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The incidence of non-alcoholic fatty liver disease (NAFLD) is increasing rapidly

worldwide; however, there are currently limited treatments for NAFLD. The

disease spectrum includes simple fatty liver, non-alcoholic steatohepatitis

(NASH), fibrosis, cirrhosis, and progression to hepatocellular carcinoma

(NASH-HCC). The therapeutic effects of NAFLD remain controversial.

Although researchers have conducted studies on the pathogenesis of

NAFLD, its pathogenesis and anti-NAFLD mechanisms have not been fully

elucidated. Previous studies have found that flavonoids, as natural

substances with extensive pharmacological activity and good therapeutic

effects, have excellent antioxidant, anti-inflammatory, metabolic disease

improvement, anti-tumor, and other properties and can significantly alleviate

NAFLD. Flavonoids could be further developed as therapeutic drugs for NAFLD.

In this paper, the pathogenesis of NAFLD and the mechanisms of flavonoids

against NAFLD are summarized to provide a theoretical basis for screening

flavonoids against non-alcoholic liver injury.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by

excessive fat deposition in hepatocytes, which is not caused by alcohol or other clear liver-

damaging factors (Cobbina and Akhlaghi, 2017). The global incidence rate of NAFLD is

approximately 25%, particularly in patients with diabetes and obesity (Mundi et al., 2020).

NAFLD is the most common chronic liver disease worldwide and is expected to be the

main cause of liver transplantation in the future (Younossi et al., 2016b). NAFLD

encompasses a wide range of liver disorders, including simple fat accumulation in the

liver cells, non-alcoholic steatohepatitis (NASH), fibrosis through the final stages of

cirrhosis, and NASH-HCC (Cobbina and Akhlaghi, 2017). The incidence of NAFLD and

NASH is related to sedentary lifestyle and excess dietary energy (Farrell et al., 2013). To

date, the Food and Drug Administration has not approved any drugs for the treatment of

NASH (Eduardo et al., 2015). Currently, NAFLD can be effectively alleviated only through

non-drug management approaches, such as healthy lifestyle, diet, and moderate physical
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activity (Guillaume et al., 2015). Given the limited clinical

treatment for NAFLD, the development of drugs that can

effectively alleviate NAFLD is of great significance.

Pathogenesis of non-alcoholic fatty
liver disease

The pathogenesis of NAFLD remains unclear so far.

However, recent studies have suggested a bidirectional

association between NAFLD and metabolic syndrome, with

type 2 diabetes increasing the risk of cirrhosis and related

complications (Powell et al., 2021). Insulin resistance, diabetes

mellitus, and genetic variations in transmembrane 6 superfamily

member 2 (TM6SF2) and patatin-like phospholipase domain

containing 3 (PNPLA3) play important roles in NAFLD

progression (Cobbina and Akhlaghi, 2017). NAFLD is

characterized by excessive fatty accumulation in the liver,

while simple steatosis is considered pathologically benign.

NASH generally indicates liver damage that can progress to

severe pathology (Zhang et al., 2018).

The “two-hit” pathogenesis of NAFLD/NASH was widely

accepted in the early stage (Chi, 2017). The “first hit” is

characterized by an increase in hepatic fat, especially

accumulation of hepatic triglycereides and insulin resistance.

Once the accumulation of hepatic fat exceeds 5%, it

corresponds to hepatic steatosis (Fang et al., 2018). The most

direct cause of NAFLD is abnormal liver lipid metabolism, and a

large quantity of free fatty acids and triglycerides that accumulate

in liver cells (Xiaxia et al., 2019). The “second hit” is that reactive

oxygen species (ROS) triggers an inflammatory cascade of liver

parenchymal cells and fibrosis (Xiaxia et al., 2019). These effects

include high levels of inflammatory cytokines, mitochondrial

dysfunction, and oxidative stress. Necrotizing inflammation and

fibrosis can progress and eventually lead to cirrhosis (Chi, 2017).

