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Microscopic evaluation of resected tissue plays a central role in the
surgical management of cancer. Because optical microscopes have
a limited depth-of-field (DOF), resected tissue is either frozen or
preserved with chemical fixatives, sliced into thin sections placed
on microscope slides, stained, and imaged to determine whether
surgical margins are free of tumor cells—a costly and time- and
labor-intensive procedure. Here, we introduce a deep-learning ex-
tended DOF (DeepDOF) microscope to quickly image large areas of
freshly resected tissue to provide histologic-quality images of sur-
gical margins without physical sectioning. The DeepDOF micro-
scope consists of a conventional fluorescence microscope with
the simple addition of an inexpensive (less than $10) phase mask
inserted in the pupil plane to encode the light field and enhance
the depth-invariance of the point-spread function. When used
with a jointly optimized image-reconstruction algorithm, diffrac-
tion-limited optical performance to resolve subcellular features
can be maintained while significantly extending the DOF (200
μm). Data from resected oral surgical specimens show that the
DeepDOF microscope can consistently visualize nuclear morphol-
ogy and other important diagnostic features across highly irregu-
lar resected tissue surfaces without serial refocusing. With the
capability to quickly scan intact samples with subcellular detail,
the DeepDOF microscope can improve tissue sampling during
intraoperative tumor-margin assessment, while offering an af-
fordable tool to provide histological information from resected
tissue specimens in resource-limited settings.

deep learning | extended depth-of-field microscopy | end-to-end
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Histopathology, or microscopic examination of thinly sec-
tioned and stained tissue slices on glass slides, is the gold

standard to diagnose and guide surgical management of cancer.
To prepare histopathology slides, biopsies or surgical specimens
are typically formalin-fixed and paraffin-embedded (FFPE),
sliced with a microtome to around 5 μm, stained with hema-
toxylin and eosin (H&E) dyes, and evaluated under a light mi-
croscope. For intraoperative assessment, resected surgical
specimens will be first cut with a scalpel into 3- to 4-mm-thick
slices to access potential tumor margins on cross-sectional sur-
faces (Fig. 1A); the thick slices can then be quickly frozen to
acquire thin (∼5 μm) transverse tissue sections for staining and
microscopic examination. While frozen sections can reduce the
processing time, a cryostat microtome is required to cut thin
sections of frozen tissue, which still must be fixed and stained.
Despite the central role of histopathology in cancer diagnosis,
the time- and labor-intensive sample-preparation steps require
specialized personnel and expensive equipment, while allowing
for only limited sampling of resected tissue. In addition, these
destructive procedures are susceptible to tissue-processing arti-
facts (1, 2) and can also interfere with downstream molecular or
genetic analysis.

In view of the challenges associated with standard histopa-
thology, the ability to image cross-sectional surfaces of thick
tissue slices (Fig. 1A) directly and nondestructively is highly de-
sired. Recent studies have demonstrated successful imaging of
large areas of intact specimens using fluorescence microscopy,
including approaches based on confocal scanning (3, 4), struc-
tured illumination (5), and ultraviolet (UV) excitation (6).
Clinical application of these techniques, however, is largely
hindered by the shallow depth-of-field (DOF). In conventional
microscopy, DOF is fundamentally coupled to lateral resolution:

DOF ∝
λ

NA2
∝
resolution2

λ
. [1]

As shown in Fig. 1C, in conventional microscopy with standard
objectives, achieving subcellular lateral resolution (∼2 to 3 μm) re-
stricts the DOF to ∼30 μm. This is almost one order of magnitude
smaller than that needed to accommodate the variations in surface
topography of freshly resected tissue surfaces, which can extend to up
to 200 μm (7). As an example, Fig. 1 B, Upper Right shows a fluo-
rescence image of an ex vivo porcine esophageal sample, stained with
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proflavine to highlight epithelial cell nuclei. In the image acquired
with a conventional fluorescence microscope, the resulting defocus
blur compromises the ability to visualize detailed cellular structures
across a large field of view (FOV) without serial refocusing.
To overcome the intrinsic optical constraints of conven-

tional fluorescence microscopy for extended DOF, different
approaches have been employed, such as decoupled illumination
and detection in light-sheet microscopy (7), dynamic remote
focusing (8, 9), and spatial and spectral multiplexing (10, 11);
nonetheless, they usually require customized and expensive op-
tics or complicated geometrical configurations. Alternatively,
reflectance-based label-free modalities, including reflectance
confocal microscopy and full-field optical coherence tomogra-
phy, have been demonstrated for cancer-lesion characterization
in skin and different types of epithelium (12–15). While initial
results are promising, these systems are significantly more ex-
pensive (more than $100,000) than conventional microscopes
due to their optomechanical complexity (16, 17). Computation-
ally, extended DOF has also been demonstrated by using Fourier
ptychographic microscopy (18), but the image reconstruction
assumes a thin sample target transilluminated with oblique plane
waves and is not suited for clinical fluorescence imaging.

