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Abstract: Breast cancer is classified into four major molecular subtypes, and is considered a heteroge-
nous disease. The risk profiles and treatment of breast cancer differ according to these subtypes.
Early detection dramatically improves the prospects of successful treatment, resulting in a reduction
in overall mortality rates. However, almost 30% of women primarily diagnosed with the early-stage
disease will eventually develop metastasis or resistance to chemotherapies. Immunotherapies are
among the most promising cancer treatment options; however, long-term clinical benefit has only
been observed in a small subset of responding patients. The current strategies for diagnosis and
treatment rely heavily on histopathological examination and molecular diagnosis, disregarding the
tumor microenvironment and microbiome involving cancer cells. In this review, we aim to praise the
use of pharmacogenomics and pharmacomicrobiomics as a strategy to identify potential biomarkers
for guiding and monitoring therapy in real-time. The finding of these biomarkers can be performed
by studying the metabolism of drugs, more specifically, immunometabolism, and its relationship with
the microbiome, without neglecting the information provided by genetics. A larger understanding
of cancer biology has the potential to improve patient care, enable clinical decisions, and deliver
personalized medicine.

Keywords: immunotherapy; microbiome; metabolism; pharmacogenomics; pharmacomicrobiomics;
biomarkers; precision medicine

1. Breast Cancer Therapeutic Options

According to GLOBOCAN 2020 statistics, female breast cancer has exceeded lung
cancer as the most diagnosed cancer, having an estimated existence of 2.3 million new cases
worldwide [1]. Human breast carcinomas are a heterogeneous disease containing several
distinct histological subtypes and four main molecular subtypes; therefore, risk profiles
and treatments differ according to these subtypes [2,3]. Breast cancer molecular subtypes
are defined by the expression of hormone receptors such as estrogen receptors (ER+) or
progesterone receptors (PR+), human epidermal receptor 2 (HER2+), and triple-negative
breast cancer (TNBC; which is ER−, PR−, HER2−).

Breast cancer expressing hormone receptors are the most prevalent type; therefore,
endocrine therapy is the most employed primary treatment option for breast cancer that
is ER/PR-positive [4]. Treatment blocks ER activity either with antiestrogens, such as
Tamoxifen or Fulvustrant, or by weakening ER-mediated signaling by lowering estrogen
synthesis with aromatase inhibitors [5]. Aromatase inhibitors, such as Letrozole, are
preferable to Tamoxifen as a first-line treatment in menopausal women [6].

HER2-positive breast cancers are described by aggressive disease progression and
poor prognosis. Targeted therapies for HER2-positive tumors comprise trastuzumab or
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pertuzumab, anti-HER2 monoclonal antibodies, lapatinib, a small-molecule tyrosine kinase
inhibitor or trastuzumab emtansine (T-DM1), an antibody-drug conjugate [7].

Triple-negative breast cancer (TNBC) is the most challenging form of this cancer. Its
clinical feature consists of high invasiveness, high metastatic potential, relapse proclivity,
and poor prognosis. Antiestrogens and anti-HER2 therapeutics are sometimes unsuccessful
in treating TNBC; however, the use of anthracycline and taxane-based chemotherapy is
still the norm for early-stage TNBC. The inclusion of carboplatin to the ACT (anthracycline,
cyclophosphamide, and taxane) regimen is linked to a better complete pathologic response
(pCR). TNBC tumors lack known targets for effective therapies, and treatment options
are limited to chemotherapy. Recently, combinations of immune checkpoint inhibitors
(ICIs) have dramatically boosted pCR in TNBC. Other targets include inhibitors of the
Phosphatidylinositol-3-kinase/Protein Kinase B/mammalian target of rapamycin (PI3K-
AKT-mTOR) pathway and poly-ADP-ribosyl polymerase inhibitors (PARPi) [3,8].

According to the World Health Organization, breast cancer treatment can be highly
effective, with a 90% or higher chance of survival, mainly when the disease is detected
early. Breast cancer survival for at least 5 years after diagnosis varies from more than 90%
in high-income countries to 66% in India and 40% in South Africa. Surgery or mastectomy,
with or without radiation, is the standard treatment option for localized breast cancer. At
the same time, systemic adjuvant therapies are used to monitor tumor growth and improve
survival. The rapid expansion of antineoplastic drugs has its advantages, since it means
the accessibility of more therapeutic options. There are also disadvantages, representing
a challenge to oncologists who must select the best treatment for every patient. Usually,
oncologists are dependent on the best evidence to decide on the most suitable anticancer
treatment. However, two problems emerge: (1) only a fraction of patients respond to any
chemotherapy regimen using this approach, and (2) the portion of responding patients
decreases with successive lines of chemotherapy due to the emergence of resistance [9].
Drug doses (or a combination of drugs) are selected based on the maximum tolerated
amount. Dose intensity is modified as toxicities appear; however, such adverse effects
tend to be cumulative and can be life-threatening or debilitating, impacting quality of
life. The oncologist evaluates treatment efficacy only 2–3 months after the patient begins
chemotherapy; in the meantime, substantial toxicities may have developed, and high
treatment-related costs may have accrued while there is no knowledge of whether the
patient is benefiting or not. The treatment effect for solid tumors, such as breast cancer,
is typically seen as a reduction in tumor size. Repeated radiographic examinations are
costly and time-consuming, and tumor development also emerges in a delayed form,
frequently after clinical worsening. Additional breakthroughs in breast cancer treatment
have contributed to the development of specific biomarkers for patient selection and
treatment response prediction, resulting in minimal drug response failure. However, while
predictive indicators may help with therapy selection, most treatments lack predictive
biomarkers. They only recognize those who do not respond to certain drugs; thus, there is
no promise of benefit due to the need for extensive validation studies before clinical use [9].

In contrast to conventional treatments that lack tumor selectivity and cause more side
effects, immunotherapy and other treatment strategies targeting tumor cells are promising
options. Immunotherapies work by enhancing a person’s immune system’s ability to
recognize and destroy cancer cells. The ability of the immune system to prevent itself from
attacking normal cells in the body is an important part of its function. It accomplishes this
by utilizing proteins (or “checkpoints”) on immune cells that must be activated (or deacti-
vated) in order to initiate an immune response. These checkpoints are sometimes used by
breast cancer cells to avoid being attacked by the immune system. Because the immune
system has already recognized this cancer, the pre-existing response can be improved with
immunotherapies, enhancing breast cancer immunogenicity. Breast cancer is less immuno-
genic than other tumor forms; nonetheless, anti-PD1/PD-L1 drugs have been studied in
breast cancer in recent years, specifically in the triple-negative subtype, with promising
results when used alone or in combination with other treatments [10]. Immune cells play
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an essential role in breast cancer recognition and early eradication and tumor progression.
Immunoediting is a three-step process that describes the interactions between the host’s
immune system and the tumor’s cells. It includes elimination, equilibrium, and escape.
Recently, a fourth phase called exhaustion has been proposed. Immunotherapy targets
specific proteins to stimulate the immune system to detect and remove cancerous cells. The
impact of immune-checkpoint inhibitors (ICPIs), anti-tumor vaccinations, the transmission
of elective T-cell treatment, and monoclonal antibodies (mAb)-based immunotherapy are
some of the tactics being used. Immunotherapy is a relatively recent kind of breast cancer
treatment, even though breast cancer is not one of the most immunogenic malignancies,
such as melanoma and lung cancer. Recent clinical trials have documented that PD-1/PD-
L1 inhibitors alone have little efficacy, but when used in combination with other treatments
clinical efficacy increases. Therefore, some mAb have been used as therapeutic agents, with
Trastuzumab as an example of passive immunotherapy [11]. In recent years, additional
modalities, such as antibody-drug conjugates (ADC) and ICIs, have been studied as a
prophylactic and treatment approach for breast cancer [10].