However, the widely accepted theory is the “multiple-hit”

pathogenesis (Ayonrinde et al., 2015). Changes due to the

interaction of genetic and environmental factors, as well as

the interactions between different organs and tissues,

pancreas, gut, and liver, and broader metabolic dysfunction,

are involved (Berardis and Sokal, 2014; Chi, 2017; Vlad et al.,

2018). Moreover, scholars believe that environmental and genetic

factors and the change in gut microbes in the induction of

NAFLD in genetic predisposition, as well as intestinal flora

changes lead to intestinal fatty acid, further activate the

inflammatory pathways and release proinflammatory factors.

Inflammatory cytokines increase liver inflammation and lipid

accumulation, and the formation of gut-liver axis to a vicious

cycle (Buzzetti et al., 2016; Xiaxia et al., 2019).

In recent years, the functional activity of key genes that

synthesize proteins has been decisive in NAFLD. The

PNPLA3 variant has been identified as the main genetic

determinant of NAFLD. Variants with moderate effect sizes in

TM6SF2, membrane bound O-acyltransferase domain

containing 7 (MBOAT7), and glucokinase regulator (GCKR)

were also shown to contribute significantly (Bellentani et al.,

2004). PNPLA3, an enzyme that encodes I148M, is involved in

the hydrolysis of triglycerides in adipocytes (Romeo et al., 2008).

The lipid TM6SF2 is located in the endoplasmic reticulum and

encodes E167K (rs58542926C/T), resulting in the loss of protein

function, which in turn increases triglyceride deposition in the

liver (Dongiovanni et al., 2015). Natural candidate genes are

significantly involved in glucose and lipid metabolism during

NAFLD development. Among the single nucleotide

polymorphisms (SNPs) that lead to coding region mutations,

such as PNPLA3 and TM6SF2, it is reasonable to infer that these

defective proteins may be involved. For example,

TM6SF2 mutants reduce liver production of very low-density

lipoprotein (VLDL), thereby increasing the triglyceride (TG)

content in the liver (Bonora et al., 2010).

Some studies have suggested that NAFLD progression

follows the process of steatosis, lipotoxicity, and inflammation

(Jou et al., 2008). The development of steatosis involves the

interaction of many factors, such as dietary habits, gut flora, and

genetic factors (Romeo et al., 2008; Jiang et al., 2015; Kirpich

et al., 2015). Fat regenesis occurs through upregulation of

adipogenic transcription factors, including sterol regulatory

binding protein-1c (SREBP1c), carbohydrate-responsive

element-binding protein (chREBP), and peroxisome

proliferator-activated receptor gamma (PPAR-γ) (Anderson

and Borlak, 2008). Fatty acids are mainly stored in the

adipose tissue in the form of triacylglycerol. A previousstudy

found that fatty acids in obese volunteers seemed to migrate from

normal storage organs to the bone and liver tissue. Notably, FAT/

CD36 (fatty acid translocation enzymes) promote fatty acid

uptake by bone and liver tissues, which are significantly

elevated in patients with obesity and NAFLD (Greco et al.,

2008; Fabbrini et al., 2009). The accumulation of fat in the

liver can lead to lipotoxicity and dysfunction of organelles,

such as the mitochondria and endoplasmic reticulum

(Browning and Horton, 2004; Bell et al., 2008). Steatosis

further leads to the activation of IKKβ, which leads to

increased signaling of the transcription factor nuclear factor

kappa β (NF-κβ). Activation of NF-κβ induces the production

of pro-inflammatory factors. These include tumour necrosis

factor-alpha (TNF-α), interleukin 6 (IL-6), and interleukin-

1beta (IL-1β) levels. These inflammatory factors can promote

aggregation and activation of resident hepatic macrophages to

further promote NASH inflammation (Ramadori and Armbrust,

2001; Fabbrini et al., 2009).

Oxidative stress may play an important role in NAFLD

progression, and under normal physiological conditions,

mitochondrial oxidation is the main oxidation pathway of

fatty acid deposition. When ROS are overproduced during

fatty acid oxidation, hydrogen polyunsaturated fatty acids are

extracted from the liver, resulting in mass production of
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malondialdehyde (MDA) (Esterbauer et al., 1991). MDA can

spread from its original site to other cells both inside and outside

the cell, causing damage (Esterbauer et al., 1991). Catalase and

glutathione levels decrease when ROS levels are elevated, and

oxidative stress is exacerbated (Hongming et al., 2018). Lipid

peroxidation increases collagen synthesis and cell death, which

promotes steatosis and fibrosis (Huang et al., 2018).