Wavefront encoding, when combined with computational
methods, offers a convenient and inexpensive route to enhance
imaging performance (19, 20). Wavefront modulating elements,
such as cubic phase masks, annular phase masks, and other
adaptive optics components, have been employed in photogra-
phy, microscopy, and optical coherent microscopy to extend the
DOF and to correct other forms of aberrations (21–32). Despite
their adoption in different modalities, phase masks usually cause
image degradation, thus necessitating a separately designed re-
construction algorithm to retrieve original features. Recently,
deep learning is emerging as a powerful tool to complement
microscopy for analysis of complex microscopic data (33–36). In
this work, we integrate a wave-optics model with deep learning to
develop a physics-informed, end-to-end optimization framework
for extended DOF. In contrast to conventional approaches, the
deep-learning framework optimizes the phase-mask design with
large realistic data, while codesigning the reconstruction algo-
rithm. Using this data-driven approach, we design, optimize, and
experimentally validate the deep-learning extended DOF mi-
croscope (DeepDOF microscope), a low-cost (less than $6,000)
computational microscope for fast and slide-free histology of
surgical specimens. The DeepDOF microscope consists of two

Fig. 1. DeepDOF microscope schematic and imaging performance in comparison to conventional microscopes for fluorescence imaging of intact tissue
specimens. (A) Prior to imaging, the resected specimen is bread-loafed by using a pathology scalpel, and the cross-section surface can be evaluated for tumor-
margin assessment. (B) Variations in the surface topology of intact tissue specimens exceed the DOF of a conventional microscope with subcellular resolution.
In comparison, with the simple addition of an inexpensive phase mask, the end-to-end optimized DeepDOF microscope allows subcellular imaging of large
areas of intact tissue samples at 5.4 cm2/min. (C) Based on a standard 4× objective (obj), the DeepDOF microscope combines wavefront encoding with
deep-learning-enabled image reconstruction to significantly improve the DOF and, thus, the volumetric FOV while maintaining subcellular resolution. As a
result, the DeepDOF microscope offers fast scanning of the cross-sectional surface of tissue slices without need for refocusing.
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key co-optimized components: the phase mask and the image-
reconstruction algorithm (Fig. 1 B, Upper Left). As shown in
Fig. 1 B, Lower Left, and C, by jointly optimizing the phase mask
and reconstruction algorithm, the DOF of the DeepDOF mi-
croscope is significantly extended to 200 μm, accommodating for
variations in surface topology of thick cross-sectional tissue sli-
ces. Thanks to its capability to map irregular surfaces in a high-
volumetric FOV (6.9 mm3 in DeepDOF microscope vs. 1.2 mm3

in a conventional microscope) with subcellular resolution, the
DeepDOF microscope can image large areas of bread-loafed
tissue slices without refocusing. Importantly, this is achieved by
using an inexpensive phase-modulating element (less than $10 at
production volume of 500 masks) that does not sacrifice optical
throughput, making the DeepDOF microscope design readily
adaptable to image fluorophores with low brightness.
Here, we describe key components of the end-to-end opti-

mized DeepDOF microscope from initial numerical simulation,
to optical design, to subsequent experimental validation. We first
present simulated results to jointly design and optimize the
DeepDOF microscope optics and algorithm using a deep neural
network. We then report characterization of the optimized Deep-
DOF phase mask, with simulated and experimental data. Fur-
thermore, imaging of resected surgical specimens from the oral
cavity is provided to validate clinical performance. We show that,
using the current economical sample stage, DeepDOF can scan
large specimens at 5.4 cm2/min, offering a fast, easy-to-use, and
inexpensive alternative to standard histopathology for assessment of
intact biopsies and surgical specimens with cellular detail.

Results
DeepDOF Microscope Design and End-to-End Network Architecture.
Fig. 2 shows an overview of the DeepDOF microscope design
and the deep-learning network for end-to-end optimization; the
detailed implementation is described in Materials and Methods.
The DeepDOF microscope (Fig. 2A) is built from an epifluor-
escence microscope with a standard objective (Olympus 4×;
numerical aperture [NA] 0.13). A wavefront-encoding phase
mask, optimized with image data in the training stage, is placed
in the pupil plane to generate a defocus invariant point-spread

function (PSF), and a neural-network-based reconstruction al-
gorithm is implemented to perform image deconvolution. To
enable automated specimen scanning in the lateral direction, an
open-top sample stage is incorporated.
The DeepDOF microscope design, including the phase mask

and reconstruction algorithm, is modeled and optimized by using
the end-to-end network (Fig. 2B). Briefly, the optical layer
simulates physically accurate image formation of a fluorescence
microscope with the addition of a learned phase mask. In a
subsequent digital layer, we employ the U-Net, a widely used
neural network (37), to reconstruct in-focus images.

End-to-End Network Is Trained to Resolve Varied Features within a
200-μm DOF. To leverage the power of deep learning, we trained
the neural network to resolve a broad range of imaging features
from proflavine-stained resected oral surgical specimens, histo-
pathology images of human tissue of varied types, and natural
images with diverse features. To explore the extent to which each
component of the deep-learning network affects the imaging
performance, we adapted the network to model several microscopy
configurations listed in Table 1. Specifically, we trained the network
with and without a phase mask. In the masked configurations, we
experimented with varied mask learnability, initialization condi-
tions, and loss functions. Using an independent set of test images,
the imaging performance of each simulation was evaluated by using
the average and SD of image rms error (RMSE) in a layered model
of 21 linearly discretized defocus levels within the 200-μm DOF
(Table 1 and SI Appendix, Fig. S1).
First, compared with the baseline conventional microscope

(simulation A; RMSE 0.0559), the addition of U-Net recon-
struction (simulation B; RMSE 0.0360) improved the recon-
struction accuracy; nonetheless, significant variance resulting
from defocus was still present (Table 1 and SI Appendix, Fig. S1).
As anticipated, the defocus variance was markedly reduced by
using the cubic mask as an established method to extend the
DOF (simulation C; RMSE 0.0379). However, the average
RMSE was also higher using the mathematically derived cubic
mask than with U-Net reconstruction, suggesting that its per-
formance can be further improved.