Some patients do not respond to initial immunotherapy, despite increased rates of
benefit and survival in tumor patients. Treatment resistance (which corresponds to primary
and acquired resistance, respectively) causes some responders to relapse or progress after
a treatment period [12]. Adaptive resistance is a new type of resistance that has been
recently proposed. The tumor can adapt to the immune attack by changing itself, which
can happen as a primary or acquired resistance. Immune resistance in tumors is caused
by the intertwine of gene expression TME, metabolism, aberrant neovascularization, in-
flammation, etc. Identifying and utilizing biomarkers to guide predictive decision insights
for expanding immunotherapy applications is essential. Companion biomarkers such as
PD-L1 immunohistochemistry (IHC) and tumor mutational burden (TMB), in addition
to ICPI, have received regulatory approval for a variety of applications. Pembrolizumab
was the first FDA-approved drug based on tumor microsatellite instability/deficient mis-
match repair (MSI-H/dMMR) biomarker status rather than tumor histology. Several other
ICPI-related biomarkers are being investigated, including tumor-infiltrating lymphocyte
(TIL) measurement, gene expression profiling in an inflammatory microenvironment, and
prediction of neoantigen. TMB and PD-L1 expression can predict a subset of responses to
checkpoint blocking, but not all reactions. Even though no single biomarker can faithfully
reproduce the complexity of the tumor-immune microenvironment, a selected combination
of biomarkers should emerge as a method to improve predictive power [13,14].

2. Immunometabolism
2.1. Limitations of Breast Cancer Subtyping

For patient stratification in breast cancer, several clinical factors such as menopausal
status, age, lymph node invasion, and tumor size are combined with gene expression-based
signatures and subtyping systems. These are widely recognized as valuable methods
in determining the most effective treatment option for a breast cancer patient. However,
traditional subtyping has limitations because it ignores interactions with the tumor microen-
vironment (TME). The highly inflammatory microenvironment with infiltrating immune
cells, cytokines, and growth factors differentiates breast cancer [15]. The TME influences
energy consumption and metabolic reprogramming in immune cells, promoting angiogen-
esis, which restores the oxygen and nutrient supply while removing metabolic waste to
overcome a hypoxic and acidic microenvironment. Since tumors are infiltrated by a variety
of adaptive and innate immune cells, the traditional therapy efficacy can be altered by the
TME’s pre-existing inflammatory and stromal cells and modify it [16].

Immune cells in the TME can either promote an anti-tumor or a pro-tumor microen-
vironment. An anti-tumor microenvironment refers to the innate and adaptive immune
responses that result in tumor control. T cell priming against tumor antigens, trafficking
of these anti-tumor T cells to the tumor tissue, T cell infiltration and local activation to
kill tumor cells, and appropriate resolution of the immune response, including clearing of
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the lysed tumor cells and re-establishment of normal tissue architecture and homeostasis,
are all required for successful anti-tumor immunity. The most powerful mediators of the
adaptive anti-tumor immune response are T cells. The final effector mechanism leading to
tumor elimination is produced by the cytotoxic CD8+ T cell population, which is supported
by CD4+ T helper (Th1) cells through the production of IL2 and IFN and is associated
with a positive prognosis. Pro-tumor immunity, on the other hand, suppresses anti-tumor
adaptive and innate responses and promotes tumor development. Chronic inflammation
upregulates several immune pro-tumor effector mechanisms, leading to the theory that in-
flammation promotes carcinogenesis and tumor growth by disrupting the balance between
pro- and anti-tumor immunity, preventing the immune system from rejecting malignant
cells and creating an environment suitable for disease progression. Tumor progression
is assisted by CD4+ T regulatory cells, type 2 CD4+ T cells, type 2 natural killer T cells,
myeloid-derived suppressor cells, M2 or tumor-associated macrophages, B cells, and pos-
sibly mast cells, whereas tumor destruction is supported by CD8+ T lymphocytes, type
1 CD4+ T lymphocytes, natural killer, type 1 natural killer T cells, M1 macrophages, and
immune killer dendritic cells [16].

Immune infiltration brings a specific signature to each subtype of breast cancer. Reg-
ulatory T cells (T regs) do not provide much additional information since they confer an
immunosuppressive environment in both ER-positive and ER-negative tumors and are
generally associated with poor prognosis. Natural killer cells (NK) and neutrophils are
abundant in ER-positive breast tumors, while TCD8+ cytotoxic T cells, TCD4+ naïve, and
memory T cells are observed in smaller proportions. Moreover, eosinophils and monocytes
have been linked to a good chemotherapy response, and B lymphocytes have been linked
to a good prognosis in this phenotype as well. Because of their immunosuppressive, pro-
tumorigenic and inflammatory purposes, tumor-associated macrophages (TAMs) 1 and
2 and T reg lymphocytes give a poor prognosis. T regs, TAM2, and activated mast cells
are the most common immune infiltration cells in ER-negative breast tumors, and they are
also linked to a poor prognosis. TCD4+, TCD8+, dendritic cells (DCs), and B lymphocytes,
on the other hand, are associated with a better prognosis but are found in lower numbers
and can be linked to a favorable response to neoadjuvant chemotherapy. There are few
reports of infiltrating immune masses in HER2-positive breast cancer; however, they are
primarily represented by DCs, mast cells, neutrophils, T lymphocytes, and T regs. This is
all associated with a poor prognosis, metastasis, and disease relapse [17], see Table 1.

Moreover, depending on the concentration of TILs it is possible to correlate varying
sensitivity to therapeutics. Therefore, is possible to classify tumor and therapies according
to stromal TILs concentration. HER2+ and TNBC are more likely than luminal breast
cancer to have stomal TILs at diagnosis [18]. The immune infiltration of breast tumors
change the clinical outcome since it modulates treatment response. Again, TNBCs and
HER-2+ breast cancers are also more likely to express the programmed death ligand-1 (PD-
L1) than luminal breast cancers in the TME. TIL levels at diagnosis predict adjuvant and
neoadjuvant treatment benefit, as well as prolonged progression-free survival (PFS) and
overall survival (OS). TIL-positive solid tumors with PD-L1 expression are more likely to
react to PD-1/PD-L1 inhibition [19,20]. These immune cell patterns establish a relationship
between the heterogeneity of immune infiltrating cells, the tumor phenotype, and the
treatment response in breast cancer. Thus, all of this should be considered for breast cancer
subtyping and patient stratification for personalized medicine.

Tumor cells use growth factors, cytokines, and chemokines to attract stromal cells (e.g.,
fibroblasts), immune cells, and vascular cells. By releasing growth-promoting signals and
intermediate metabolites, as well as remodeling tissue structure, these cells help to create
the microenvironment. Proliferation and metastatic ability are stimulated or inhibited by
signaling between cancer cells and the TME. The tumor not only manages to evade the host
immune system, but it also exploits infiltrating cells by altering their functions to create a
favorable microenvironment for tumor progression [21].
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Table 1. In different breast cancer subtypes there is a link between their receptor profile, sub-
type prevalence, subcategories, and the major infiltrating immune cell pattern. Immune cells are
distributed differently in each subtype. The words in blue denote specific immune cells that are
associated with a good prognosis, the words in red denote the infiltrating signature that is associated
with a poor prognosis, and the words in green denote a lower proportion of immune cells that is also
associated with a good prognosis.

Breast Cancer
Subtype

Receptor
Profile

Subtype
Prevalence Subcategories Prognosis Immune

Cell Patterns

Hormone
positive

ER+ or PR+ 70%

Luminal A

When compared to other
subtypes, it grows more

slowly and is less
aggressive.

Nk, Neutrophils
Tregs, TAMs 1 and

2, Mast cells
TCD8+, TCD4+, B

lymphocytes
Luminal B

Because it has a higher
grade than luminal A, it is

linked to a worse
prognosis.

HER2 positive HER2+ 20% -
Poor prognosis and
aggressive disease

progression

Tregs, Neutrophils,
DCs, Mast cells,

Tγδ

Triple-negative
breast cancer

Er−, Pr−,
and HER2− 10%

Basal-like 1 and 2 (BL-1,
BL-2),

immunomodulatory (IM),
mesenchymal (M),

mesenchymal
stem cell-like (MSL), and

luminal androgen receptor
(LAR)

It has the worst prognosis.
TNBC is extremely

common among black
women and those who

have a BRCA1 gene
mutation.

