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Abstract: Nitrite (NO2
−) is a common pollutant and is widely present in the environment and in

human bodies. The development of a rapid and accurate method for NO2
− detection is always a

very important task. Herein, we synthesized a partnered excited-state intermolecular proton transfer
(ESIPT) fluorophore using the “multi-component one pot” method, and used this as a probe (ESIPT-F)
for sensing NO2

−. ESIPT-F exhibited bimodal emission in different solvents because of the solvent-
mediated ESIPT reaction. The addition of NO2

− caused an obvious change in colors and tautomeric
fluorescence due to the graft of NO2

− into the ESIPT-F molecules. From this basis, highly sensitive
and selective analysis of NO2

− was developed using tautomeric emission signaling, achieving
sensitive detection of NO2

− in the concentration range of 0~45 mM with a detection limit of 12.5 nM.
More importantly, ESIPT-F showed the ability to anchor proteins and resulted in a recognition-driven
“on-off” ESIPT process, enabling it to become a powerful tool for fluorescence imaging of proteins or
protein-based subcellular organelles. MTT experimental results revealed that ESIPT-F is low cytotoxic
and has good membrane permeability to cells. Thus, ESIPT-F was further employed to image the
tunneling nanotube in vitro HEC-1A cells, displaying high-resolution performance.

Keywords: 6-pyrenyl-2-pyridinone; ESIPT fluorophore; partnered-proton transfer; nitrite sensing;
cell-imaging

1. Introduction

Nitrite (NO2
−), the most common nitrogen-containing inorganic compound in nature,

widely exists in the environment and human bodies [1,2]. Although NO2
− is a very impor-

tant signal molecule and plays important roles in normal biological processes such as blood
flow regulation, hypoxic nitric oxide homeostasis and intrauterine growth restriction [3,4],
however, excessive NO2

− is highly toxic to human bodies [5]. For instance, NO2
− can result

in normal blood oxygen-carrying hemoglobin insufficiently oxidizing methemoglobin, thus
tissue hypoxia is caused by losing the oxygen-carrying capacity [6,7]. NO2

− is a carcinogen,
and the mechanism of carcinogenicity suggests that NO2

− and secondary amines, tertiary
amines, amides and other reactions generate strong carcinogenic nitrosamines in the gas-
tric acid environment [8]. Additionally, the secondary product of nitrosamines can also
be transported through the placenta to the fetus and cause them teratogenic, premature
delivery, growth retardation, defects, etc. [9,10]. Therefore, fast, sensitive and selective
detection of NO2

− is significant for analytical application in biological conditions.
To date various analytical methods are available for the monitoring of NO2

− in aque-
ous solutions including chromatographic analysis [11], capillary isotachophoresis [12],
cyclic voltammetry [13], chemiluminescence [14], surface-enhanced Raman spectroscopy [15]
and fluorescence spectrophotometry [16]. Although these methods can achieve accurate
and reliable results, they are not suitable for routine determination of NO2

− in environ-
mental and biological samples due to some of the limitations such as high detection cost,
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complicated and expensive equipment required, complex and time-consuming sample
pre-treatment, and high requirements for the professional level of operators.

NO2
− sensing methods based on molecular probes have attracted extensive attention

due to their high sensitivity, selectivity, simple operability and low-cost advantage [17–19].
A great number of NO2

− sensors were developed for the detection of NO2
− based on

nitrite-mediated reactions. Among these, aromatic o-diamines were frequently used as the
reactive sites and recognition receptors in the probe designs [20]. This strategy is typically
based on the diazotization of a suitable aromatic amine by acidified nitrite solution with
the subsequent coupling reaction and provides a highly colored azo-chromophore, from
which the NO2

− concentration can be evaluated [21,22]. From this Griess basis, Ramaiah
constructed a novel probe using BODIPY as a reporter that selectively recognizes NO2

−

through a distinct color change from bright blue to intense green with a detection limit of
20 ppb [23]. By coupling rhodamine fluorophore with o-phenylenediamine, a “turn-on”-
type fluorogenic probe was reported which can monitor trace amounts of NO2

− in water
as low as 4.6 ppb [24]. In addition, an alternative probe (NT555) for the Griess and DAN
assays was also developed to detect NO2

−, which exhibited superior detection kinetics
and sensitivity [25]. At present, the reported fluorescent sensors for NO2