Fig. 2. DeepDOF microscope setup and the end-to-end network for joint optimization of the phase mask and reconstruction algorithm. (A) The DeepDOF
microscope is an epifluorescence microscope with a phase mask in its pupil plane, a co-optimized image-reconstruction algorithm, and an open-top sample
stage for fast x–y tissue translation. (B) The end-to-end (E2E) network consists of an optical layer that simulates physics-derived image formation of a
fluorescence microscope with a learned phase mask and a sequential digital layer that employs a U-Net to reconstruct in-focus images within the targeted
DOF of 200 μm.
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We then employed an end-to-end architecture to jointly op-
timize the learned phase mask and U-Net reconstruction in
simulations D–F. The cubic mask was outperformed by a randomly
initialized and end-to-end optimized mask (simulation D; RMSE
0.0307). In fact, the learned, randomly initialized mask achieved
lower RMSE at all 21 discrete defocus locations, especially between
the −80- and 0-μm defocus range (SI Appendix, Fig. S1). This
confirmed that performance of the cubic mask could be improved
through a data-driven approach. When initialized with a cubic mask
and end-to-end optimized (simulation E; RMSE 0.0286), both the
average RMSE and defocus variance were further reduced. Nota-
bly, simulation E showed uniform and improved performance
across the entire defocus range, while the randomized initialization
fell short in the +20- to +80-μm range (SI Appendix, Fig. S1). This
is ascribed to the robustness of the cubic mask against defocus. We
also tested Structural Similarity Index Measure (SSIM) as a com-
monly used metric to train the network in simulation F (38, 58),
which did not show further enhancement. Based on those results,
we chose the optimized DeepDOF design in simulation E as the
network operating point; the resulting DeepDOF mask design (SI
Appendix, Fig. S2) was subsequently used for experimental fabri-
cation and tissue imaging.

Simulated Performance at the Network Operating Point. We simu-
lated the performance of the optimized DeepDOF microscope
design described above (Fig. 3). In 2,000 image patches from an
independent test set, we compared the performance of the
DeepDOF microscope (DeepDOF mask + U-Net) with two
baseline microscope configurations and a computational micro-
scope based on a cubic mask. The baseline configurations in-
cluded a conventional microscope using the same Olympus 4×,
0.13-NA objective (baseline I) and a conventional microscope
with a reduced aperture, a classical approach to extend DOF
(baseline II, Olympus 4× objective + iris, 0.06 NA). In baseline
II, we simulated an iris to reduce the pupil size by half and in-
creased the added Gaussian noise accordingly to account for the
lower light throughput. The computational microscope was
based on a cubic phase mask and corresponding reconstruction
U-Net (cubic mask + U-Net).
Fig. 3A compares the RMSE vs. defocus for the optimized

DeepDOF microscope, the cubic-mask-enabled microscope, and
the two baseline configurations. As expected, the DOF was
smallest for the standard microscope (baseline I). Despite the
increased DOF for baseline II, the associated reduction of light
throughput and lateral resolution resulted in an increased aver-
age RMSE. In contrast, computational microscopes with either a
cubic or DeepDOF mask significantly improved the imaging
performance without compromising the light throughput. Im-
portantly, the DeepDOF design achieved superior performance
compared to the cubic mask across the entire defocus range.

When comparing the modulation-transfer function (SI Appendix,
Fig. S3A), the DeepDOF also performed better than the three
configurations described in Fig. 3.
Since RMSE is a global measure of imaging performance, we

also examined example simulated images at five selected defocus
locations. Fig. 3B shows two test images of proflavine-stained
oral surgical tissue with sparse and densely packed nuclei, re-
spectively. Insets display a magnified view of two adjacent nuclei
and the corresponding intensity profiles. When using a standard
microscope (baseline I), the nuclei were only resolved when the
sample was at the focal plane. Images obtained with the reduced
NA (baseline II) showed degraded resolution and noticeable noise.
In contrast, images acquired with the DeepDOF microscope better
resolved individual nuclei than the cubic-mask-enabled microscope
and both baseline configurations, and the trend was consistent
across the targeted 200-μm DOF. Using a test set of 2,000 images,
we also compared the DeepDOF reconstruction with conventional
deconvolution algorithms, including the Wiener and Richardson–
Lucy methods, showing that DeepDOF performed better in the
DOF range (SI Appendix, Fig. S3B).