Tregs, TAMs 1 and
2, Mast cells

TCD8+, TCD4+,
DCs

Furthermore, the relationship between cellular and non-cellular components must be
acknowledged since they are vital regulators of primary tumor progression, organ-specific
metastasis, and therapeutic response. The extracellular matrix (ECM) is the main non-
cellular component of the TME, and it undergoes significant changes during tumorigenesis
to aid malignant cell growth and survival [22]. Large ECM deposits in solid tumors can
account for up to 60% of the tumor’s bulk. Large collagen deposits in conjunction with a
high-level percentage of fibroblast infiltration are strongly associated with a poor patient
prognosis. Proteases cause the release of cytokines and growth factors that are stored in the
ECM [23]. Proangiogenic factors, including VEGF, FGF, PDGFB, and TGFB, can be found
in the ECM [22].

Another non-cellular component is the Exosomes (microvesicles that range from
30 nm to 200 nm released by normal and tumor cells) that play a critical role in facilitating
crosstalk between cancer cells and stromal cells within the TME [24]. Their contents reflect
the original cell, including protein, DNA, RNA, and lipids, and they have been proven in the
TME to induce inflammation, tumor development, angiogenesis, and metastasis. Hypoxia
appears to exacerbate cancer cell exosome production and stimulate the transformation
of stromal cells into cancer-associated fibroblasts (CAFs). Exosomes derived from tumors
that contain tumor-specific antigens and nucleic acids can be evaluated non-invasively
as a diagnostic and predictive biomarker. Furthermore, exosomes can be applied for the
identification of patients at risk of developing metastatic disease. The process of exosome
production could lead to new cancer therapy targets [24].

To alleviate oxygen shortage and accumulate metabolic waste, growing tumors require
the development of new blood vessels; thus, inhibiting angiogenesis was an appealing tech-
nique. The VEGF/VEGFR signaling axis has been the focus of antiangiogenic (AA) therapy,
which has comprised: Bevacizumab, a neutralizing antibody to VEGF-A; Aflibercept, a
decoy receptor for VEGF-A or B; Sorafenib, a tyrosine kinase inhibitor; and Aflibercept
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and Ramucirumab antibodies that block VEGF, binding its receptor. Most patients do not
respond to AA therapy as a single agent or develop resistance. The successful integration
of AA therapy into the clinic will almost certainly necessitate other drugs [25]. Even though
therapeutically targeting the TME is an appealing strategy for cancer treatment, existing
FDA-approved treatments are ineffective.

Understanding the TME, its activities, and related chemicals in depth will provide
vital insights into the biological behavior of distinct tumor types, because of its probable
function in carcinogenesis. It can be utilized to control tumor cells, affecting tumor start,
development, and advancement in a variety of ways. TME cells and chemicals can boost
tumor cell stemness, stimulate angiogenesis, mediate migration, cause treatment resistance,
and inhibit the immune system [22]. Taking all of this into account, the immunological TME
evaluation has crucial predictive value and can enhance histopathological and molecular
indicators in evaluating patient responses to treatment.

2.2. Metabolism Regulates Immune Cell Activation

The metabolic requirements of immune cells in the TME influence the success of anti-
cancer immunotherapies. Either the use of radiotherapy or chemotherapy induces tumor
cell death, increasing the availability of nutrients in the TME which appears to be crucial
for immune cell activation and function. The Warburg effect is a hallmark phenomenon
found in cancer cells that leads to increased glycolysis and decreased mitochondrial oxi-
dation, which supports the high proliferative capacity of cancer cells. Reversing Warburg
metabolism can decrease breast cancer cell proliferation or prevent cell death. More
metabolic pathways shown to be upregulated in breast cancer are glutamine metabolism,
the glutamine-serine pathway, lipid and fatty acid, cholesterol metabolism, and protein
translation [26]. The activation of AA, mTOR, estrogen-related receptors, PI3 kinase, AMPK,
estrogen receptors, peroxisome proliferator-activated receptor cofactor-1α and β (PGC1α
and PGC1β), or nuclear respiratory factor 1 (NRF1) represent the complex reorganization
of the cellular energy network [27].

All breast cancer subtypes have metabolic changes, and there is solid evidence that vari-
ations in metabolism can be used to distinguish between the intrinsic subtypes. Glycolytic
metabolism in immune cells usually take the lead to activation of an effector phenotype,
for example DC, NK, B cells [28]. In contrast, the oxidative metabolism of substrates such
as fatty acids and amino acids, including glutamine, leads to a regulatory or memory
phenotype [29]. T cells, for example, are stimulated via the antigen receptor, and CD28
costimulation can increase the expression of the glucose transporter GLUT1, glucose ab-
sorption and subsequent glycolysis, and mitochondrial capacity. This metabolic shift can
be suppressed by CD28 inhibitory receptors such as cytotoxic T-lymphocyte-associated
protein 4 (CTLA4) and PD-1 [30]. Memory T cells rely on mitochondrial metabolism and
lipid oxidation rather than aerobic glycolysis, as effector T cells do. Due to direct linkages
between the endoplasmic reticulum and mitochondria, which serve as metabolic hubs, they
can swiftly revert to glycolysis upon restimulation. Tregs, unlike effector T cell subsets, do
not require GLUT1 or large amounts of glutamine uptake through the amino acid trans-
porter ASCT2, instead relying on lipid, pyruvate, and lactate oxidation in the mitochondria.
Tregs can be quite glycolytic, although FoxP3, the main Treg transcription factor, has been
found to suppress glycolysis. Treg suppressive capacity can be harmed by high glucose
metabolism rates [31].

The mTOR pathway’s mechanistic target is important in immunometabolism and
cell fate. mTOR is a component of two protein complexes that are activated by PI3K and
Akt receptor activation. The PI3K/Akt/mTORC1 pathway is an important mechanism
for sensing and integrating food availability and signaling in order to promote T cell
metabolism and function. mTORC1 is activated at lysosomes by the combined effects of T
cell activation and signaling via PI3K and Akt, which leads to the activation of the Rheb
GTPase and coordinated amino acid sensing via the sestrin/GATOR complex [32].
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The landscape of metabolic changes is more complicated due to differences in the
metabolism of breast cancer cell types. Furthermore, cancer stroma cells use Warburg
metabolism, whereas cancer stem cells’ metabolism is driven by mitochondrial oxidation [33].
In breast cancer, there are two types of cancer stem cells: CD44+/CD24 mesenchymal-like
cancer stem cells and aldehyde dehydrogenase 1 family, member A1 (ALDH1) positive
epithelial-like cancer stem cells [34]. Inhibiting mitochondrial oxidation can increase the
proportion of cancer stroma to stem cells, allowing conventional chemotherapy to be more
effective against stromal cells. TNBCs contain a higher percentage of stem cells than ER+
cancers [35]. This observation is supported by the fact that the TCA cycle is more active
in TNBC than in ER+ cases [36]. There is growing evidence that circulating cancer cells’
metabolism shifts to oxidative phosphorylation [37].

Discovering new approaches to understanding the variety of metabolic programs in
tissue-specific areas will lead to novel discoveries and immune regulation options. While
existing medicines, such as methotrexate, can target metabolic pathways, a promising
comprehension of cell and tissue biology will surely discover new targets with greater
specificity and lower toxicity.

2.3. Drug-Induced Alterations

Resistance to several anticancer drugs is associated with the increased activity of
redox balance pathways, indicating that intervening with redox metabolism can improve
drug response and help overcome multidrug resistance. Changes introduced by drugs
in the circulating and intratumorally metabolomes result from pharmacological effects.
Metabolomics’ pharmacokinetics and pharmacodynamics can be used to evaluate the effi-
cacy and side effects of breast cancer treatment. Regardless of the type of chemotherapeutic
agent used, increased glycolysis is a common feature of drug-resistant breast cancer cells.
However, this increased activity is regulated in different ways in different resistant breast
tumors. Therefore, metabolic profiles are altered according to the drug being used.