− rely on the
analogous mechanism with the Griess assay and have to match the strong acid condition
(pH < 3) [26,27] and some of them even require a low-temperature condition (0 ◦C) [28,29].
Consequently, these probes for NO2

− generally pose the following major challenges: (1) The
o-diamine-based reaction sites and/or the resulting products of benzotriazole are popularly
pH-sensitive, and the protonation of benzotriazole under acidic conditions may bring a false
response; (2) These analyses would suffer possible interference from potentially oxidizing
or reducing agents in bio-samples, such as ascorbic acid (AA) and superoxide; (3) The
formation of benzotriazoles often requires a long time, meaning longer response times for
a response to NO2

−; (4) The preparation of probes usually involves tedious synthetic steps.
More recently, many NO2

− assay-based nanostructure probes emerged [30–33]. Most of
them are obtained from the nanoparticles grifted with recognized groups to detect NO2

−.
Some of these approaches involve complicated procedures that are expensive, toxic to cells
and may suffer from the aggregation and precipitation of nanoparticles when used [34–36].
Therefore, it is very necessary to develop a highly selective, fast responding and easily
synthesized fluorescent probe for the convenient measurement of NO2

−.
Fluorescence imaging technology, with its inherent advantages of noninvasiveness,

excellent selectivity, high sensitivity and real-time analysis, has become a powerful tool
to understand dynamic biological processes in living cells. Despite the growing interest
in the development of fluorescent probes for live-cell imaging, challenges to be tackled
still remain [37–40]. As far as we know, there are no reports on the use of small organic
molecules as fluorescent probes for imaging tunneling nanotubes in live cells.

Herein, we reported a robust and convenient excited-state intermolecular proton trans-
fer probe (ESIPT-F) for detecting nitrite and imaging cells with high-resolution performance
(Figure 1). ESIPT-F was synthesized using the "four-component one-pot" method. The
optical properties of ESIPT-F and its response to common anions were investigated using
UV–vis and fluorescence measurements, demonstrating its specific response to NO2

−.
The recognition mechanism of ESIPT-F to NO2

− in the protic solvent suggests that the
reaction of ESIPT-F with NO2

− suppressed the ESIPT process. Excitingly, ESIPT-F can also
anchor proteins and concert ESIPT reaction, enabling it to be used as a powerful tool for
protein-based tunneling nanotube imaging in vitro HEC-1A cells. The high efficiency in the
preparation of ESIPT-F is rather remarkable, with a one-pot reaction, no additional catalyst
is needed.
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Figure 1. Structure of probe ESIPT-F. 

2. Results and Discussion 
2.1. Absorption and Fluorescence Spectra of ESIPT-F  

The spectroscopic properties of ESIPT-F and its response to NO2− were investigated in a DMF-
HEPES mixed system (4/1, pH 4.5) As shown in the absorption spectra (Figure 2a), ESIPT-F exhib-
ited two obvious absorption bands at 282 nm and 378 nm, respectively, which may be assigned to 
the π–π* transition and the long conjugation present in the free ESIPT-F. Upon the addition of NO2−, 
the absorption peaks at 282 nm and 378 nm decreased appreciably and the color of the ESIPT-F 
solution converts from brown to slightly yellowish (inset in Figure 2a). The UV–vis spectral results 
indubitably suggest the reaction of ESIPT-F with NO2−. The decrease in absorption could be at-
tributed to the suppression of the ESIPT process due to the reaction of ESIPT-F with NO2−. 
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nol and acetic acid, a long-wavelength green emission at 497 nm can be observed (Φ = 
0.645). This unique spectra performance may suggest that ESIPT-F undergoes tautomeri-
zation between the enol and keto forms resulting from a solvent-mediated ESIPT reaction, 
which is similar to that of the reported compound [40]. When the emission wavelength 
was fixed at 497 nm, two excitation peaks testified to the existence of both the enol and 
keto forms observed at λmax 285 and 385 nm in the excitation spectrum of the ESIPT-F 
(Figure 2a). The peak at 385 nm could be assigned to the tautomeric form of ESIPT-F, 
which originated from the ESIPT reaction in the excited state. Upon addition of the differ-
ent NO2− concentrations, the tautomeric fluorescence of ESIPT-F was remarkably sup-
pressed with a blue shift from 497 nm to 455 nm (Figure 2b). Simultaneously, the emission 
change of the solutions can be easily visualized by the naked eye under a UV lamp (inset 
in Figure 2b). The obvious "on-off" type switch may be attributed to the reaction of NO2− 

with ESIPT-F, which resulted in the blocking of the ESIPT process and C=N/OH isomeri-
zation. Figure 2d displays the change of emission spectra of ESIPT-F in DMF-HEPES so-
lutions at different pHs upon excitation at 280 nm. The fluorescence is centered at λem = 
497 nm. As the pH increases, the intensity of the band slightly changes. This shows that 
in the range of 3-9, pH has little effect on the tautomeric fluorescence of ESIPT-F. 