DeepDOF Microscope with Fabricated Mask Achieves Subcellular
Resolution within Targeted DOF. As shown in Fig. 4A, we fabri-
cated the optimized DeepDOF physical mask design (simulation
E in Table 1) with photolithography and Reactive Ion Etching
(RIE) (39). With the mask inserted in the pupil plane of the
DeepDOFmicroscope, the resulting PSF was measured throughout
the DOF (Fig. 4B), and the corresponding U-Net was retrained
accordingly.
To further characterize the lateral resolution and DOF, we im-

aged a US Air Force (USAF) resolution target, comparing perfor-
mance of the DeepDOF microscope with the standard conventional
microscope (baseline I described in Fig. 3; experimental comparison
with other configurations is provided in SI Appendix, Fig. S4). For
each image, we quantified the image contrast by plotting the intensity
across element 3 of group 8 on the USAF resolution target (cyan and
magenta in Fig. 4C), which corresponds to 323 line pairs per milli-
meter linewidth. To facilitate visualization, in each configuration, the
image at 0 μmwas first normalized to itself; other images in the same
configuration were then linearly and equally boosted to ensure that
their relative intensities remained unchanged. As expected, the
standard conventional microscope (baseline I) could resolve the
targeted element at the focal plane; nonetheless, the resolving power
degraded quickly as the target moved out of focus. In contrast, using
the Sparrow criterion, the DeepDOF was able to resolve the features
with significantly improved contrast within the 200-μm DOF. To
evaluate the DeepDOF performance for imaging various histology
features, we also imaged thin (7 to 10 μm) frozen sections from
different types of mouse tissue when they were positioned at varied
defocuses across the DOF; in SI Appendix, Fig. S5, our results show

Table 1. Testing results in ablation studies

Network configuration Learned mask Initialization Loss function Average RMSE (E-02) RMSE SD (E-02)

Conventional microscopy
Simulation A No NA NA 5.59 4.37

Conventional microscopy + U-Net reconstruction
Simulation B No Open aperture RMS 3.60 2.91

Fixed-phase mask + U-Net reconstruction
Simulation C No Cubic mask RMS 3.79 2.29

Learned-phase mask + U-Net reconstruction
Simulation D Yes Random RMS 3.07 2.30
Simulation E* Yes Cubic mask RMS 2.86 2.20
Simulation F Yes Cubic mask SSIM 3.03 2.36

NA, not applicable.
*Used as the optimized DeepDOF microscope design.
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that the DeepDOF microscope can consistently resolve varied cel-
lular morphology within the targeted DOF.
We further validated the DeepDOF performance by imaging a

large area of squamous epithelium from a resected porcine
esophageal specimen in Fig. 4D. Although the ex vivo esopha-
geal sample was not cut cross-sectionally in a manner shown in
Fig. 1A, and the imaged superficial epithelium was anticipated to
be more uniform than surfaces of resected tumors, significant
defocus blur was observed in selected regions of interest (ROIs)
(red) from the conventional microscope. In comparison, the
DeepDOF microscope clearly revealed subcellular morphology
of nuclei and adipose cells in those regions.

DeepDOF Microscope Can Map Intact Oral Surgical Sample without
Refocusing. The ability of the DeepDOF microscope to image
tissue with irregular surfaces was evaluated in freshly resected

oral specimens from patients undergoing surgery for oral cancer.
Specimens were stained topically with proflavine to highlight
nuclear morphology. To provide a baseline comparison, each
specimen was also imaged by using a maskless conventional
microscope with the same objective (Olympus 4×, 0.13 NA).
Fig. 5 shows the high-resolution DeepDOF images of a freshly

resected oral surgical specimen (∼12 mm × 22 mm in Lower Left)
acquired with the DeepDOF microscope and the corresponding
conventional microscope. To compare DeepDOF with the con-
ventional microscope, we selected three groups of ROIs across the
sample that were significantly out of focus (red), partially out of
focus (magenta), and in focus (cyan) in the conventional image. In
ROIs highlighted in red, surface irregularity exceeded the DOF of
the conventional microscope, and tissue architecture could not be
distinguished. In the magenta group, individual nuclei remained
difficult to resolve under a conventional microscope. In contrast,

Fig. 3. Simulated performance of the end-to-end optimized DeepDOF microscope in a test set vs. two conventional baselines and a cubic-mask-enabled compu-
tational microscope in a layered model. (A) The DeepDOF microscope design shows superior performance across the entire defocus range. (B) Example reconstructed
images from the test set showing sparsely (Upper) and densely (Lower) packed nuclei. In both FOVs, the DeepDOF microscope better resolves adjacent nuclei.
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DeepDOF was able to resolve the nuclear morphology with sub-
cellular resolution in ROIs in both groups. In the last group (cyan),
DeepDOF revealed cellular features in agreement with conven-
tional microscopic images at the focus plane.