The Warburg effect has been linked to drug resistance in several studies, meaning
that a high glycolytic rate helps cancer cells survive anticancer drugs such as bortezomib,
cisplatin, and lapatinib [38]. Because some medications are unstable in acidic environments,
higher glycolytic rates have been postulated to limit therapeutic efficacy by increasing
lactate output and acidification of the extracellular space. Glycolytic regulators such as
PDK1 and LDHA are typically overexpressed in drug-resistant cells, making them potential
targets for drug-resistant malignancies. Lapatinib-resistant SKBR3 breast cancer cells
expressed more genes associated with glucose deprivation than sensitive cells, which
was connected to a worse patient outcome. Glucose transporters and glycolytic enzymes
were among the genes identified, as were alternative energy production pathways such as
oxidation [39]. In trastuzumab-resistant ErbB2-positive breast cancer cells, higher glycolytic
activity is mediated by heat shock factor 1 and LDHA. Furthermore, inhibiting glycolysis
with 2-DG and the LDH inhibitor oxamate resensitizes trastuzumab-resistant cells [40].
Finally, when LDHA was genetically downregulated or paclitaxel was combined with
oxamate, synergistic effects on inducing apoptosis were evidenced in paclitaxel-resistant
breast cancer cells [41].

The nuclear receptor estrogen-related receptor (ERR) alpha allows breast cancer cells
to use lactate as a substrate for mitochondrial respiration when glucose is not present.
They gain the ability to circumvent glycolysis which makes these cells less vulnerable
to PI3K/mTOR inhibitors, and ERR antagonists can restore drug efficacy [42,43]. By
reactivating mTOR signaling, breast cancer cells resistant to lapatinib restore ERR levels,
resulting in increased glutamine metabolism, antioxidant capacity, and mitochondrial
energy production. Furthermore, targeting ERR counteracts the metabolic alterations
associated with lapatinib resistance and overcame resistance to this drug in an HER2-
induced mammary tumor mouse model [42]. Therefore, targeting ERRα could reduce
tumor resistance to therapy administered by increasing the sensitivity of drug-resistant
breast cancer cells in the context of metabolism.
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Another metabolic trait observed in drug-resistant breast cancer cells is higher levels
of OXPHOS, as well as increased levels of oxidative stress. For example, tamoxifen-
resistant MCF-7 breast cancer cells have a higher rate of mitochondrial metabolism, and
ATP production and metformin selectively kill breast cancer stem cells resistant to standard
chemotherapy, highlighting the importance of OXPHOS activity in drug response. Because
tamoxifen-resistant breast cancer cells are more likely to be subjected to oxidative stress,
this higher mitochondrial activity could possibly explain why these cells have lower GSH
levels. Tamoxifen-resistant cells exhibit greater amounts of the oxidative stress defense
enzymes NADPH dehydrogenase 1 (NQO1) and GCLC.

Furthermore, transduction of these genes into MCF-7 cells causes a tamoxifen-resistant
phenotype, with NQO1 mRNA levels linked to disease progression in endocrine therapy
patients. As a result, tamoxifen sensitivity was restored in tamoxifen-resistant breast cancer
cells after NQO1 inhibition with dicoumarol. The inhibition of GSH biosynthesis with
BSO synergized with cisplatin induced regression in PI3K/Akt driven breast cancer [44].
Increased GSH synthesis was also observed in PI3K/Akt-driven breast cancer and was
required to resist oxidative stress. These findings suggest that increased antioxidant
defenses in breast cancer drive resistance to various chemotherapy types.

Furthermore, fatty acid synthesis (FASN) is associated with a bad prognosis in various
forms of cancer and impairs therapeutic efficacy. FASN overexpression induces resistance
to the anticancer medicines adriamycin and mitoxantrone in breast cancer cells. Orlistat,
a FASN inhibitor, enhances medication sensitivity across the board, implying that FASN
could be a potential target in treatment-resistant malignancies [45] (see Table 2). The
branched-chain amino acids, such as serine, proline, aspartate, and arginine are also
linked to carcinogenesis. The significance of amino acid metabolism in drug resistance is
mainly understood, but research indicates that amino acid availability may play a role in
therapeutic responsiveness and drug resistance development.

Table 2. A summary of the metabolic changes linked to drug resistance in cancer.

Pathways Associated with
Metabolism

Target Proteins/Enzymes or
Metabolites Therapy

Glycolysis GLUT1, Hexokinase, LDHA,
Pyruvate kinase, SGLT-2

Lapatinib, Paclitaxel, Trastuzumab,
2-deoxy-D-glucose, Dapagliflozin, Oxamate and

Tamoxifen

Fatty acid synthesis FASN Adriamycin, Omeprazole, Conjugated linolic acid,
Orlistat, Fasnall, Cerulenin and C75

Redox metabolism GCLC Tamoxifen

Mitochondrial energy metabolism ERRα, NQO1 Lapatinib, Tamoxifen

TCA cycle Pyruvate dehydrogenase kinase
(PDK3) siRNA, Metformin

Hence, different types and stages of cancer may rely on different metabolic pathways.
Different types of drugs and their combination will have different results in efficacy and
toxicity in different patients. Identifying tumors and patients resistant to treatment early
in the regimen requires a quick and accurate response to therapies [46]. The development
of biomarkers that predict response and resistance to therapy, plus the identification of
environmental modifiers of immunity (microbiome, metabolic and hormonal parameters,
and concurrent drug therapy), are all areas of research that are gaining traction.

3. Finding Biomarkers

Biomarkers help reveal connections between environmental exposures, human biology,
and disease. Biomarkers can help scientists better understand fundamental biological
processes, advance exposure science, and translate research findings into medical and public
health applications. The 1970s was the first-time biomarkers in breast cancer were used to



Int. J. Mol. Sci. 2022, 23, 3181 9 of 22

treat the disease, and tumors expressing ER+ were treated with tamoxifen. Alterations in
the genes ERBB2, ER, PR, BRCA1, BRCA2, and PIK3CA are currently clinically actionable
genomic abnormalities with FDA-approved drugs. However, inter-individual variation in
treatment response is a complicating factor that has a severe influence on patient health
and imposes significant clinical and financial costs. Response rates to typical medications
used to treat a variety of disorders have been estimated to be in the 50–75 percent range,
meaning that up to half of patients receive no benefit. Patients who initially respond
to anti-HER2 drugs often develop secondary resistance within one year after treatment
initiation, while those who show primary resistance to HER2-targeted therapy can still
benefit from anti-HER2 regimens [47].

Biomarkers are especially useful in identifying individuals at an increased risk of
developing breast cancer within high-risk families. However, the existence of biomarkers
with the capacity of determining prognosis, determining the most suitable drug treatment,
monitoring capacity, and post-operative follow-up are essential to increase the success of
treatments and reduce relapses. Tumor size and tumor grade are two significant prognostic
indicators that are commonly employed. However, there are limits in tumor grading, such
as lack of reproducibility and tumor heterogeneity. Since we are in the era of individual-
ized medicine, these prognostic biomarkers (tumor size, tumor grade, and lymph node
metastases) are insufficient for the proper therapy of patients with early-stage breast can-
cer [48]. Hundreds of potential biomarkers for predicting outcomes in women with newly
diagnosed breast cancer have been proposed. However, most of these studies had minimal
evidence [49] due to small patient populations, lack of independent prognostic value,
insufficient clinical validation, poor design, and inability to demonstrate clinical relevance.

Biomarkers are categorized according to their clinical value (Table 3). Cancer biomark-
ers range from macromolecules such as DNA, RNA, proteins, to whole cells. Breast cancer
biomarkers have been identified for cancer risk, diagnosis, proliferation, metastasis, drug
resistance, and prognosis due to the growing demand for personalized or precise treat-
ments. Identifying novel biomarkers is essential in modern age medicine to aid in the
development of new drugs, assist therapies, monitor therapy efficacy, and ensure survival
with a good quality of life.

Table 3. Biomarkers classified into categories, and examples of each category for breast cancer.