Fatty acid outflow from the diet increases, and new fat

formation releases free fatty acids from adipose tissue,

contributing to TG accumulation in the liver, although to

varying degrees (Yeh and Brunt, 2014). However, TG

accumulation in the liver itself is not pathological, and may be

protective in some cases. Hepatic diacylglycerol acyltransferase 2

(DGAT2) inactivation catalyzes TG synthase and reduces hepatic

TABLE 1 Flavonoids from several different sources and their anti-NAFLD mechanisms.

Class Source of plant Example Mechanisms of anti-NAFLD References

Flavone Leaves, fruits, trunks of
Asteraceae, Labiatae plants

Luteolin Sirt1-AMPK signal pathway/Restoration of intestinal
mucosal barrier damage and microbiota imbalance/
Targeting the pro-inflammatory IL-1 and Il-18 pathways/
Abolish lipid accumulation induced by LXR-SREBP-1c
activation

Zhu et al. (2020) Xia et al. (2021)
Abu-Elsaad and El-Karef, (2019) (Yin
et al., 2017)

Apigenin Regulating hepatocyte lipid metabolism and oxidative stress/
XO/NLRP3 pathways/PI3K/AKT-Dependent Activation/
PPARγ/PGC-1α-Nrf2 pathway

Zhang et al. (2018b)

Fan et al. (2017)

Lv et al. (2019)

Feng et al. (2017)

Baicalein Inhibited DNL and improved glucose tolerance, oxidative
stress, liver histology, and hepatokine secretion/Via
maintaining V-ATPase assembly/Reduce hepatic fat
accumulation and to ameliorate NAFLD-related biochemical
abnormalities

Sun et al. (2020)

Zhu et al. (2019)

Xing et al. (2021)

Flavonones Citrus, Fabaceae,
Moraceae, Myrtaceae

Eriodictyol Induced a persistent increase in autophagic flux Lascala et al. (2018) Geng et al. (2020)

Hesperetin PI3K/AKT-Nrf2-ARE pathway/Induction of GRP78 in
hepatocytes

Li et al. (2021)

Naringenin down-regulating the NLRP3/NF-κB pathway Ke et al. (2015)

Enhancing Energy Expenditure and Regulating Autophagy
via AMPK decreases adipose tissue mass and attenuates
ovariectomy-associated metabolic disturbances

Yang et al. (2021)

Chen et al. (2019b)

Flavonol Leaves of various plants Quercetin/
Kaempferol

Ameliorating inflammation, oxidative stress, and lipid
metabolism/Modulating intestinal microbiota imbalance and
related gut-liver axis activation/IRE1a/XBP1s pathway

(Yin et al., 2017; Zhu et al., 2018)

Yang et al. (2019)

Galangin Promoting Autophagy Zhang et al. (2020)

Myricetin Regulating the expression of transcription factors of hepatic
lipid metabolism, the antioxidant system, and pro-
inflammatory cytokines

Choi et al. (2021)

Modulating gut microbiota Sun et al. (2021)

Isoflavone Legumes Daidzein Direct regulation of hepatic de novo lipogenesis/Indirect
control of adiposity and adipocytokines

Kim et al. (2011)

Genistein Directly targeted cyclooxygenase-1 activity as well as its
downstream TXA2 biosynthesis/AMPK Activation

Zhong et al. (2017)

Wang et al. (2018)

Anthocyanidin Petals Delphinidin Induced endotoxemia and associated liver inflammation Cremonini et al. (2022)

Leaves Rhizomes Malvidin Nrf2/ARE Signaling Pathway/Hyperglycemia, insulin
resistance, hyperlipidemia, and NAFLD in diabetic rats were
alleviated

Zou et al. (2021)

Xu et al. (2021)

Flavan-3OLS Woody plants containing
tannins

Catechin GTE limitedly alters the hepatic metabolome/Reduce the
contents of TG, TC, MDA, ALT and AST, increase the
content of SOD

Gan et al. (2021)

Sasaki et al. (2021)