DeepDOF Microscope Visualizes Important Diagnostic Features of
Surgically Resected Oral Tumors with Subcellular Resolution. We
further assessed the diagnostic potential of the DeepDOF mi-
croscope by comparing DeepDOF images acquired from a
freshly resected oral tumor to that of gold-standard histopatho-
logic images (Fig. 6). The image of the entire surgical specimen
(∼11 mm × 13 mm) acquired with the DeepDOF microscope is
shown with the corresponding histopathology section, with three
ROIs selected to highlight various histologic features. In the first
ROI (cyan), the DeepDOF image revealed architectural disor-
der and cells exhibiting increased nuclear-to-cytoplasmic area
ratio and nuclear pleomorphism, indicating the presence of
neoplasia in the squamous epithelial layer. These findings were
confirmed by standard histopathology evaluation by the study
pathologist (M.D.W.). Interestingly, microvascular features

shown in histopathology were also visible in the DeepDOF image,
as a result of the strong absorbance of hemoglobin-containing red
blood cells. The DeepDOF image of the second ROI (magenta)
displayed intact and regularly spaced glandular patterns with dis-
cernable individual nuclei in salivary tissue, which is consistent with
the histopathology image. In the last ROI (red), both the Deep-
DOF microscope and histopathology images show adipose cells
without prominent nuclear staining. Notably, we observed marked
displacement of the epithelium relative to the deep salivary tissue in
the histopathology image of the entire specimen, likely resulting
from tissue handling and processing. In comparison, by using the
DeepDOF microscope, similar diagnostic features with subcellular
detail can be directly visualized from an intact tissue sample, cir-
cumventing tissue alterations resulting from processing.

Discussion
In this work, we develop and validate the DeepDOF microscope
for convenient and rapid imaging of intact surgical specimens
with an over 5× larger DOF. With the fabricated DeepDOF mask
(less than $10), we demonstrate that the DeepDOFmicroscope can

Fig. 4. Experimental fabrication of the DeepDOF mask and characterization of its imaging performance by imaging a USAF resolution target and an ex vivo
porcine esophageal sample. (A) The DeepDOF mask is fabricated based on the end-to-end optimized DeepDOF design and mounted on a plate holder. (B) PSF
stacks of the DeepDOF microscope were measured within the 200-μm DOF. (C) Using the fabricated mask and retrained U-Net, the DeepDOF microscope can
resolve element 3 of group 8 on the USAF resolution target that corresponds to 323 line pairs per millimeter linewidth. (D) The DeepDOF image clearly
visualizes subcellular features, primarily individual nuclei that are evenly distributed on the esophageal wall. Multiple ROIs are shown in regions where the
conventional microscope images are out of focus (red) and in focus (cyan).
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visualize nuclear morphology across highly irregular tissue surfaces
without refocusing, a challenging task for conventional microscopes.
Furthermore, we show that DeepDOF images reveal cellular fea-
tures of diagnostic importance, including microvasculature, neo-
plastic growth, benign salivary tissue, and adipose cells; these findings
are consistent with standard histopathology. In future studies, the
versatile neural network can also be adapted to provide clinical de-
cision support, including automated tissue annotation and margin
segmentation (40–43).
Here, we demonstrated a computational microscope with

jointly optimized imaging optics and image-reconstruction algo-
rithm for extended DOF. We show the feasibility and benefits of a
data-driven, deep-learning architecture to design and optimize the
DeepDOF microscope for fluorescence imaging of irregular tissue

surfaces. As shown in Fig. 3 and SI Appendix, Fig. S3, the end-to-end
optimized DeepDOF microscope achieves enhanced performance
compared to conventional mask design and deconvolution algorithms
that are developed separately. Moreover, the DeepDOF microscope
is built on a conventional epifluorescence microscope, and its low cost
(less than $6,000) allows potential adoption in community and low-
resource settings. The robust image reconstruction only takes an av-
erage of 0.5 s/mm2 using the TensorFlow package, and its speed can
be further optimized. In addition, since wavefront encoding is realized
with a simple phase-modulating element, the DeepDOF microscope
maintains high light throughput, a key consideration in imaging flu-
orophores without introducing photobleaching.
The current DeepDOF microscope can be further improved in

several ways. First, the topical proflavine dye used in this study

Fig. 5. Images acquired with the DeepDOF microscope and a conventional microscope (Olympus 4×, 0.13 NA) from a large surgically resected specimen from
the oral cavity. Three groups of ROIs show regions where the conventional microscope images are significantly out of focus (red), partially out of focus
(magenta), and in focus (cyan). The contrast of the conventional images is matched to show the effects of defocus blur. Compared to the conventional
microscope, the DeepDOF microscope enables direct imaging of a large area of intact tissue without the need for refocusing.

Fig. 6. The DeepDOF microscope visualizes important diagnostic features in large proflavine-stained surgical specimen with subcellular resolution. Three
selected ROIs across the DeepDOF image of the specimen reveal a nest of neoplastic cells in the squamous epithelium (cyan), glandular patterns in salivary
tissue (magenta), and adipose cells (red), respectively. Image features were confirmed by the gold standard of histopathology.
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preferentially stains nuclei, and we expect that the combined use
of nuclear stains and counterstains can contribute to added di-
agnostic value. In this regard, the DeepDOF architecture can be
optimized to image dye combinations for virtual H&E staining
(44–46), as well as various fluorescent molecular probes for tumor
detection with high specificity (47–50). Second, DeepDOF images
were acquired without optical sectioning. While non-optical-
sectioned images of proflavine-stained nuclear morphology have
been found to show great diagnostic value in a wide range of clinical
applications (51–54), image quality can be further improved with
confocal scanning or structured illumination (55, 56). This can be
particularly important when exploring the use of other nonspecific
staining agents, endogenous fluorophores, or label-free modalities.
Since wavefront encoding is only performed in the emission optical
path of the DeepDOF microscope, we can combine conventional
background rejection methods in the context of extended DOF
microscopy. In addition, we can also explore the usefulness of UV
excitation that offers inherent surface sectioning (6). Finally, future
studies are needed to validate the performance in more diverse
tissue and label types. Our preliminary results show that different
tissue types from frozen mouse sections, as well as ex vivo porcine
esophageal tissue, were clearly resolved in the DeepDOF images in
Fig. 4D and SI Appendix, Fig. S5. This can be ascribed to the fact
that the physics-informed model was trained by using a wide range
of complex features from human pathology slides and natural
scenes. Moreover, diagnostically important features in oral speci-
mens, including microvasculature, neoplastic squamous epithelium,
and salivary and adipose tissue, were visualized with histopathology
confirmation in Fig. 6. These results warrant future research to
assess the DeepDOF diagnostic value in a blinded study.
In conclusion, we employed an end-to-end deep-learning ar-