Predictive
Biomarkers Predict Response to a Therapy A Breast Cancer Patient with Extra Copies of the HER2 Gene Will

Respond Favorably to the HER2 Inhibitor Trastuzumab

Prognostic biomarkers Predict patient outcome

Ki-67 and proliferating cell nuclear antigen overexpression; estrogen
receptor (ER) and progesterone receptor (PR) overexpression;
transforming growth factor- (TGF-); apoptotic imbalance indicators,
including bcl-2 overexpression and an elevated bax/bcl-2 ratio;
changes in differentiation signals, such as c-myc and related protein
overexpression; loss of differentiation markers, such as TGF-II
receptor and retinoic acid receptor; and changes in angiogenesis
proteins, such as VEGF overexpression, are all instances.

Diagnostic biomarkers It helps clinicians to identify a
subtype of cancer accurately

Carbohydrate antigen 15-3 (CA15-3); circulating DNA (ctDNA) and
RNA (e.g., micro RNAs); circulating tumor cells and exosomes

Risk assessment
biomarkers

Predicts the patient’s risk of
developing a malignancy

Pathogenic mutations in BRCA1 and BRCA2 is a risk factor for
developing breast and ovarian cancer

Cancer recurrence
monitoring biomarkers

Surveillance marker to monitor
recurrence of cancer

Chemokine receptor 9 (CCR9); miRNAs by downregulating
E-cadherin and thus affecting EMT and breast cancer cell metastasis;
non-cancer cell components

Biomarkers Involved
in Cancer Drug

Resistance

Identifies possible markers for
drug resistance Estrogen Receptor Alpha (ESR1) Mutation; miRNA; circRNA
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At the time of breast cancer diagnosis, an accurate determination of prognosis is
essential for optimal patient management, particularly to escape the overtreatment of
unaggressive disease and the undertreatment of aggressive forms. Most breast cancer
patients are diagnosed early enough to benefit from surgery, chemotherapy, radiotherapy,
or a combination of these treatments. Nevertheless, it is considered that 30% of women who
are initially diagnosed with early-stage disease will eventually develop metastases [49,50],
which eventually increases morbidity and mortality.

Response biomarkers based on blood or urine testing are less expensive and invasive
than radiographic methods. Furthermore, assuming a response biomarker is an early
indicator of benefit or resistance, it will make it easier to decide whether the patient should
continue with any drug or drug combination in relatively early stage, before toxicities
appear and clinical deterioration occurs. A response biomarker that responds fast after
treatment begins does not require a high pre-treatment baseline level; it is more gener-
alizable to diverse tumor types and medications would be the ideal choice [49]. A good
biomarker should be specific, sensitive, and low-cost, with high throughput assay ability.

Biomarker research is also evolving to include a combinatorial approach to identifying
biomarkers from multi-omic data. The ability to develop panels that evaluate treatment
response based on many biomarkers at once can be achieved by combining biomarkers
from various omic data groups. In this review, we aim to explore pharmacogenomics and
pharmacomicrobiomics to integrate them in patient care and facilitate tumor categorization.

3.1. Pharmacogenomics, Defining a Metabolic Background of Tumors: Genome Take on
Drug Metabolism

Hypoxia, inflammation, and alterations in metabolism can be drivers of carcinogenesis,
implying that cancer is a metabolic illness that can be caused by genetic or non-genetic
signaling and metabolic abnormalities [51]. Because it was previously simple to identify
and characterize genomic and transcriptomic changes in cancer, tumors were mostly
identified using genomic and transcriptomic signatures, with metabolic profiles being
rarely employed. Thanks to recent technological breakthroughs in metabolomics, it has
become simpler to understand the specific contribution of disordered metabolism alongside
genomic and transcriptomic abnormalities. It is critical to consider their contribution
because metabolic pathways are highly adaptable and can be remodeled in response to
tissue context, tumor architecture, and the TME. Furthermore, while significant progress
has been made in considering the regulation and requirements of metabolic processes in
tumor cells and TME cells, identifying the dynamic metabolic interactions between different
cells in vivo has yet to be accomplished. As a result, multimodal strategies must be used to
collect data from cancer patients before, during, and after treatment. Genetic mutations
altered transcriptional indicators, and metabolic shifts can all be used to help identify
synthetic lethal pairs or drug combinations for specific targets. To detect and visualize
the in vivo activity of metabolic pathways, new imaging and analytical approaches must
be developed.

Pharmacogenomics was created to investigate the combined effects of genetic differ-
ences on pharmacological action (pharmacodynamics) and disposition (pharmacokinetics)
in individuals [52], i.e., how an individual’s genetic makeup influences their medication
reaction. PharmGKB (https://www.pharmgkb.org/, last accessed in 10 February 2022)
is a pharmacogenomics knowledge resource that provides gene–drug relationships as
well as detailed guidelines for using pharmacogenomics in clinical practice [53]. Several
international scientific consortia have issued pharmacogenetic guidelines in recent years,
but their use in clinical practice is still limited. Worldwide collaborations are underway to
overcome present barriers to pharmacogenomic application. On the other hand, existing
validated pharmacogenomic markers can only explain a small portion of the detected
clinical variability in therapeutic outcomes. New research methodologies, such as research-
ing the immune system’s response to immunotherapy to detect previously undetected

https://www.pharmgkb.org/
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uncommon genetic variations (which have been revealed to account for a considerable
amount of inter-individual variability in drug metabolism) are required.

Despite the broad use of ER, PR, and HER2 as biomarkers in treatment, these genes are
not the most frequently mutated in breast cancer. The most important clinical application
of ER expression is as a predictor of endocrine treatment response. Estrogens are thought
to promote cancer cell proliferation through their interactions with regulatory components
in the genome such as cyclin D and MYC [54]. Because estrogens exert their effects via
the ER, it is hypothesized that ER levels may be connected to the therapeutic effects of
antiestrogenic treatment. The HER2 marker is another prognostic biomarker that must
be evaluated in conjunction with ER in all newly diagnosed individuals. High HER2
expression promotes metastasis, invasion, and the proliferation of cancer cells via the
activation of signaling pathways such as PI3K/AKT and MAPK, as well as cell membrane
deformation [55]. Several attempts have been made to develop and validate a novel
approach for breast cancer patients. Breast cancer tissue has been found to express single
or many genes, as well as single or multiple micro-RNAs (mi-RNAs) [56]. Furthermore,
circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) have been discovered
in peripheral blood mi-RNA expression. Many researchers have been working on CTCs,
miRNAs, and DNA mutation testing (such as ctDNA measurement) to uncover novel
prognostic and predictive markers in recent years [57].

Amplification of the MYC oncogenes, mutations in the RAS family, and changes
of tumor suppressor genes such as TP53 (mutated in 50% of malignancies) are difficult
to target directly, and there are currently no FDA-approved drugs [58]. Moreover, as
molecular data grows more complex, so does the corresponding information for clinical
diagnosis. Gene expression profiling measures the expression of a thousand genes at once;
however, it does not meet the description of a companion diagnostic. The results are used
to stratify patients for expected response to standard chemotherapeutic regimens; however,
they do not necessarily indicate a specific targeted therapy. Companion diagnostics are
most understood and used in conjunction with specific molecular genomic discoveries
in oncology patients who are likely to react to targeted therapy. For example, Her-2
amplification/overexpression is the most important biomarker for trastuzumab treatment
in breast cancer [59]. However, it is necessary to proceed with caution when used alone
since multiple genetic variants might alter the response to a single therapy (e.g., MDM2
amplification and TP53 variants affecting MDM2 antagonists) and a single biomarker
might indicate multiple therapies (e.g., estrogen ablation or antagonism based on ER
expression). Tumor genome profiling gives a glimpse of a tumor’s genetic complexity,
but this information is insufficient to guide therapy for most patients. Therefore, we need
multiple biomarkers to guide all cancer treatment processes.