Galocatechin Up-regulated mRNA and protein expressions of LPL, PPAR-
α, CYP7A1 and CPT1, down-regulated PPAR-γ and C/EBP-
α in liver of NAFLD mice

Liu et al. (2019)

Theaflavin Activating an AMPK Signaling Pathway by targeting Plasma
Kallikrein/Anti-oxidant, anti-inflammatory, and anti-
apoptotic mechanisms

Luo et al. (2012)

Wenji Zhang et al. (2020)
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TG content but increases hepatitis and balloon-like changes

(Brunt et al., 1999). This may seem paradoxical, but highlights

the importance of liver fat in metabolic function. One possible

mechanism for NASH-associated dysfunction involves a shift

from minimal to substantial edema. This increase can be

achieved by reducing the phosphatidylcholine (PC) levels

(Machado et al., 2006) or lipid droplets coated with proteins

(Soderberg et al., 2010; Angulo et al., 2013). Total PC levels were

reduced in patients with both NAFLD and NASH (Ekstedt et al.,

2006), which may be attributable to choline intake associated

with NASH rather than choline deficiency (Richardson et al.,

2007). In summary, NAFLD is a multifactorial disease with a

complex pathogenesis. The prevention and treatment of NAFLD

require further clinical and basic research.

Classification of flavonoids

Some studies have confirmed that flavonoid intake is

inversely related to the risk of NAFLD (Mm et al., 2019). The

mechanisms by which flavonoids exert anti-NAFLD effects are

mainly through ameliorating inflammation, oxidative stress, and

lipid metabolism, and regulating intestinal microbiota imbalance

and the related gut liver axis. Flavonoids are natural polyphenol

compounds that exist widely in all types of natural plants. Now,

more than 9,000 kinds of flavonoids have been identified with a

structure of a two phenolic hydroxyl benzene ring (A- and

B-loops) interconnected through the central three carbon

atoms. The basic parent nucleus is called a 2-

phenylchromone (Tsuji et al.), biosynthesis from acetic acid

and phenylalanine in plants (Weston and Mathesius, 2013).

Flavonoids can be divided into flavonoids, flavonols, orange

ketones, isoflavones, anthocyanins, chalcones, and dihydrogen

derivatives according to the difference in the three-carbon atomic

structure of the linked A and B rings, such as whether the ring is

formed, oxidized, or replaced (Tsuchiya, 2010). The types of

flavonoids from different sources and their anti-NAFLD

mechanisms of action are listed in Table 1.

The main targets of flavonoids

Flavonoids have a variety of pharmacological effects,

including antitumor, antioxidant, antibacterial, antiviral, anti-

inflammatory, and analgesic effects (Maleki et al., 2019;

Makunga, 2020). Interestingly, flavonoids have positive effects

on various NAFLD pathways, such as regulating lipid

metabolism, insulin resistance, inflammation, and oxidative

stress (Wier et al., 2015). Based on the above advantages,

finding new anti-NAFLD drugs derived from plant flavonoids

is a hot topic in current research (Figure 1).

Improve the intestinal flora

Intestinal microbiota is involved in the pathogenesis of

obesity, NAFLD, and metabolic syndrome (Abu-Shanab and

Quigley, 2010). In NAFLD, changes in the gut microbiome

and increased intestinal permeability lead to exposure of the

liver to bacterial products from the gut, leading to chronic

endotoxemia (Aron-Wisnewsky et al., 2013). Porras D found

that quercetin could regulate intestinal microflora dysregulation

FIGURE 1
Different pharmacological effects and different mechanisms of natural flavonoids for alleviating NAFLD.
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in high fat diet (HFD)-induced NAFLD mice and reverse HFD-