Figure 1. Structure of probe ESIPT-F.

2. Results and Discussion
2.1. Absorption and Fluorescence Spectra of ESIPT-F

The spectroscopic properties of ESIPT-F and its response to NO2
− were investigated in

a DMF-HEPES mixed system (4/1, pH 4.5) As shown in the absorption spectra (Figure 2a),
ESIPT-F exhibited two obvious absorption bands at 282 nm and 378 nm, respectively,
which may be assigned to the π–π* transition and the long conjugation present in the free
ESIPT-F. Upon the addition of NO2

−, the absorption peaks at 282 nm and 378 nm decreased
appreciably and the color of the ESIPT-F solution converts from brown to slightly yellowish
(inset in Figure 2a). The UV–vis spectral results indubitably suggest the reaction of ESIPT-F
with NO2

−. The decrease in absorption could be attributed to the suppression of the ESIPT
process due to the reaction of ESIPT-F with NO2

−.
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Figure 2. (a) Absorption and (b) fluorescence spectra of the probe ESIPT-F for NO2− (10 μM); (c) 
Fluorescence spectra of ESIPT-F in aprotic and protic solvents, respectively (λex: 285 nm); (d) Fluo-
rescence spectra of ESIPT-F in DMF-HEPES buffer with different pH value (DMF: HEPES = 8:2; 
ESIPT-F = 5 μM; λex = 285 nm; pH: 3~9). 

2.2. Electrochemical Response of ESIPT-P to NO2−  
A large number of redox reactions are frequently accompanied by concerted proton 

transfer (proton-coupled electron transfer, PCET). In our case, the ESIPT reaction of the 
probe involved in the proton transfer may be relevant to the electron transfer. As shown 
in Figure 3, the free ESIPT-F possesses a clear cathode peak at −0.07 V vs. SCE, correspond-
ing with the reduction peak of the H+-transfer of the ESIPT-F. Upon the addition of NO2−, 
the reduction bands decreased obviously, implying that NO2− may react with the amino 
group of ESIPT-F and suppress the H+-transfer and PCET process. These results demon-
strated that ESIPT-F furnished a selective recognition to NO2−. 
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Figure 3. Cyclic voltammograms of 10 μM ESIPT-F in DMF-HEPES solutions (3/1, 10 mM. HEPES, 
pH 7.2) and the same ESIPT-F in the presence of different concentrations of NO2−. Scan rate: 50 mV/s. 

2.3. Theoretical Evaluation of the Recognition of ESIPT-F to Proteins  

Figure 2. (a) Absorption and (b) fluorescence spectra of the probe ESIPT-F for NO2
− (10 µM); (c) Fluo-

rescence spectra of ESIPT-F in aprotic and protic solvents, respectively (λex: 285 nm); (d) Fluorescence
spectra of ESIPT-F in DMF-HEPES buffer with different pH value (DMF: HEPES = 8:2; ESIPT-F = 5 µM;
λex = 285 nm; pH: 3~9).
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The fluorescence performance of ESIPT-F in different solvents and its fluorescence
change in the presence of NO2

− were also investigated. As shown in Figure 2c, ESIPT-F
displayed blue fluorescence at 453 nm in aprotic solvents including DMF, THF, ethyl acetate
and acetonitrile; when exposed to the protic solvents such as water, methanol, ethanol and
acetic acid, a long-wavelength green emission at 497 nm can be observed (Φ = 0.645). This
unique spectra performance may suggest that ESIPT-F undergoes tautomerization between
the enol and keto forms resulting from a solvent-mediated ESIPT reaction, which is similar
to that of the reported compound [40]. When the emission wavelength was fixed at 497 nm,
two excitation peaks testified to the existence of both the enol and keto forms observed at
λmax 285 and 385 nm in the excitation spectrum of the ESIPT-F (Figure 2a). The peak at
385 nm could be assigned to the tautomeric form of ESIPT-F, which originated from the
ESIPT reaction in the excited state. Upon addition of the different NO2