chitecture to significantly enhance conventional microscopy be-
yond its physical limitations, and we demonstrate the DeepDOF
microscope as a fast, easy-to-use, and inexpensive alternative to
standard histopathology for assessment of intact tissue speci-
mens with subcellular detail. The capability to provide histologic
quality images at a high scanning speed, combined with low cost,
warrants further clinical evaluation, especially for improving
tissue sampling during intraoperative tumor-margin assessment
and in rural settings without access to standard histopathology.

Materials and Methods
DeepDOF Microscope Setup. As shown in Fig. 2A, the DeepDOF microscope is
composed of a conventional fluorescence microscope with simple addition
of a learned phase mask. Briefly, Köhler illumination was used to provide
uniform fluorescence excitation using a 455-nm blue light-emitting diode
(catalog nos. M455L3 and LEDD1B, Thorlabs) and an excitation filter (catalog
no. FF01-452/45-25, Semrock). Fluorescence from stained specimens was
collected by an Olympus 4× objective (catalog no. RMS4X-PF, 0.13 NA),
reflected by a right-angle mirror and imaged by a 20-megapixel comple-
mentary metal oxide semiconductor (CMOS) camera (catalog no. BFS-U3-
200S6M-C, FLIR Systems) behind a green bandpass filter (catalog no. FF01-
550/88-25, Semrock). In this study, we used a 150-mm-focal-length tube lens
that provided adequate sampling of the PSF with a pixel size of 0.72 μm on
the object plane. During initial DeepDOF microscope testing, we also
experimented with a 100-mm-focal-length tube lens.

To allow for convenient placement and mapping of large surgical speci-
mens, we designed an open-top sample stage with a clear imaging window
(2” × 3”) during ex vivo imaging. In our initial testing, we also tested
mechanically pressing the sample to suppress surface irregularity, but its
effectiveness was limited, potentially due to the highly heterogeneous tissue
stiffness. Rapid scanning was enabled by two linear motors (catalog no.
X-LHM100A, Zaber) in the x and y directions. Using the 20-megapixel CMOS
camera, each frame covers a lateral area of 3.9 × 2.6 mm2, while providing
sufficient sampling of the PSF. To ensure sufficient overlap for a commercial
stitching software (Microsoft Composite Editor), we chose a 2-mm step for
motors on the sample stage. With this motor step size, we were able to
acquire 135 frames per min. The extended DOF eliminates the need for axial
refocusing, allowing intact surgical specimens to be scanned at a speed of
5.4 cm2/min.

DeepDOF Microscope Model: Optical Layer. The optical layer of the end-to-end
network simulates optical imaging of a standard fluorescence microscope
from a specimen to the sensor, with an addition of a passive phase-modu-
lating element in the pupil plane. During the simulation in this study, we
modeled fluorescence imaging in the green spectrum as incoherent imaging
with a discretized wavelength at 550 nm.

Based on Fourier optics, the PSF in the image plane PSF(x2, y2) canbemodeled
as the squared magnitude of the Fourier transform of the pupil function:

PSF(x2, y2) = ⃒⃒
ℱ{P(x1, y1)}⃒⃒2, [2]

in which F{·}denotes the Fourier transform, and the pupil function P(x1, y1)
describes the relative amplitude and phase changes of the wavefront at the
pupil plane:

P(x1, y1) = A(x1, y1)eiΦ(x1 , y1). [3]

When imaging an out-of-focus object with an aberration-free system, the
pupil function remains constant across the pupil plane, and the phase term
due to defocus is modeled as

ΦDF(x1, y1; z) = k
x21 + y21

2 *
z0 − z
z20

, [4]

in which k is the wavenumber, and z and z0 are the defocused imaging depth and
in-focus depth, respectively. The equation above can be further simplified as

ΦDF(x1, y1; z) = kWmr(x1,y1)2, [5]

with r(x1, y1) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x21 + y21

√
=R denoting the relative displacement in the pupil

plane andWm = R2

2 *
z0−z
z20

being the maximum path-length error at the edge of

the pupil due to defocus.
To increase the defocus-invariance of PSF for extended DOF, we modu-

lated the pupil function with a learning phase mask that introduced an
additive and depth-independent phase term ΦM(x1, y1). The resulting phase
term of the pupil function is

Φ(x1, y1; z) = ΦDF (x1, y1; z) +ΦM(x1, y1). [6]

The image formation was thus calculated based on the convolution of a scene
Io(x, y; z) and PSF, while signals from varied defocuses are added incoher-
ently to form the final image:

I(x2, y2) = ∑
z

Io(x, y; z)⊗ PSF(x2, y2; z). [7]

To approximate noise during image capture using a sensor, Gaussian read
noise with a SD σ = 0.01 was applied to the normalized blurred image in the
range of [0, 1].