induced inhibition of short-chain fatty acids (SCFAs) production

and related intestinal barrier dysfunction (Yin et al., 2017). Some

scholars have pointed out through animal experiments that the

use of flavonols can make mice intestinal Firmicutes/

Bacteroidetes (F/B) ratio significantly reduced (Li, 2018). The

F/B ratio is an indicator of intestinal health, and lowering it can

reduce the risk of diabetes and obesity (Vebø et al., 2016). This

suggests that flavonol protection of the intestinal flora can be

achieved by reducing the F/B ratio. In addition, flavonol

protection of the intestinal flora can also improve intestinal

barrier function by increasing the expression of butyric acid

receptors and conjunction in the intestinal mucosa (Chen et al.,

2019). Anthocyanins can be digested by various intestinal

structures to form metabolites that are transmitted throughout

the body and exert positive biological effects (Aedín and Anne-

Marie, 2017). Some studies have confirmed the results of in vitro

microbial experiments. Anthocyanins can increase the growth

rate of probiotics, such as Lactobacillus acidophilusor

Bifidobacterium, and inhibit the growth of harmful bacteria,

such as Staphylococcus aureus and Salmonella typhimurium

(Hanju et al., 2018). Lima et al. (2019) confirmed through

experimental studies that long-term supplementation of

hesperidin and citra can effectively protect intestinal flora

because the number and reproduction rate of Bifidobacteria

and Lactobacillus in the intestinal tract are regulated by their

influence, thus increasing the content of SCFAs to protect

intestinal flora. Researchers studied the effects of flavonoids

on intestinal microbes and found that when the dosage

reached a certain concentration, it could significantly inhibit

the reproduction of Escherichia coli, Candida albicans,

Staphylococcus aureus, and Bacillus (Madheshwar and

Perumal, 2017). Pure total flavonoids from citrus can regulate

intestinal flora disorders, particularly Christensenellaceae, to

attenuate NAFLD (He et al., 2021). Raw bowel tea

polyphenols can reduce the level of Firmicutes in the feces of

NAFLD mice, increase the minimum levels of Bacteroidetes and

Akkermansia, and reduce the F/B ratio, acting as a regulator of

the gut microbiome (Liu et al., 2019). Vine tea polyphenol

reduced the F/B ratio and increased the relative abundance of

Akkermansia in NAFLD mice (Xie et al., 2020).

Interactions between flavonoids and the microbiome

contribute significantly to human health. The ability of

flavonoids to regulate microbes also holds promise for dietary

therapies that can be used to treat a variety of diseases associated

with microbial disorders.

Regulate lipid metabolism

Quercetin is widely distributed in photosynthetic plants, such

as cereals, vegetables, fruit, tea leaves, and Chinese medicinal

materials, and is the most abundant foodborne natural flavonoid

(Martinon et al., 2002). Yang et al. (2019) established Type

2 diabetes mellitus (T2DM)-induced NAFLD and quercetin

treatment models in vivo and in vitro, and found that

quercetin reduced serum transaminase levels and significantly

reduced liver histological changes. Wang (2021) found that mice

fed a high-fat diet exhibited severe fat accumulation in their

livers, and a large number of red fat droplets appeared in their

visual field. After total flavonoids of Broussonetia papyrifera

(TFBP) treatment, the fat content in the liver cells of mice

decreased significantly and finally reached the levels observed

in normal liver. These results indicated that TFBP had the ability

toreduce fat accumulation in hepatocytes. Chian-jiunliou et al.

staining with the fluorescent dye BODIPY 493/503 showed that

incubating HepG2 cells with oleic acid-induced lipid

accumulation and licorice chalcone significantly inhibited the

aggregation of lipid droplets and confirmed that licorice chalcone

promoted the Sirtuin1/AMP-activated protein kinase (Sirt1/

AMPK) pathway in the liver in vivo and in vitro. It effectively

inhibited adipogenesis and increased lipid decomposition and

fatty acid β-oxidation in NAFLD mice (Liou et al., 2019).

Luteolin, lycopene, and their combinations indirectly activate

the SIRT1/AMPK pathway in vivo and in vitro, which in turn

inhibits lipogenesis and increases β-oxidation, defending against
the “two-hit” in NAFLD (Zhu et al., 2020).

Antioxidant stress

Flavonoids may inhibit oxidative stress by regulating

malondialdehyde (MDA), superoxide dismutase (SOD), and

catalase (CAT). Wang (2021) found that total flavonoids from

the leaves of Broussonetia papyrifera (TFBP) effectively inhibited

the production of ROS, reduced the content of myeloperoxidase,

improved the activity of SOD, and reduced injury to the body by

oxidative stress. Western blot results showed that TFBP could

regulate oxidative stress depending on the nuclear factor

erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1)

signaling pathway, and promote Nrf2 entry into the nucleus

of mouse liver cells and HO-1 production, thus improving the

body’s ability to resist oxidative stress. Other researchers have

concluded that theaflavins significantly reduce ROS production

in steatotic hepatocytes and TNF-α production in LPS-

stimulated RAW264.7 cells (Luo et al., 2012).

