ignored.

One reason is that changes of eGFR in these patients

are not so remarkable [33]. Although DKD patients

present proteinuria and impaired kidney function in

the setting of diabetes with a distinct histopathological

pattern of GBM thickening, mesangial matrix expan-

sion, nodular glomerulosclerosis and arteriolar hyali-

nosis, kidney biopsy is not so frequently performed in

patients with DM, which was considered to be dis-

pensable for kidney disease patients [7–9,34]. Studies

aiming to identify potential biomarkers were per-

formed in the past many years, with some progression

being achieved. For example, the relationship between

TNF–TNFR signaling and DKD progression was

revealed, which is associated with inflammation [1,35–
37]. Inflammation has been reported to be involved in

DKD [34–35]. By coincidence, we identified IL-1B and

CD-38 to be down-regulated in CKD patients and

HCs compared to DKD patients, respectively, which

makes them the potential biomarkers with respect to

DKD progression. This result suggests that our RNA-

Seq analyses are reliable.

By comparing the data of platelet RNA-Seq between

DKD and HCs, we found some interesting pathways,

such as Hematopoietic cell lineage, mTOR signaling

pathway, Type I DM, Ubiquitin mediated proteolysis,

Regulation of autophagy and GPI-anchor biosynthe-

sis. These pathways may provide a reference for the

treatment of DKD. Diabetic glomerulosclerosis is still

the cause of CKD in most patients with type 1 and

type 2 diabetes [38]. Studies have shown that renal

fibrosis can be alleviated by inhibiting the phospho-

inositide 3-kinase/Akt/mTOR signaling pathway [39].

Some studies have shown that the changes of gene

expression levels in regulation of autophagy and Ubiq-

uitin mediated proteolysis pathway are related to the

consumption mechanism of skeletal muscle protein

hydrolysis in CKD patients, such as decreased protein

synthesis or increased degradation [40–43]. Many

eukaryotic proteins use GPI anchor to bind to the

membrane. Although mammalian cells can survive

without GPI anchors, a lack of hematopoietic cells can

result in hemolytic disease, namely paroxysmal noctur-

nal hemoglobinuria [44]. Interestingly, GPI-anchor

biosynthesis was enriched as a pathway with respect to

the treatment of CKD in metabonomics studies of rat

CKD models [45]. The most valuable pathway of con-

cern is Hematopoietic cell lineage, which is the most

significantly enriched pathway in DKD vs. HC. Ane-

mia and thrombosis are common complications of

CKD. However, an erythropoiesis stimulant in anemic

CKD patients may increase thrombotic activity by

increasing hemoglobin levels or via other mechanisms

(such as increased platelet reactivity and endothelial

activation). Functional differences in the IL-1 family

play an important role in CKD [46]. Our study found

that the expression of IL-1R2, IL-1R1 and IL-1B in

platelets in the DKD group was significantly higher

than that in the HC group. IL-1B is a major inflam-

matory cytokine produced by a variety of cells, includ-

ing renal parenchyma cells and infiltrating cells, and is

the mediator of acute and chronic inflammation [47].

In the treatment of CKD disease, the inhibition of IL-

1B expression is accompanied by the inhibition of kid-

ney inflammation [47,48].

In the platelet RNA-Seq data of DKD vs. CKD, we

found that, in the JAK-STAT signaling pathway, the

expression of IL-2RA, IL-20RA, IL-15RA and IL-5RA

was significantly increased, whereas the expression of

ILF was significantly decreased in DKD group

compared to the CKD group (Fig. 6). The protein

expression products of these genes are involved in

Fig. 3. KEGG and GO enrichment pathway of DEGs in the DKD, CKD and HC groups. (A) Top 10 terms of MF, CC and BP (biological

process) enriched by GO in ‘DKD vs. HC’ and ‘DKD vs. CKD’ (P < 0.05). The blue font represents the most significantly enriched term. The

y-axis on the left represents the GO term and the x-axis indicates the ‘enrich factor’ represented by the ratio of DEGs numbers to the total

annotated gene numbers of each term. The lower the P-value, the more significant the enrichment. Low P-values (P < 0.05) are shown in

the red circle and high P-values (P > 0.05) are shown in the white circle. (B) Top 15 enriched KEGG pathways in ‘DKD vs. HC’ and ‘DKD vs.

CKD’. The blue font represents 11 valuable metabolic pathways. The y-axis on the left represents KEGG pathways and the x-axis indicates

the ‘enrich factor’ represented by the ratio of DEGs numbers to the total annotated gene numbers of each pathway. The lower the P-value,

the more significant the enrichment. Low P-values (P < 0.05) are shown in the red circle and high P-values (P > 0.05) are shown in the

white circle.

2103FEBS Open Bio 11 (2021) 2095–2109 ª 2021 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

B. L. Zhang et al. Platelet transcriptome in DKD



2104 FEBS Open Bio 11 (2021) 2095–2109 ª 2021 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

Platelet transcriptome in DKD B. L. Zhang et al.



Fig. 5. The biomarkers were analyzed by

the PPI network, ROC and a Pearson

correlation test. (A) The ROC curves of

nine key biomarkers are plotted and the

diagonal (red) represents AUC = 0.5. (B)

Nine key biomarkers were tested for

Pearson correlation. Red represents a

negative correlation, blue represents a

positive correlation and the number in the

grid is the correlation coefficient. (C) The

nine key biomarkers were analyzed by PPI

network enrichment analysis. Red symbols

represent the nine key biomarkers and

blue symbols represent genes predicted to

have interactions with the nine key

biomarkers.