Among the most widely investigated biomarkers, we can find gene expression profiles
(e.g., Oncotype DX, MammaPrint), Ki-67, urokinase plasminogen activator (uPA)/PAI-
1, and the serum biomarkers: CA 15-3 and CEA [57]. Oncotype DX is a validated and
widely used multigene signature test for predicting the risk of recurrence in ER+ lymph
node-negative breast cancer patients treated with adjuvant Tamoxifen [60]. MammaPrint is
another validated molecular test that employs microarrays to assess the relative expression
of 70 genes that are mostly implicated in cancer regulatory pathways [61]. Predicting the
likelihood of cancer recurrence is an important therapy marker. These multigene signature
tests are not cheap, being excessively expensive in many countries. To set up a simple
and inexpensive test to serve as a diagnostic and predictive biomarker test, considerable
efforts have been devoted. Ki67 and IHC4 are some of those economical biomarkers,
with Ki67 being the popular choice [62]. Considering that using tumor tissue can be a
limitation, circulating biomarkers that are robust and clinically verified are advised. TPS,
CEA, and CA 15-3 are examples of circulating biomarkers with increased levels [57]. Apart
from their potential function in predicting poor outcomes in breast cancer patients, these
biomarkers do not currently meet the criteria to be used in clinical practice as prognostic
biomarkers. Biomarkers based on gene expression levels are more susceptible to batch
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effects, vary considerably between cell types, and are affected by gene expression levels
in both cancer and non-cancer cells. On the contrary, pathway-level techniques are more
resistant to batch effects, allowing for data aggregation from multiple cohorts and the
identification of highly important biomarkers [63]. However, owing to a lack of large-scale
gene expression data from a variety of cancer cell lines, as well as their susceptibility to a
wide collection of anticancer treatments, identifying pathway-based expression indicators
has proven problematic in the past. However, recent developments in gene silencing and
editing have permitted the creation of large-scale gene essentiality data in hundreds of
cell lines generated from a distinct tumor. This gene dependency database could lead to
the discovery of previously discovered altered pathways that predict medication response
in tumors.

When compared to other publicly available pathway-level methods that simply ex-
amine gene sets, the directionality of signaling pathways may improve the accuracy and
robustness of the study. PathOlogist, a freely available tool that analyzes not only the
individual protein–protein interactions in each pathway, but also the type of interaction
and the directionality of signaling pathways, may improve the accuracy and robustness of
the study [64].

Before such biomarkers become clinically relevant, they must be reproducible across
multiple platforms and datasets. According to previous research, pathway-based biomark-
ers, rather than individual gene-based biomarkers, appear to have a higher reproducibil-
ity [65]. This is because biological processes frequently affect multiple genes simultaneously,
allowing the extraction of a more constant metric from the expression pattern of individ-
ual genes.

As a quantitative, high-throughput technology, metabolomics has various advantages
for developing predictive, diagnostic, and prognostic breast cancer markers. Since the
Warburg discovery, already summarized above, the role of glycolytic flux in the oncogenesis
of breast cancer has been demonstrated in various studies. Given cancer’s metabolic
reprogramming, it is fair to assume that some of these changes will be stable and adaptable
to quantitative assessments for diagnostic and prognostic purposes [66]. A metabolomic
technique has been utilized in several studies to discover breast cancer changes that could
be used for disease stratification, accurately identifying the types of tumors responding
to certain therapies. Metabolic profiling is used to identify possible biomarkers of breast
cancer or the metabolic fate of administered drugs [67]. Metabolomic analysis can assess
metabolic profiles between cancer patients and healthy people or, assess the differences
before and after initiation of the disease or progression of the disease. By comparing
wild-type cancer controls, the impacts of mutations or knockouts that potentially minimize
or eliminate the possibility of metastasis can be detected.

If metabolomics successfully finds breast cancer biomarkers for certain subtypes or
medication responsiveness, it will give non-invasive approaches to precisely describe the
characteristics of a patient’s cancer in the clinic [66]. Identifying oncometabolites will
also help in the targeting of metabolic pathways that promote cell survival and treatment
resistance. Efficient data management and analysis tools for large data sets, as well as a
better method of incorporating metabolomics data with transcriptomics and proteomics
information to translate high-throughput data to clinical diagnosis, can all help to speed up
the translation of new laboratory findings to the clinic.

3.2. Pharmacomicrobiomics, Using the Microbiome to Predict Resistance and
Enhance Immunotherapies

Pharmacomicrobiomics is an innovative field investigating the interplay of microbiome
variation and drugs pharmacodynamics to enhance therapeutic efficacy and abrogate side
effects. Pharmacogenomics has been at the vanguard of research into how a person’s
genetic background influences drug response variability and toxicity. The gut microbiome,
commonly known as the second genome, has lately been identified as a critical factor in this
area. Combining pharmacogenomics and pharmacomicrobiomics will lay the groundwork
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for significant advances in personalized medicine. BugBase and PICRUSt2 [68,69], for
example, are bioinformatics tools for studying microbiome function. The goal is to use
broad phenotypic characteristics such as “anaerobe” and “glucose using” to quantify the
functional makeup of commensal bacteria. Other programs, such as QIIME 2 [70], seek
to provide a framework for microbiome multi-omics or concurrent exploration of which
microorganisms are present. Their metabolic activities and functional possibilities go
beyond microbiome connections to microbiome processes.

The gut microbiota has an essential role in carcinogenesis and anticancer therapy
response; therefore, is only suitable for the microbiome to become one of the several
existing hallmarks of cancer. Researchers have gradually discovered that both normal
breast tissue and breast cancer tissue contain a diverse array of microbiota, existing a link
between the breast microbiota and breast carcinogenesis and between therapeutic response
and drug resistance [71,72]. The microbial presence on breast cancer is easy to understand
due to the high adipose composition, lymphatic drainage, and extensive vasculature of
the breast, which makes it a favorable environment for bacterial location and growth.
Proteobacteria, Firmicutes, and Bacteroides positively correlate with fatty acid metabolism
by-products and fatty acid biosynthesis in mammary tissues [73].

The interesting part of the microbial presence in breast cancer is the possibility to
distinguish microbiome signatures when comparing either normal breast tissue with breast
cancer tissue or the differences in tissues representing different breast cancer subtypes [74].
Sphingomonas were found in high concentrations in normal breast tissue, while Methy-
lobacterium were found in high concentrations in breast cancer tissue. Sphingomonas are
abundant in normal breast tissue and may impact breast cancer progression in various
ways, including estrogen metabolism and activation of TLR that reduce breast cancer devel-
opment [75]. About two-thirds of estrogen receptor ER+ breast cancer tissue is colonized
by Methylobacterium [76]. When comparing the community microbiome of breast cancer
patients and healthy participants, microbial diversity is crucial, and a microbiome signature
can be associated to each breast cancer subtype. In a study by Banerjee et al., it was possible
PathoChip to use to determine a microbial signature for each breast cancer molecular
subtype, which is represented in Figure 1. Bordetella, Campylobacter, Chlamydia, Chlamy-
dophila, Legionella, and Pasteurella were abundant in luminal A tumor tissue. In contrast,
Arcanobacterium, Bifidobacterium, Cardiobacterium, Citrobacterium, and Escherichia coli
were found in abundance in Luminal B tumor tissues. Most hormone-positive breast cancer
tissues reported to have a decreased presence of the genus Methylobacterium in compari-
son to healthy breast tissue. In HER2 tumors, Streptococcus was most abundant, and TNBC
tissue was shown to harbor Aerococcus, Arcobacter, Geobacillus, Orientia, and Rothia at the
highest level compared to healthy breast tissue. In addition, ER+/PR+ and HER2+ tumors
share a similar microbial signature [72]. In the article by Dieleman et al., is possible to find
an overview of studies analyzing breast cancer microbiota composition and all these studies
reveal that the microbiota makeup of healthy breast, normal adjacent, and tumorous breast
microbiota differ significantly. It appears that a breast microbiome exists and that it may
change over time as breast cancer progresses. A definite breast cancer microbiome profile,
on the other hand, has yet to be developed. Further microbial signatures’ qualitative and
quantitative analysis may provide useful diagnostic and prognostic information for breast
cancer patients, as well as clues for the development of novel treatment regimens [77].