− concentrations,
the tautomeric fluorescence of ESIPT-F was remarkably suppressed with a blue shift from
497 nm to 455 nm (Figure 2b). Simultaneously, the emission change of the solutions can
be easily visualized by the naked eye under a UV lamp (inset in Figure 2b). The obvious
"on-off" type switch may be attributed to the reaction of NO2

− with ESIPT-F, which resulted
in the blocking of the ESIPT process and C=N/OH isomerization. Figure 2d displays the
change of emission spectra of ESIPT-F in DMF-HEPES solutions at different pHs upon
excitation at 280 nm. The fluorescence is centered at λem = 497 nm. As the pH increases,
the intensity of the band slightly changes. This shows that in the range of 3-9, pH has little
effect on the tautomeric fluorescence of ESIPT-F.

2.2. Electrochemical Response of ESIPT-P to NO2
−

A large number of redox reactions are frequently accompanied by concerted proton
transfer (proton-coupled electron transfer, PCET). In our case, the ESIPT reaction of the
probe involved in the proton transfer may be relevant to the electron transfer. As shown in
Figure 3, the free ESIPT-F possesses a clear cathode peak at −0.07 V vs. SCE, corresponding
with the reduction peak of the H+-transfer of the ESIPT-F. Upon the addition of NO2

−, the
reduction bands decreased obviously, implying that NO2

− may react with the amino group
of ESIPT-F and suppress the H+-transfer and PCET process. These results demonstrated
that ESIPT-F furnished a selective recognition to NO2

−.
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Figure 3. Cyclic voltammograms of 10 μM ESIPT-F in DMF-HEPES solutions (3/1, 10 mM. HEPES, 
pH 7.2) and the same ESIPT-F in the presence of different concentrations of NO2−. Scan rate: 50 mV/s. 

2.3. Theoretical Evaluation of the Recognition of ESIPT-F to Proteins  

Figure 3. Cyclic voltammograms of 10 µM ESIPT-F in DMF-HEPES solutions (3/1, 10 mM. HEPES,
pH 7.2) and the same ESIPT-F in the presence of different concentrations of NO2

−. Scan rate: 50 mV/s.

2.3. Theoretical Evaluation of the Recognition of ESIPT-F to Proteins

Inspired by the protic solvent-mediated ESIPT case, we assume that some molecules
with the hydrogen receptor and donor system (D-A) can be recognized by ESIPT-F via
hydrogen binding. Thus, we studied the binding properties of ESIPT-F to proteins using
FBS as a model protein. As shown in Figure 4, ESIPT-F can image not only HAC-1A



Molecules 2022, 27, 5164 5 of 13

cells but also the FBS in the culture medium. As a control, no fluorescence emission was
observed in the field of view stained with 4′,6-diamidino-2-phenylindole (DAPI). This
result demonstrated that ESIPT-F can specifically identify proteins.
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To explore the ESIPT emission mechanism of the fluorescent probe, we pictured the
frontier molecular orbitals (FMOs) theory by means of (TD) DFT calculations. As shown
in Figure 5a, for both the tautomers of ESIPT-F, HOMO and LUMO are the π and π*
characters, respectively.
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The HOMO of the enol tautomer has a larger electronic projection over the Od atom.
However, in its LUMO picture, there is no electronic projection over the Od atom. The
HOMO picture of the keto tautomer also exhibits a higher electronic density projection
over the Od atom. Interestingly, electronic projection over the Na atom of the lactam
tautomer increases in the LUMO picture, which thus theoretically indicates a favorable
ESIPT phenomenon, but not a GSIPT reaction. In addition, a molecular docking simulation
was also carried out in virtue of the docking software with the method of AutoDock vina.
The BSA from the PDB database (ID: 4f5s) was selected as the research model. As shown
in Figure 5b, both the enol and keto conformers of ESIPT-F can attach to the polypeptide
and tend to insert into different pockets. The enol form ESIPT-F allowed an anchor in the
specific cavity of BSA by hydrogen-binding to the amino acid residues of Lys-76, while the
keto conformers tend to attach on the Cys-75.

In addition, the enol and keto forms of ESIPT-F can bind to a BSA molecule together.
These modeling studies suggested that probes may be favorably inserted into a pocket
near the end of a polypeptide chain. The results of the molecular docking simulation are
consistent with the protein staining experiment, demonstrating that ESIPT-F possesses a
high affinity to BSA.