Cyanidin-3-O-glucoside is the most abundant

anthocyanidin in the flavonoid family. Li et al. found that

centaulin-3-O-glucoside eliminated damaged mitochondria to

maintain mitochondrial homeostasis and alleviate oxidative

stress (Yin et al., 2017). These results suggest that cybernin-3-

O-glucoside alleviates NAFLD by activating PTEN-induced

kinase 1 (PINK1)-mediated mitochondrial phagocytosis. In a

NASH cell model, the levels of MDA and ROS were

significantly increased significantly, while the levels of SOD,

CAT, and GSH were significantly decreased. After stimulation
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with different concentrations of alpha-naphthoflavone (ANF),

the level of SOD in the cells was decreased, but the level of SOD

was significantly increased. Furthermore, MDA and ROS

levels in the liver tissues of HFD-fed mice with different

concentrations of ANF were significantly lower than those

inthe model group (Xia et al., 2019). Yang et al. (2019) found

that quercetin restored the levels of superoxide dismutase,

catalase, and glutathione in the liver of NAFLD mice. By

activating the farnesoid X receptor 1 (FXR1)/

TGR5 signaling pathway, quercetin eliminated lipid

droplets and restored total cholesterol and triglyceride

levels in HepG2 cells co-cultured with high D-glucose and

free fatty acids. Wang et al. (2021) found that hyperoside can

regulate bile acids (BAs) in the liver, reduce unconjugated BAs,

and increase liver-conjugated BA levels. The expression of

FXR in the liver is increased, leading to the promotion of free

fatty acid β-oxidation.

Regulate autophagy

Autophagy is a conserved self-digestion process that brings

unnecessary or potentially dangerous cytoplasmic materials, such

as damaged organelles and misfolded or unfolded proteins, to

lysosomes for degradation. Lipid oxidation mainly occurs in the

mitochondria, and oxidative stress produces a large amount of

ROS, which leads to mitochondrial dysfunction and may inhibit

autophagy because autophagy is generated in the mitochondria

(Tang et al., 2017). Studies have shown that epigallocatechin-3-

gallate (a flavonoid 3-alcohol phenolic compound) can increase

the proliferation and autophagy of the liver in HFD-fed mice but

reduce apoptosis. This may alleviate HFD-induced NAFLD by

inhibiting apoptosis and promoting autophagy (Wu et al., 2021).

Galangin is a flavonol and a curcumin derivative. Recent studies

confirmed that galangin induces autophagy. Previous studies

have reported that galangin mediates autophagy through the

p53 pathway, and SIRT1 deacetylates LC3 in HepG2 cells (Zhang

et al., 2021). Similarly, apigenin has been found to improve liver

lipid deposition by activating mitochondrial autophagyto

increase fatty acid β-oxidation and mitochondrial

bioenergetics (Hsu et al., 2021).

Anti-inflammatory effect

Oxidative stress-mediated inflammatory responses are an

important pathological mechanism of NAFLD. When the level

of oxidative stress increases, it can promote IL-6, IL-1β, and
TNF-α expressionand induce liver injury (Xiao et al., 2018).

The anti-inflammatory effect of flavonoids occurs mainly

through the inhibition of the NF-κβ pathway (González

et al., 2011). Flavonoids inhibit the phosphorylation of

inhibitor of nuclear factor kappaB (IKB) and the inhibitor of

nuclear factor kappaB kinase (IKK) complex (Kim et al., 2005)

and the activity of regulatory enzymes, such asphospholipid

oxygenase and protein tyrosine kinase (Manthey, 2009). Wang

et al. found that the levels of IL-1β, IL-6, and TNF-α in the liver

tissue of rats in the NAFLD model group were significantly

increased, and total flavonoids of Scutellaria baicalensis could

reduce these inflammatory factors, suggesting that total

flavonoids in Scutellaria baicalensis could reduce the

inflammatory response in the liver of rats in the NAFLD

model group (Mengmeng et al., 2022). NO leads to highly

destructive formation of peroxynitrite under oxidative stress

conditions. Flavonoids inhibit inducible nitric oxide synthase

(iNOS) expression and NO production (González-Gallego

et al., 2010). In addition, flavonoids prevent the degeneration

of the anti-inflammatory effects of the glucocorticoid cortisol.