Fig. 4. Overlapped DEGs in the GSE30566 database and platelets RNA-Seq data. (A) Venn diagram of DEG distribution. Common and

specific DEG numbers from different combinations displayed in the overlapping and non-overlapping regions, respectively. (B) The bar chart

of the expression level of co-expression gene KCND3 in the data set. The x-axis represents the data set, the red bar represents the control

group and the blue bar represents the observation group. The y-axis represents the relative expression of genes. (C) Heat maps drawn

using 66 DEGs (overlapping DKD vs. CKD and GSE30566), 17 DEGs (overlapping DKD vs. HC and GSE30566) and 71 DEGs (overlapping

DKD vs. HC and DKD vs. CKD). (D) In DKD vs. HC, GSEA enrichment analysis of the mTOR signaling pathway, Type I DM, Ubiquitin

mediated proteolysis, Regulation of autophagy and GPI-anchor biosynthesis was carried out. (E) In DKD vs. CKD, GSEA enrichment analysis

of the JAK-STAT signaling pathway was carried out.
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cytokine–cytokine receptor interaction, and the differ-

ential expression of these genes in platelets may indi-

cate that the level of inflammation in patients with

DKD is different from that in CKD. The PPAR in the

PPAR signaling pathway is a nuclear hormone recep-

tor activated by fatty acids and their derivatives. There

are three subtypes of PPAR (PPAR-a, b/d and c), of
which PPAR-c promotes adipocyte differentiation,

thus increasing blood glucose uptake of [49]. The dif-

ferential expression of gene PPARG is the main factor

for the change of PPAR-c expression in vivo. Interest-

ingly, we also found differential expression of NR1H3

in cholesterol metabolism downstream. NR1H3 is a

key gene regulating liver X receptor a (LXR a). LXR

a comprises a sterol-regulated transcription factor that

plays an important role in atherosclerosis by integrat-

ing cholesterol homeostasis and immunity [50]. Studies

have shown that disrupting LXR a phosphorylation

can regulate atherosclerosis by inducing macrophage

proliferation [51]. In the present study, in comparison

with the CKD group, we found that the expression of

the PPARG gene in the platelet of DKD group was

significantly increased, whereas the expression of

NR1H3 was significantly decreased, with a |log2 fold

change| > 4.78 for both. This shows that is reasonable

to propose PPARG and NR1H3 as important targets

for distinguishing between DKD and CKD.

As shown in Fig. 4B, we found that KCND3 is the

only up-regulated gene in DKD patients compared to

CKD, HCs or CKD-related dataset GSE30566, which

makes it a key target for the diagnosis and treatment

of DKD patients. Although the AUC value of KCND3

is lower than 0.8, Pearson rank correlation analysis

showed the significance of KCND3 to be an important

Fig. 6. The simplified models of Alanine,

aspartate and glutamate metabolism,

Pyrimidine metabolism, PPAR signaling

pathway, JAK-STAT signaling pathway and

Histidine metabolism.

Table 4. The AUC values of nine key biomarkers are calculated by

drawing the ROC curve.

Group Name AUC

DKD vs. HC IL1B 0.80

DKD vs. HC CSF1R 0.80

DKD vs. HC CD38 1.00

DKD vs. HC NR1H3 0.90

DKD vs. CKD DPYS 1.00

DKD vs. CKD DDO 0.87

DKD vs. CKD HDC 0.93

DKD vs. CKD CAD 0.80

DKD vs. HC & DKD vs. CKD KCND3 0.76 & 0.73
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biomarker (with r = �0.61). In the ventricle, the

KCND3 gene encodes voltage-gated rapid inactivation

of the main pore-forming a subunit of the type A

potassium channel, and participates in a rapid cardiac

transient outward potassium current (Ito), which plays

a major role in the early repolarization phase 1 of car-

diac action potential [52]. Most of the studies of

KCND3 focus on cerebellar ataxia, Brugada syndrome

and long QT syndrome [53]. However, there are few

studies concerning the importance of KCND3 in the

kidney. Our study shows that KCND3 is the key bio-

marker for diagnosis of DKD patients, which needs to

be confirmed in further research.

The present study depends on the RNA-Seq of

venous blood platelets in DKD or CKD patients.

Despite the rapid development of sequencing tech-

niques, the blood samples of DKD patients have been

in the spotlight for many years. The search for new

biomarkers of DKD has centered primarily on identi-

fying analyses in urine and blood that improve the

prediction of later established end points, and then the

differentially expressed microRNAs and epigenetic

modifications in kidney tissues [31,54]. We noted that

DKD progression in DM patients is genetically related

and we first performed the RNA-Seq for venous blood

platelets of CKD or DKD patients. We identified sev-

eral potential biomarkers for the diagnosis and treat-

ment of DKD patients. We hope that our study will

make it possible to detect and monitor DKD patients

at an early stage, as well as prevent DKD progression

effectively.

In summary, we have comprehensively identified

2097 GDTLs in the venous blood platelets of HCs vs.

DKD and 462 GDTLs in platelets of CKD vs. DKD

for the first time, and identified nine potential

biomarkers for DKD patients: IL-1B, CD-38, CSF1R,

PPARG, NR1H3, DDO, HDC, DPYS and CAD. In

addition, we have also annotated and analyzed the dif-

ferential transcript profiles in RNA-Seq and microar-

ray datasets and found biomarker KCND3 to be the

only up-regulated gene in DKD patients. In-depth

studies are necessary to reveal the function and mecha-

nism of these potential genes in DKD diagnosis and

therapies.
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