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Evolution facilitates emergence of fitter phenotypes by efficient allocation of
cellular resources in conjunction with beneficial mutations. However,
system-wide pleiotropic effects that redress the perturbations to the apex
node of the transcriptional regulatory networks remain unclear. Here, we
elucidate that absence of global transcriptional regulator CRP in Escherichia
coli results in alterations in key metabolic pathways under glucose respirat-
ory conditions, favouring stress- or hedging-related functions over growth-
enhancing functions. Further, we disentangle the growth-mediated effects
from the CRP regulation-specific effects on these metabolic pathways. We
quantitatively illustrate that the loss of CRP perturbs proteome efficiency,
as evident from metabolic as well as ribosomal proteome fractions, that cor-
roborated with intracellular metabolite profiles. To address how E. coli copes
with such systemic defect, we evolved Δcrp mutant in the presence of glu-
cose. Besides acquiring mutations in the promoter of glucose transporter
ptsG, the evolved populations recovered the metabolic pathways to their
pre-perturbed state coupled with metabolite re-adjustments, which
altogether enabled increased growth. By contrast to Δcrpmutant, the evolved
strains remodelled their proteome efficiency towards biomass synthesis,
albeit at the expense of carbon efficiency. Overall, we comprehensively illus-
trate the genetic and metabolic basis of pleiotropic effects, fundamental for
understanding the growth physiology.
1. Introduction
Global transcriptional factors represent a cornerstone in the transcriptional
regulatory network (TRN), which facilitates system-wide changes in gene
expression levels in response to alterations in its external or internal environ-
ment [1–3]. Considering the complex interactions existing within the TRN of
an organism, the absence of global transcription factors results in direct or
indirect cellular responses that incapacitate the ability to attain favourable
phenotypic outcomes, even for a simple prokaryote like Escherichia coli. Under-
standing the regulatory mechanisms of the global transcriptional regulator CRP
(cAMP receptor protein) under diverse environmental conditions has been an
area of research for many decades. CRP, along with its cognate signalling mol-
ecule cAMP [4–6], activates transcription at more than 200 promoters, as
evidenced from the genome-wide binding and reporter-based studies in
E. coli [7–9]. In vitro and in vivo binding assays have determined and validated
the genome-wide binding sites of CRP, along with its interactions with RNA
polymerase [10,11]. Several studies have shown that CRP regulates numerous
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processes such as (i) transport and metabolism of various
carbon sources such as glucose, mannose and galactose
[9,12–16], (ii) regulation of enzymes of the tricarboxylic acid
(TCA) cycle, and oxidative phosphorylation [12,17,18], (iii)
stress response and osmoregulation [19–23], (iv) nitrogen
and iron assimilation [24–27], (v) stringent response [28], as
well as (vi) resistance to multiple antibiotics [29,30]. More-
over, the physiological significance of its activator molecule
cAMP, in coordinating the carbon and nitrogen demands
via carbon catabolites, addressed the long-standing debate
on carbon catabolite repression [31].

Despite the huge repository of data available for CRP,
several questions are still unanswered. As changes in
carbon transport rate can only in part explain the changes
in growth physiology [32,33], synthesis of precursors or bio-
mass components by metabolic enzymes and ribosomes,
and their attuned efficiency coordinated by CRP, remain
obscure. In addition, delineating the CRP regulation-specific
effects on these molecular mechanisms from those mediated
by changes in growth rate becomes imperative. Moreover,
proteome allocation principles [31,34,35] that facilitate
system-wide fine-tuning of the necessary and unnecessary
metabolic proteome towards biomass synthesis mediated by
CRP deserve attention. Scarce knowledge of the fate of
cAMP and downstream metabolite profiles in the absence
of CRP limits our ability to link the molecular consequences
to such proteome partitioning. Thus, a fundamental question
that arises now is, how the interactions within these interde-
pendent factors such as glucose import, proteome allocation,
and metabolite adjustments coordinated by CRP facilitate the
increased growth rate of an organism.

