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For the purpose of elucidating the neural coding process
based on the neural excitability mechanism, some
researchers have investigated the relationship between
the neural dynamics and the spike triggered stimulus
ensemble (STE), which indicates what stimuli are more
likely or less likely to induce neural spikes. Ermentrout
et al. have analytically derived the relational equation
between the phase response curve (PRC) and the spike
triggered average (STA), which is the average of the
STE, when regular spikes with a period T are disturbed
by sufficiently small white noise, as STA Z T  ( ) = − ′ −( )2

(1). Here,  is the time relative to a spike,  is the
noise intensity, and Z is PRC [1]. Furthermore, they
showed that Eq. (1) holds true for real neurons. Their
study has made meaningful progress in relating the
neural dynamics to the neural coding for real neurons.
However, the STA is the first cumulant of the STE. In
order to approximately identify the distribution of STE
as a Gaussian, we should determine its second cumu-
lant, called spike triggered covariance (STC).

We derive the relational equation between STC and
PRC on the basis of the formulation introduced in [2]
and analytically solve it by the expansion used in [3].
The result is
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where H x1 2/ ( ) represents the Heaviside function which
takes 1/2 at x = 0 . Moreover, we analyze the eigenfunc-
tions of ΔC STC       1 2 1 2

2
1 2−( ) = −( ) − −( ) in order to

extract the neural feature space, which is a low dimen-
sional subspace of the full stimulus space characterizing
the stimulus encoded by neurons. The eigenfunctions
associated with the positive and negative eigenvalues of
ΔC are called the excitatory and suppressive eigenfunc-
tion, respectively. In this case, the stimuli in the sub-
space spanned by excitatory eigenfunctions cause
shorter interspike intervals (ISIs) than T , while the sti-
muli in the subspace spanned by suppressive eigenfunc-
tions cause longer ISIs.
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Figure. 1 left: STC of the rat hippocampal CA1 pyramidal neuron. (a) Eigenvalue spectrum of ΔC for the same neuron as illustrated in the
left panel. (b) Excitatory (red) and suppressive (blue) eigenfunctions corresponding to the eigenvalues in (a).
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Figure 1 shows the STC of a rat hippocampal CA1
pyramidal neuron as calculated by Eq. (2), where the
PRC could be estimated by our algorithm [4]. Note that
it is difficult to measure the STC for real neurons
directly, because the number of neural spikes required
for a stable calculation of STC is nearly square of the
number required for the STA. Figure 1 suggests that the
neural feature space of this rat hippocampal CA1 pyra-
midal neuron can be described by the four eigenfunc-
tions in Fig. 1b.
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