Based on the spectroscopic and electrochemical measurements and theoretical evalua-
tion, we speculate that the sensing mechanism of ESIPT-F was because of the suppression
of excited-state intermolecular proton transfer (ESIPT). The proposed mechanism between
the probe and guest NO2

− is illustrated in Scheme 1. NO2
− could react with the keto con-

formers of ESIPT-F and suppress the ESIPT process, resulting in the decrease in tautomeric
fluorescence at 497 nm. When the concentration of NO2

− is high, the ESIPT reaction was
seriously inhibited. Therefore, a new peak appeared at 452 nm, corresponding to normal
emissions. In live cells, some biomolecules, such as proteins and nucleic acids, can me-
diate the ESIPT reaction, enabling ESIPT-F to exhibit tautomeric fluorescence and image
protein-based subcellular organelles.
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2.4. Selectivity Assays for Nitrite Detection

To investigate the selectivity, the probe ESIPT-F (15.0 µM) was treated with various
anions (NO2
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−, HSO4
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solution (pH = 4.5) at 25 ◦C after 30 min (Figure 6b). To our delight, none of the analytes
used except nitrite caused obvious fluorescence quenching. At the same time, the results
of anti-interference experiments showed that the high specificity of ESIPT-F to NO2

− ions
was not affected by other ions or oxidizers (Figure 6a). In other words, ESIPT-F exhibits
good anti-interference ability. The high sensitivity and good selectivity of the probe ESIPT-
F imply the potential application for fast quantitatively measurement of NO2

− in food,
environmental and biological materials.
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2.5. Detection of NO2
− in Real Samples Using ESTIP-F

Considering the sensitive and specific response of ESTIP-F to NO2
−, the fluorescence

assays were established for the detection of NO2
− using ESTIP-F as a probe. The fluores-

cence titration experiments were also carried out using ESIPT-F as a probe for NO2
−. As

shown in Figure 7a, the tautomeric emission of ESTIP-F at 497 nm decreases gradually with
the increase in NO2

− concentrations. The NO2
− concentration reached 45 µM, and the

fluorescence band at 453 nm emerged, which is attributed to the saturation of the reaction
of NO2

− with ESIPT-F. The fluorescence decrease in ESIPT-F is a linear correlation to NO2
−

concentrations ranging from 0 to 45 µM (Figure 7b). The detection limit based on the
reaction of ESTIP-F with NO2

− was evaluated as 12.5 nM (3σ). Obviously, these results
confirmed that ESTIP-F has remarkably high sensitivity to NO2

−.
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(b) Fluorescence quenching efficiency (λex = 365 nm; λem = 497 nm) of the probe ESIPT-F at different
NO2

− concentrations.

To verify the applicability of this ESIPT probe in real samples, ESTIP-F was used
to detect NO2

− in water and soil samples. The samples were prepared as described in
the Experimental Section. The samples were spiked with standard NO2

− at different
concentration levels and then analyzed using the ESTIP-F probe-based method. The
results are listed in Table 1. One can see that the recovery studies of the spiked NO2

−

samples determined using the proposed probe showed satisfactory results (98.6–103%)
with a reasonable RSD ranging from 1.68 to 3.02%. The proposed method seems useful for
monitoring NO2

− in real samples.

Table 1. Determination of NO2
− in real water and soil samples using ESIPT-F.

Samples a NO2− Added
(mg/kg)

NO2− Found b

(mg/kg)
Recovery (%) R.S.D (%)

River water
0 0.013 - 1.68

0.125 0.136 98.6 1.93
0.250 0.368 101.4 2.05

Tap water
0 0.008 - 2.33

0.125 0.137 103 2.47
0.250 0.254 98.4 1.96

Soil
0 0.016 - 3.02

0.250 0.270 101.5 1.89
0.500 0.514 99.6 2.34

a The concentration of NO2
− is mg/L. b Average of three determinations.