Furthermore, cancer patients have a lower total microbiome diversity, with research
showing that breast cancer patients have a lack of diversity and an abundance of pathogens,
with relative increases in Enterobacteriaceae, Bacillus, and Staphylococcus species [78]. It is
worth mentioning that some of these species have members who can cause double-stranded
DNA breaks in breast cancer cells. There is a considerable difference in the microbial
communities of malignant and benign breast tissue samples, with cancer being related with
a rise in particular bacteria that are typically less prevalent. Overall, the microbiome of
women with breast cancer contrasts from that of healthy women in terms of the number,
kinds, abundance, and quality of species (e.g., at the metabolic and immunological levels).
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As a result, the microbiome has the potential to be an additional risk factor and forecaster
of breast cancer, impacting therapy options [79].
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3.2.1. Factors Influencing Gut Microbiota Composition

During anticancer treatment, the community structure of gut microbiota is also affected
by diet, surgical interventions, antibiotics, prebiotics, probiotics, stress, hygiene, among
others. Many of these factors contribute to mechanisms of cancer regulation; (1) dysbiosis,
a perturbation of the microbial community, which disturbs the symbiotic association with
the host, leading to cancer initiation and progression by the attachment and invasion of
pathogenic bacteria to the epithelium; (2) anti-tumor effect via effector cell recruitment and
the activation of tumor-specific cytotoxic cells; (3) immunosuppressive action, dampening
the antitumor immunity; and (4) microbial modifications of dietary substrates producing
potentially carcinogenic products that can contribute to genotoxicity and inflammation.
For example, dysbiosis, which is common in non-responders to PD-1 therapy, can cause
inflammation and halt T cell differentiation into CD8+ effector cells and has been linked
to a significant decrease in Sphingomonas proportion [80,81]. Oral Bifidobacterium can
improve PD-L1 efficacy by increasing tumor cell control and contributing to interferon
production by CD8+ tumor-specific T cells. It also increases the activation of intratumoral
dendritic cells [82].

Diet, antibiotics, prebiotics, and probiotics are the most studied contributors. Diet
has been identified as a modifiable breast cancer risk factor. Identifying at-risk people
by highlighting predicted diet-related indicators would be extremely beneficial to public
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health. The ingestion of animal fats, dietary fiber, and vegetables is linked to different
patterns of gut microbiota composition. For example, gut microbiota composition and
gut bacterial beta-glucuronidase activity are influenced by a high-fiber diet. This inhibits
estrogen deconjugation and reabsorption while boosting estrogen fecal excretion, resulting
in lower estrogen levels. The synthesis of bioactive metabolites by estrogen-dependent
and non-estrogen-dependent processes of the gut microbiota influences breast cancer
development [83].

Previous studies show that antibiotic exposure reduces the diversity and richness of
some bacterial communities and changes the balance of the gut microbiome, which has
been linked to an increased risk of breast cancer. Antibiotics have the potential to harm
both the target pathogen and the human host’s commensal residents. The influence on
non-target microbial communities is determined by the antibiotic employed, its method of
action, and the community’s level of resistance [84].

Various in vitro and laboratory animal-based studies show that prebiotics and probi-
otics can be used in the prevention and management of several cancers. Probiotics act as
functional food and can be coupled with different drugs to increase/modify the efficacy
of treatment or reduce its negative effects. The ability of probiotics to restore mucosal
barriers, change the composition of microorganisms in the body positively and influence
the immune response promotes digestion and reduces stored fat, as well as levels of un-
necessary and toxic substances, which is extremely valuable. Lactobacillus, Lactococcus,
Bifidobacterium and Enterococcus are common bacterial probiotics. The consumption of
probiotics containing live bacteria, such as Lactobacillus spp., alters the composition of
the gut microbiome and has been demonstrated to reduce fecal beta-glucuronidase activ-
ity [85]. This is due to a drop in estrogen levels, which lowers the risk of breast cancer.
Nonetheless, the use of probiotics must be cautious since clinical research have found
that some bacteria utilized as “probiotics” in fermented food products are not effective.
Some probiotic strains may be responsible for some side effects including systemic infec-
tions, deleterious metabolic activities, gene transfer, and excessive immune stimulation in
immunocompromised subjects [86].

The beneficial effects of probiotics on human health can be intensified by the presence
of prebiotics, nondigestible substances that are degraded by gut microbiota. Prebiotics
protect against cancer by modulating colonic pH, fecal bulking, xenobiotic metabolizing,
carcinogen binding to bacteria, enzyme modulation, gene expression modification in the
feces, and immune response regulation [85]. More in vivo and clinical trials are needed
to confirm the significant role of the use of pre- and probiotics as well as their metabolic
products in cancer prevention and treatment, since most of the positive results provided by
pre- and probiotic treatments are limited to experimental settings. To minimize side effects
associated with probiotics, short- and long-term effect studies with the aim of methodology
standardization are essential.

In addition, the type of drug administration is of importance. Drugs taken orally are
absorbed into the bloodstream through the epithelial membrane. The solubility, stability,
and permeability of the medicine, as well as its metabolism by body and gut microbial
enzymes, impact the efficiency of this procedure. The liver and gut bacteria have different
metabolic reactions: the liver creates hydrophilic by-products predominantly through ox-
idative and conjugative metabolism, whereas the gastric microbiota produces hydrophobic
by-products primarily through reductive and hydrolytic metabolism [87]. Because the mi-
crobiome influences host immunity, it may have a significant impact on the responsiveness
and toxicity of several cancer treatments. Pattern recognition receptors (PRRs) bind to bacte-
rial components known as pathogen-associated molecular patterns and instruct the innate
immune system to recognize microorganisms; therefore, specific microbial mechanisms
recognized by PRRs in the breast can induce a tumor-inhibiting inflammatory response,
contributing to the recruitment of tumor-killing cells [88]. PRRs that are expressed by
macrophages, DCs, and NK cells include toll-like receptors (TLRs), nucleotide-binding
oligomerization domain (NOD)-like receptors, and C-type lectin receptors. When TLRs
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bind to microbial structures including lipopolysaccharide, peptidoglycan, flagella, or mi-
crobial DNA or RNA, they produce inflammation. Depending on the TLR subset, cancer
type, and immune cells participating in the tumor, TLR activation can either promote or
prevent tumor growth [89]. TLR5 was substantially expressed in mouse xenograft breast
carcinomas. The TLR5 ligand Salmonella typhimurium flagellin [90] induced the release of
proinflammatory cytokines and chemokines, which had anticancer action.

Resistance to treatment, whether intrinsic or acquired, continues to be a major hurdle
to effective breast cancer treatment. Changes in the expression or mutation of a drug target,
tumor heterogeneity, decreased blood supply to the tumor, and the TME’s ability to inhibit
immune evasion are all factors that contribute to drug resistance [91]. Biomarkers that can
predict the therapeutic sensitivity of breast tumor cells are badly needed so that therapy
and dose can be altered as needed. We can develop markers to determine therapeutic
efficacy by correlating the composition of the breast microbiome with the availability and
cytotoxicity of anti-cancer medicines. Identifying which microbial composition promotes a
good antitumor response improves therapeutic efficacy.

Microbial metabolism may induce significant side effects, requiring the suspension
of chemotherapy. Irinotecan-induced mucositis, for example, causes severe, dose-limiting
diarrhea in up to 30% of patients [92]. As a result, microbiome profiling may help identify
patients at risk of irinotecan-induced mucositis, while microbiota manipulation could lead
to new therapeutic alternatives. Immunotherapeutic strategies aim to reduce immuno-
suppression in cancer patients by blocking coinhibitory molecules in the TME. Immune
checkpoint inhibitors, such as anti-PD-1 and CTLA-4 antibodies, work by preventing T-cell
inhibition to improve immunotherapeutic efficacy. It is necessary to acknowledge that the
TME is a promising target for improving immunotherapy responsiveness, which modulates
protumor inflammation. The impact of gut microbiota on immunotherapeutic effectiveness
has previously been described. However, it is unclear whether intratumoral breast micro-
biota influences immunotherapeutic efficacy or not, because activating TLRs by bacterial
products promotes immune cell maturation and priming.