While irregular specimen surfaces can be rendered by using Eq. 7, we note
that the process requires prior depth information and is computationally
expensive. In the context of optimizing the mask design for PSF depth in-
variance, a layered model can be employed to discretize the DOF, with each
layer blurred by the PSF at its corresponding depth. To accommodate for
variations in specimen surface topology up to 200 μm, we simulated image
formation within a defocus range of −100 to +100 μm, which corresponds to
a kWm range of [−9.81, 9.81] in the DeepDOF microscope. As a result, we
discretized kWm to [−10:1:10] at 21 imaging depths, and the optical layer
output 21 convoluted images at varied focus planes.

Discrete Fourier transform was performed to model the correspondence
between the pupil function and the PSF based on Eqs. 2–6 using matrices of
71 × 71 pixels. Specifically, the PSF was discretized based on the sensor pixel
size. The pupil function contained a learning phase term modulated by the
height map of the phase mask. The heightmap was represented with the
first 55 Zernike basis (Zn):

h(x1, y1) = ∑55
n=1

anZn(x1, y1), [8]

which offers adequate degrees of freedomwhile ensuring computational efficiency
during training and surface smoothness for fabrication. As the first optical layer of
the end-to-end network, these coefficients were optimized during training.

DeepDOFMicroscope Model: Digital Layer. The digital layer consisted of a deep
neural network trained to reconstruct in-focus images from convoluted
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outputs of the optical layer in Fig. 2B. In the absence of prior defocus in-
formation, this presented a blind deblurring problem best solved using deep
neural networks. While there are many network architectures available, we
chose the well-known U-Net, as it is widely used in biomedical imaging (37).
Briefly, our U-Net adaptation consisted of an encoder and a decoder, with 23
convolution layers and 32 to 512 feature channels (Fig. 2B). During each step of
the encoder stage, the input underwent two 3 × 3 convolution layers, each
followed by a rectified linear unit (ReLU) and batch normalization (BN). Then, a
max pool layer downsampled the input by two. Similarly, during each step of
the decoder stage, a 2 × 2 up-convolution upsampled the feature map. It was
followed by two 3 × 3 convolutions layers with ReLU and BN. The final layer
consisted of a 1 × 1 convolution with tanh activation that mapped the output
to the [−1, 1] range. This output was added to the network input to generate
the final deblurred reconstruction. For memory efficiency, the U-Net took in
blurry images of 256 × 256 pixels and output the corresponding in-focus images
at each training iteration. Once the network is trained, it can process images
with widths and heights that are multiples of 16.

Network Training: Dataset and Data Augmentation. To leverage the power of
deep learning, a large set of training images presenting a broad range of
imaging features is desired. To provide ground truth for training, we acquired
microscopic fluorescence images of proflavine-stained oral cancer resections
using a 10×/0.25-NA objective (RMS10X) and manual refocusing. The high-
frequency features in the ground-truth images will allow physically accurate
simulation of image degradation through a 4×/0.13-NA system (with or
without a phase mask), primarily due to PSF convolution, defocus blur, and
added noise. To further train the end-to-end network for imaging more
complex and diverse biological features, we incorporated 600 histopathol-
ogy images of healthy and cancerous tissue of human brain, lungs, mouth,
colon, cervix, and breast from The Cancer Genome Atlas (TCGA) Cancer FFPE
slides. As an additional measure to ensure the network generalizability, we
also included natural images from the National Institute for Research in
Digital Science and Technology (INRIA) Holiday dataset to diversify the scales
of features. In total, we assembled a collection of 1,800 images (each 1,000 ×
1,000 pixels; gray scale), with 600 images of each type.

The 1,800 images were randomly assigned to training, validation, and
testing sets that contained 1,500; 150; and 150 images, respectively (see Data
Availability). During training, the images were cropped at random locations
and augmented with rotation, flipping, and brightness adjustment. To
preclude boundary artifacts when convolving a 256 × 256 image with a 71 ×
71 PSF for blurring, a larger 326 × 326 image was cropped initially and then
cropped to 256 × 256 after the convolution.

Network Training: Loss Function. The loss function of the network was the
pixel-by-pixel RMSE between the reconstructed-image stack and the ground-
truth image set:

LRMSE = 1̅̅̅̅
N

√ |I* -̂I
⃒⃒ ⃒⃒

|2, [9]

where N is the number of pixels, and I* and Î are the ground-truth image
and the reconstructed image, respectively. Since the input images were blurred
at different defocuses, the network intrinsically updated the mask for defocus-
insensitive PSF and required no explicit cost functions to enforce PSF similarity.