Oxidative stress worsens the anti-inflammatory effects of

cortisol by eliminating these effects and creating cortisol

resistance (Ruijters et al., 2014). Luteolin can significantly

reduce a variety of inflammatory factors in NAFLD rats,

which indicates that, in addition to its antioxidant effect,

luteolin has also a very good anti-inflammatory effect (Abu-

Elsaad and El-Karef, 2019). This suggests that NAFLD

progression is often accompanied by inflammation and

oxidative stress.

Summary and prospect

The incidence of NAFLD increases each year, similar to

clinical stress. Currently, NAFLD has an estimated annual

medical and social cost of $292 billion (Younossi et al.,

2016a). The different manifestations of NAFLD complicate

the diagnosis, which ignores the true condition. The medical

system is facing a severe challenge incombating this growing liver

disease. Flavonoids have been proven to have very strong

pharmacological activity and have excellent alleviating effects

on NAFLD and NASH. Flavonoids may ameliorate NAFLD by

regulating lipid metabolism, intestinal flora, and autophagy.

Therefore, natural flavonoids have huge potential for the

clinical development of NAFLD drugs in the future.
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Glosarry

ALT alanine aminotransferase

AMPK AMP-activated protein kinase

ANF alpha-naphthoflavone

ARE antioxidant response element

AST aspartate aminotransferase

BP broussonetiapyrifera

C/EBP-α CCAAT/enhancer binding protein alpha

ChREBP carbohydrate-responsive element-binding protein

CPT1 carnitine palmitoyltransferase 1A

CYP7A1 cytochrome P450 7A1

DGAT2 diacylglycerol acyltransferase 2

DNL lysosomal DNA-ase

E167K residue 167

FA fatty acids

FXR1 farnesoid X receptor 1

GCKR glucokinase regulator

HO-1heme hemeoxygenase 1

IKB inhibitor of nuclear factor kappaB

IKK inhibitor of nuclear factor kappaB kinase

IKKβ inhibitor of nuclear factor kappaB kinase beta

IL-1β interleukin-1β
IL-6 interleukin 6

iNOS inducible nitric oxide synthase

IRE1α inositol-requiring enzyme 1 Alpha

LPL lipoProtein lipase

MBOAT7 membrane bound o-acyltransferase domain-

containing 7

MDA malondialdehyde

NAFLD non-alcoholic fatty liver disease

NASH non-alcoholic steatohepatitis

NASH-HCC non-alcoholic steatohepatitis-hepatocellular

carcinoma

NF-κβ nuclear factor kappa β
NLRP3 nucleotide-binding oligomerization domain,

leucine-rich repeat and pyrin domain-containing 3

Nrf2 nuclear factor erythroid 2-related factor 2

PC phosphatidylcholine

PGC-1α peroxisome proliferator-activated receptor-gamma

coactivator 1 alpha

PI3K phosphatidylinositol-3-kinase

PINK1 putative kinase 1-mediated

PNPLA3 patatin-like phospholipase domain containing 3

PPAR-α peroxisome proliferator-activated receptor alpha

PPAR-γ peroxisome proliferator-activated receptor gamma

ROS reactive oxygen species

Sirt1 sirtuin 1

SOD speroxide Dismutase

SREBP1c sterol regulatory binding protein-1c

T2DM type 2 diabetes mellitus

TAG triacylglycerol

TC total cholesterol

TFBP total flavonoids of broussonetia papyrifera

TG triglyceride

TM6SF2 transmembrane 6 superfamily member 2

TNF-α tumor necrosis factor-α
TXA2 thromboxane A2

V-ATPase vacuolar proton ATPase

VLDL very low density lipoprotein

XBP1s X-box binding protein 1 spliced
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