Some bacteria, such as Faecalibacterium prausnitzii, Roseburia intestinalis, and Anaerostipes
butyraticus, use fermentation to break down complex carbohydrates and produce short-chain
fatty acids (SCFAs: acetate, propionate, butyrate), which modulate host immune cells and
provide a carbon source [93]. SCFAs modulate numerous cancer hallmarks, being important
regulators of immune cell activation, recruitment, and differentiation, such as neutrophils,
macrophages, DCs, and T-lymphocytes. Through the activation of macrophages and DCs,
SCFAs can have anti-inflammatory effects on host immune cells, regulating the expression
of pro-inflammatory cytokines such as tumor necrosis factor (TNF-), interleukin-6 (IL-6), and
interleukin-12 (IL-12) [94]. Butyrate has been demonstrated to stimulate: the Treg cell differen-
tiation in vitro and in vivo; the anti-inflammatory forkhead box protein P3 (Foxp3), which is
necessary for the suppression of inflammatory reactions [95]; and T-helper (Th) cell cytokine pro-
files, supporting intestinal epithelial barrier integrity, which might help limit mucosal immune
system exposure to luminal microorganisms and prevent aberrant inflammatory responses.
Bifidobacteria species produce acetate, a SCFA that modulates intestinal inflammation. SCFAs
reduce inflammation in the stomach through a variety of methods, including HDAC inhibitors,
histone acetyltransferase activity stimulation, and HIF stabilization [96,97].

Aside from direct effects of organ-specific microbiota on local tissue, the gut micro-
biota can influence breast cancer development by indirect pathways such as enterohepatic
estrogen recycling, bile acids, and microbial interaction with the innate and adaptive im-
mune systems. Estrogens are conjugated in the liver and transported to the gut by bile
excretion. Bacteria with beta-glucuronidase enzymatic activity [98] are found in the gut
and are capable of deconjugating conjugated estrogen, which is reabsorbed into the cir-
culation, resulting in greater estrogen exposure throughout the body and an increased
risk of breast cancer. The deconjugation of conjugated estrogens is carried out by bacterial
β-glucuronidases, which are found in the subsequent bacterial genuse: Collinsella, Ed-
wardsiella, Alistipes, Bacteroides, Bifidobacterium, Citrobacter, Clostridium, Dermabacter,
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Escherichia, Faecalibacterium, Lactobacillus, Marvinbryantia, Propionibacterium, Rose-
buria, and Tannerella [99]. Estrogen reactivation allows them to be reabsorbed and increase
serum estrogen levels, and estrogen-induced changes in mitochondrial gene expression
have been linked to estrogen-induced carcinogenesis [100]. β-glucuronidase activity and
gut-derived metabolites can be modulated by diet. Poor dietary choices and obesity benefit
the growth of certain bacteria species such as Fusobacterium nucleatum. This bacterium can
elevate the host’s lymphocytes by killing mature lymphocytes. A low lymphocyte count in
cancer patients is related to poor prognosis.

Moreover, the main receptors of SCFAs are the free fatty acid receptors (FFARs) that
are not only located on the cancer cells, but also on stromal cells (e.g., adipocytes) [101].
SCFAs can have positive [102] and negative [103] effects in breast cancer. As a result, the
manipulation of SCFA levels in the intestinal tract caused by changes in microbiota structure
could be considered for cancer treatment or prevention. Lithocholic acid is a secondary
bile acid that is synthesized from chenodeoxycholic acid (CDCA) and ursodeoxycholic
acid (UDCA) by bacterial 7-dehydroxylation [104]. The human body’s capacity and the
microbiome to synthesize LCA are largely reduced in breast cancer, which is the most
dominant in early stages (stages 0 and 1). In breast cancer, serum lithocholic acid levels were
found to be adversely linked with the Ki67 labeling index [105]. Bile acid transformation
is carried out by anaerobic bacteria, primarily Clostridiales [106]. The bile acids found in
the breast come from the gut, the bacterial enzymes LdcC and CadA produce cadaverine
from lysine [107]. Although human cells can synthesize cadaverine, bacterial cadaverine
production outnumbers human biosynthesis. Cadaverine causes cells to become more
glycolytic since it has been demonstrated that they reduce cellular oxygen consumption,
which indicates OXPHOS activity [108].

Detailed microbiome signatures and diversity may be a useful biomarker for diagnosis
and prognosis in patients with breast cancer. The gut microbiota can influence the adverse
effects and efficacy of anticancer drugs in individuals with breast cancer through immune
modulation and anticancer drug metabolism.

3.2.2. The Microbiome Intervein with Neurophysiological Function

The microbial habitat of the digestive tract is the most heavily inhabited in the body.
In addition to fungi, viruses, and archaea, the bacteria that make up much of this ecosystem
are vital for immunological, metabolic, psychological, and cognitive function. Dysbiosis
can lead to abnormal neurophysiological function and behavior, such as anxiety and
depression [109]. The neurotransmitters serotonin (5-HT), dopamine, GABA (gamma-
Aminobutyric acid), and noradrenaline are affected by the gut microbiota [110]. For
example, SCFAs have immunomodulatory properties and can interact with nerve cells by
stimulating the sympathetic and autonomic nervous systems via G-protein-coupled (GPR)
receptors 41 (GPR41) and GPR43. SCFAs also cross the BBB and affect gut–brain hormonal
communication by regulating the release of gut peptides from enteroendocrine cells (EC).
SCFAs have recently been shown to regulate EC cell production of gut-derived 5-HT [111].
This is an important topic since neurotransmitters, notably serotonin, which regulates mood,
are implicated in the neurological dysregulation seen in depressed patients and cancer
survivors who typically develop comorbid depression after a cancer encounter. Therefore,
by ensuring that breast cancer patients dispose of healthy gut microbiota, we create an
opportunity to improve the selected therapeutic and after treatment lives of survivors.

Because microbes in the human gut translate to a wide range of enzymes, the gut
microbiome is becoming a key player in personalized medicine. This greatly expands the
catalogue and function of metabolic reactions in the human body that can be involved in
xenobiotic metabolism, including dietary components and drugs [112]. As a result, phar-
macomicrobiomics can be considered for clinical applications such as using a combination
of microbiome and genetic profiles to better predict a person’s medication reaction and/or
modifying the gut microbiome to improve drug efficacy on a per-person premise. To further
understand the underlying causes and mechanisms, a systems-based approach and spe-
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cialized drug testing procedures are necessary. Due to the complexity and inter-individual
variability of human microbiota, identifying microbial colonization profiles—especially
associated with various illnesses and the characterization of microbial metabolic pathways
connected to health and disease states—remains a problem. The human microbiota interacts
with the immune system at multiple levels. Changes in this crosstalk may involve the host’s
pathophysiological mechanisms, which can then be used to develop clinical therapies for
some immunological disorders. This could lead to the development of potential biomarkers,
which would allow for the implementation of personalized healthcare strategies and the
identification of new tools for prevention, screening, and treatment.

4. Conclusions

In breast cancer treatment, the goal of precision medicine continues to hold promise
for more specialized and tailored care. Every day, the treatment of breast cancer advances
towards more personalized care, from the discovery of endocrine and HER2-focused
medicines to multigene arrays in chemotherapy for more specific patient selection, to
radiomics and genetic subtyping. The goal for treating cancer patients is to develop real-
time biomarkers for cancer that will allow real-time management of the disease, similar to
diabetes, where the individual can tell what their specific needs are by analyzing blood
sugar levels. Because cancer is so complex, “one-size-fits-all” treatments may not be
practical, but it may be possible to quantify the benefits of treatment before months have
gone by.

Today’s personalized cancer therapy incorporates data from a wide range of diag-
nostic tests and patient history to determine the best treatment for each patient, but lacks
real-time measurements of effectiveness and resistance to reduce relapses. Because each
patient’s response to treatment is heavily influenced by their genomic background and/or
the genetic makeup of the tumor, the majority of current approaches for cancer patient
stratification rely on genetic tests. However, the genetic makeup of a tumor does not show
us its full identity. If we consider the TME, the immune system, and the microbiome, we
can have a better foundation for guiding diagnosis, therapy selection and monitoring, and
patient follow-up. This comprehensive approach will represent a major step forward by
analyzing the metabolism of immunotherapy drugs in different subtypes and conjugating
that information with the immunometabolism and microbiome response (without neglect-
ing the information provided by genetics) in order to accurately identify breast cancer
patients who are either excellent candidates or unsuitable for certain medications.
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