2.6. Cellular Imaging

Subsequently, we explored the application of ESIPT-F to subcellular organelle imaging
in living cells. The cell imaging experiments were carried out using a Leica (Leica TCSSP5
model) scanning microscope. After removal of the medium and washing with phosphate-
buffered saline (PBS, pH = 6.0), HEC-1A cells were incubated with ESIPT-F for 30 min,
followed by fluorescence imaging. As shown in Figure 8a,e, in the cells stained with a
30 µM ESIPT-F containing solution, significant green fluorescence was observed. In contrast,
the cells are dark and there is virtually no emission collected in 500–790 nm upon excitation
at 408 nm. These results indicated that ESIPT-F was low cytotoxic and cell-membrane
permeable to the tested cells. In addition, one can also see that the ingested ESIPT-F
exhibited good color rendering and mainly concentrated in proteins in the cytoplasm.
Interestingly, ESIPT-F can also picture the shape of the intercellular tunnel nanotube. These
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results established that the probe ESIPT-F is capable of imaging tunnel nanotubes, revealing
its high-resolution performance.
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Figure 8. Confocal imaging of HEC-1A cells incubated with ESIPT-F for 30 min. (a–d): Confocal
imaging of the HEC-1A cells incubated with ESIPT-F and observed at 10 × 10 magnifications,
respectively; (e–h): Live-cell imaging of the same HEC-1A cells acquired at 40 × 40 magnifications.
HEC-1A cells were incubated in a DMEM medium containing 30 µM ESIfiPT-F for 1.0 h. After
washing with PBS (pH 7.4), the live cell imaging was achieved using a confocal microscope, showing
the tunneling nanotubes of the resulting cells. λex = 405 nm, λem = 500–550 nm, bar = 50 µm.

3. Materials and Methods
3.1. Reagents and Instruments

1-Acetylpyrene, ethyl cyanoacetate, 4-fluorobenzaldehyde and ammonium acetate
were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All
chemicals were used as received from commercial sources. The stock solution of ESIPT-F
(10 mM/L) was prepared by dissolving ESIPT-F in a little DMF and the volume of 100 mL
was set with a HEPES buffer solution (10 mM, pH 7.2). Working solutions were obtained by
diluting the corresponding stock solutions to an appropriate volume with the same HEPES
buffer whenever required. The human endometrial adenocarcinoma cell line (HEC-1-A)
was obtained from Shanghai Institutes for Biological Sciences (Shanghai, China).

The fluorescence experiments were carried out on an F-7000 fluorescence spectropho-
tometer (Hitachi, Tokyo, Japan). UV–vis absorption spectra were recorded with a Cary
60 UV–vis spectrophotometer (Agilent Technologies, Australia). NMR spectra were ac-
quired with a Bruker AVB-400 MHz NMR spectrometer (Bruker biospin, Fällanden, Switzer-
land). Fourier transform infrared (FT–IR) spectra in KBr were recorded with a WQF-510
FT–IR spectrometer (Beijing Rayleigh Analytical Instrument Co., Ltd., Beijing, China). Elec-
trochemical measurements were carried out using a potentiostat and galvanostat (Model
Auto-lab, PGSTAT30, Ecochemie, Utrecht, The Netherlands) connected to a Pentium IV
personal computer (with GPES software, Hanzhou, China). A conventional three-electrode
system was employed with a platinum wire as the counter (or auxiliary) electrode and a
saturated calomel electrode (SCE) as the reference electrode. A glassy carbon electrode was
used as the working electrode (Azar Electrode Co., Tehran, Iran). All experiments were
carried out at room temperature.
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3.2. Synthesis of ESIPT-F

(4-(4-Fluorophenyl)-2-oxo-6-(pyren-1-yl)-1,2-dihydropyridine-3-carbonitrile) was syn-
thesized according to the reported method [41] with a minor modification. Briefly, a
mixture of 1-acetylpyrene (3.7 g, 0.015 mol), p-fluorobenzaldehyde, (1.86 g, 0.015 mol),
ethyl cyanoacetate (1.7 g, 0.015 mol) and ammoniumacetate (7.0 g, 0.09 mol) was heated,
with stirring, in a microwave reactor at 110 ◦C (dynamic power 50–60W) for 30 min. The
resulting yellowish-brown solid was washed with cold water, re-crystallized from hot
ethanol and dried under vacuum. Yield: 66%. 1H NMR (400 MHz, DMSO) δ 13.20, 8.38,
8.28, 8.21, 8.19, 8.15, 8.14, 8.10, 7.96, 7.86, 7.84, 7.44, 7.42, 7.40, 6.73. 13C NMR (101 MHz,
DMSO) δ 165.01, 162.74, 162.12, 159.12, 132.83, 132.55, 131.38, 131.29, 129.36, 128.75, 127.61,
126.66, 126.36, 125.05, 124.38, 124.15, 123.97, 116.46, 116.24, 109.91. ESI-MS(m/z) calcd. for
C28H15FN2O [M-1] 414.43; found[M-1] 414.12 (see Supplementary Materials).