In addition to RMSE, we also explored the usefulness of the SSIM, which
calculated similarities between windowed regions of two images while dis-
regarding brightness or dynamic-range differences. We chose to minimize
the negative SSIM and defined the loss function as follows:

LSSIM = 1 − (2μ
I* μÎ + c

I* )(2σ
I* Î

+ ĉI)
(μ2

I*
+ μÎ

2 + c
I* )(σ2

I*
+ σ2

Î
+ ĉI),

[10]

where μ, σ are the mean and cross-correlation, respectively, and c constants
to avoid division by 0.

Network Training: Implementation Details. The network was implemented
with the TensorFlow package. We used stochastic gradient descent with the
Adam optimizer (57). The learning rate for Adam was chosen empirically at
1e-9 for the optical layer and 1e-4 for the digital layer. To fine tune the
U-Net, a learning-rate decay of 0.5 was applied at every 10,000 iterations for
the digital layer.

To explore the design space, we carried out a series of ablation studies by
varying themask learnability, initialization conditions, and loss functions. The

performance of different models was quantified by calculating the RMSE in
2,000-image patches randomly sampled from the testing set.

In simulation E, we also observed that a two-step optimization improved
performance. In this two-step training, we first initialized the network with
the cubic mask and then trained the U-Net while fixing the optical layer.
Once the network converged, we jointly trained the optical and digital
layers to obtain the best performance.

Mask Fabrication. Once the end-to-end network was trained, we fabricated
the optimized phase mask for experimental evaluation. For comparison, we
fabricated both the end-to-end trained DeepDOF mask and a cubic mask using
photolithography in conjunction with RIE. During simulation, as a trade-off
between resolution and computational efficiency, we modeled the phase mask
with a pixel size of 485 μm. Once the mask design was optimized during sim-
ulation, photolithography allowed us to increase the lateral fabrication reso-
lution to 70 μm/pixel for a smoother profile. Axially, the height maps were
phase-wrapped and discretized into 15 steps, with each step being 73 nm thick.

During fabrication, these 15 steps were further multiplexed into four binary
patterns. Each of the four patterns was first transferred onto a silicon oxide glass
wafer through photolithography (EVG 620mask aligner) using positive resist. The
layer was then etched into the wafer by using RIE (Oxford 100). The remaining
resist was stripped away with acetone before the next layer was transferred.

PSF Calibration and Network Retraining. To account for alignment errors and
mask aberration caused by fabrication, we experimentally measured the PSF
of the system by imaging fluorescent beads. The fabricated DeepDOF mask
was aligned to a 12-mm iris (catalog no. SM1D12D, Thorlabs) that matched
the back pupil of the objective lens. The iris was then installed onto the
aperture plane of the microscope (Fig. 1B). A monolayer of 1-μm isolated
fluorescent beads (catalog nos. 505/515 and F8768, Thermo Fisher Scientific;
diluted to 105 per mL) were imaged at 31 depths at 10-μm intervals. At each
depth, we averaged temporally over five frames and performed background
subtraction to reduce noise.

We selected a target DOF range of 200 μm for network retraining and
subsequent imaging based on the invariance of 21 consecutive sections of
the PSF. During the retraining phase, we fixed the phase-mask layer and
fine-tuned the reconstruction network with measured PSF. The same process
was repeated for the cubic mask.

Microscope Calibration. Once the optimized phase mask was inserted and
secured in the pupil plane, the DeepDOF microscope was calibrated by
adjusting the right-angle mirror behind the objective to align the sensor
with the image plane when imaging a monolayer of 1-μm fluorescent beads
(catalog nos. 505/515 and F8768, Thermo Fisher Scientific). Furthermore, we
installed a micrometer tilt stage (catalog no. 66-551, Edmund Optics) for
sample-stage control. By adjusting the tilt stage when imaging fluorescent
beads across a large FOV, uniform focus during sample translation was en-
sured. Once the DeepDOF microscope was aligned, its imaging performance
was assessed by imaging a USAF resolution target (catalog no. 55-622,
Edmund Optics) within a 200-μm DOF.

Ex Vivo Imaging of Porcine Esophageal Tissue. The ex vivo porcine esophageal
sample was obtained from an abattoir, freshly resected, and stained with
proflavine prior to imaging with the DeepDOF scope. Imaging was then
repeated with a conventional microscope using the same standard objective
(Olympus 4×, 0.13 NA).

Surgical Sample Imaging and Processing. We evaluated and validated the
imaging performance of the DeepDOF microscope by imaging surgically
resected oral cancer specimens. In the ex vivo protocol, consenting patients
undergoing surgery for oral cancer resection were enrolled. After surgical re-
section, the excised specimen was assessed by an expert pathologist and sliced
into 3- to 4-mm slices, and selected slices were processed for standard frozen-
section pathology. The remaining slices were then stained with proflavine
(0.01% weight/volume in phosphate-buffered saline) and imaged by using the
DeepDOF microscope. Raw frames from the DeepDOF microscope were pro-
cessed with U-Net deconvolution and stitched by using Image Composite Editor
(Microsoft). After imaging, the specimens were processed by FFPE for perma-
nent histopathology, and histopathology images were acquired with a slide
scanner. The study was approved by the Institutional Review Boards at the
University of Texas MD Anderson Cancer Center and Rice University.

Data Availability.DeepDOF dataset data have been deposited in Zenodo (DOI:
10.5281/zenodo.3922596).
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