3.3. Analytical Procedure

An appropriate amount of ESIPT-F stock solution (20 µL) was diluted into 5 mL
with a HEPES buffer solution (10 mM, pH 4.5) in a 10 mL graduated tube. A certain
amount of NO2

− standard solutions (or sample solutions) was then added to the test
tubes. After setting to 10 mL with the same HEPES buffer, the resulting mixture was
shaken thoroughly to react for 10 min at room temperature prior to the fluorescence
measurements. Simultaneously, the controls without NO2

− standard solutions or sample
solutions were acquired from corresponding solvents. Finally, the fluorescence intensity
of the tautomeric emission peaks (F497) for the test solution and the reagent blank (F497)
were directly recorded with an F-7000 fluorescence spectrophotometer with an excitation
wavelength of 365 nm.

3.4. Preparation of Real Samples

The tap water and soil were collected from our campus. The wastewater and river
water were obtained from the waterway on our campus and Xiangjiang River (Changsha,
China), respectively. For the sample preparation, the water samples (100 mL, three parallel
samples) were filtered through a 0.45 µm membrane filter, and their pH value was adjusted
to 4.0 by hydrochloric acid (1.0 M). The soil samples (100 g) were dispersed with 100 mL
water and filtered through a 0.45 µm membrane filter. The resulting samples were then
used for determination.

3.5. MTT Assays

HEC-1A cells were used for a model cell line to evaluate the in vitro cytotoxicity
of ESIPT-F using MTT assay. Firstly, HEC-1A cells were incubated in a 96-well plate
(5000 cells/well) which was added with a 100 µL DMEM solution containing 10% fetal
bovine serum (FBS) under humidified 5% CO2 atmosphere at 37 °C. After incubation (24 h),
the medium was replaced and different concentrations of ESIPT-F (0, 10, 20, 40, 60, 80,
100 µM) were added for another day of incubation. Next, the 50 µL test solution containing
10 mg·mL−1 MTT reagents was added to each well and further incubated at 37 °C for an
additional 4 h. Finally, the culture medium was removed and 150 µL DMSO was then
added, and shaken for 15 min in the dark. The resulting mixtures were employed for
UV–vis spectrometry test by a microplate reader at the wavelength of 490 nm.

3.6. Protein Staining and Cell-Imaging

Protein staining and the intracellular distribution of ESIPT-F against HEC-1A cells
were investigated using a laser scanning confocal microscope (CLSM). Typically, HEC-1A
cells were added to a 35 mm glass-bottom culture dish at a density of 1.5 × 104 cells per
dish, letting them grow overnight in a 2 mL DMEM solution with 10% FBS with 5% CO2
under humidified atmosphere at 37 ◦C for 36 h. After that, the original medium mass was
replaced and 2 mL fresh medium containing ESIPT-F (50 µM) was then added to each dish.
Followed by a 12 h incubation, ice-cold PBS buffer (20 mM, pH 7.4) was added to wash



Molecules 2022, 27, 5164 11 of 13

the remaining ESIPT-F. After washing with the same ice-cold PBS buffer three times, the
resulting cells and the FBS in culture medium were then observed under CLSM.

4. Conclusions

In summary, a novel ESIPT fluorescent probe for detecting NO2
− ions was successfully

designed and synthesized in this work. ESIPT-F can undergo an ESIPT reaction mediated
by not only protic solvents but also proteins, exhibiting dual-model emission. The reaction
of NO2

− with ESIPT-F leads to the suppression of the ESIPT process and tautomeric
fluorescence quenching, which is used as signaling for sensing NO2

−. More importantly,
ESIPT-F can anchor proteins and concert the ESIPT process, making it a powerful tool
for protein and subcellular organelle imaging. Thus, this ESIPT fluorescent probe would
provide a simple, rapid and convenient method to monitor NO2

− ions. In addition,
ESIPT-F shows application prospects in fluorescence imaging of protein-based subcellular
organelle imaging.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules27165164/s1, Figures S1–S3: 1H NMR, 13C NMR
and MS of ESIPT-F. Figure S4: FT-IR of ESIPT-F. Figure S5: Denotes% cell viability of HEC-1-A
cells treated with different concentrations (0–120 µM) of ESIPT-F for 12 h determined by MTT assay.
Results are expressed as mean ± S.D. of three independent experiments.
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