By exploiting these molecular interactions, we sought to
investigate how an E. coli K-12 MG1655 strain lacking CRP
can cope with this global disruption using adaptive labora-
tory evolution (ALE) under glucose minimal media
conditions. ALE entails the orchestration of genetic as well
as phenotypic behaviour in response to mutations that pro-
vide growth fitness benefits to organisms under strict selection
pressures [36–39]. While a majority of the ALEs have focused
on understanding the adaptive rewiring in response to the loss
of metabolic genes [40–42], studies that focus on ALEs on the
loss of global transcriptional regulators are now emerging
[43,44]. Importantly, the global pleiotropic effects of mutations
in regulator deleted strains, on cellular proteomic and metabolo-
mic resources that would enable their growth recovery have not
been addressed. Therefore, to decipher the underlying molecular
basis of divergence of evolved strains away from their ancestor
[45–48], examining the evolution of a crpmutant with integration
of transcriptomics, metabolomics and proteome allocation
aspects would be of great value.

In this present study, using a multi-omics approach, we
explicitly characterize the physiological significance of CRP
for exponential growth in glucose minimal media conditions.
We demonstrate the systems-wide pleiotropic effect of ben-
eficial mutations on cellular processes underlying increased
growth rate in evolved E. coli strains lacking CRP. Further,
we elucidate in detail, its underlying direct regulatory or
indirect growth-rate-dependent mechanisms that coordinate
metabolite profiles and the allocation of proteomic resources
towards its cellular objectives. Overall, by evaluating such
genotype–phenotype relationships in the parent and evolved
strains, we unravel the inherent constraints of genetic and
metabolic networks underlying evolvability in E. coli.
2. Results
2.1. Loss of CRP caused large shifts in the

transcriptome of key metabolic pathways
CRP occupies an apex node in the hierarchical TRN of E. coli
regulating a myriad of genes under diverse nutritional con-
ditions [3]. We first addressed the systemic effect caused by
the loss of CRP by performing high-coverage RNA sequen-
cing of Δcrp mutant in glucose minimal media condition
during the mid-exponential phase. The transcriptome of
this strain, when compared to its parent wild-type (WT)
strain, showed ∼725 differentially expressed (DE) genes
(absolute fold change (aFC)≥ 2, adjusted p-value (adj-p) less
than 0.05) of which ∼534 genes (74%) were downregulated
and ∼191 genes (26%) were upregulated in the mutant
(figure 1a), indicating a large upset of the global transcrip-
tome. This reiterated the role of CRP as a transcriptional
activator, which was in good agreement with previous gene
expression studies [9,11,18] (electronic supplementary
material, file S1).

Next, we examined the KEGG pathways, which were sig-
nificantly enriched among these DE genes and represented
them as Voronoi treemaps (figure 1b,c). Out of the total 725
DE genes, 346 genes (242 downregulated and 104 upregu-
lated genes) were enriched for KEGG pathways (electronic
supplementary material, file S1). Among these enriched path-
ways, downregulated genes were significantly associated
with transporters, TCA cycle (sucABCD and sdhABCD)
needed for energy generation during aerobic respiration,
and carbohydrate metabolism involved in the processing of
secondary carbon compounds such as uronic acid (garD,
kduI, uxaAC, uxuA), galactitol (gatDYZ) and glucan
(malPQS) metabolism. Downregulation of transporters was
associated with the major glucose transporter ( ptsG), sec-
ondary glucose transporters (manXYZ, malEFGKX and
lamB that function under glucose limitation), transport of
amino acids (tdcC, proVXW, hisJ, livJKH, lysP, leuE) and
nucleotides (tsx, uraA, nupCGX), as well as alternate
carbon transporters (glpF, fruB), in agreement with previous
studies (electronic supplementary material, file S1). More-
over, we observed the upregulated genes to be
significantly associated with other enzymes and, chaperone
and folding catalysts. The chaperone genes (ibpAB, hslR,
htpG, cbpA) are required to maintain proper protein turnover
and integrity and their upregulation might indicate a
response to the stress encountered by the cell [49]. Similarly,
the genes of the other enzymes category were associated
with fatty acid metabolic process (ahr, cfa), peptidoglycan
biosynthesis (murG, mepA) and genes expressed in response
to stress (dosP, pphA, katE). Further, we found upregulated
genes enriched in the TCA cycle and anaplerotic enzymes
to be primarily involved in glycolate metabolism (glcDEF)
and glyoxylate degradation (aceAK). These genes are
unnecessary during glucose metabolism and their upregula-
tion indicates an increase in hedging mechanism related to
alternate carbon metabolism [45,50,51]. Overall, the con-
siderable shifts in the transcriptome of these pathways
emphasize the metabolic dysregulation caused by the loss
of a global regulator.

We identified a significant fraction of KEGG-enriched
downregulated genes (approx. 46%, p < 10−26) that were
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Figure 1. Severe perturbation of gene expression in Δcrp compared to WT. (a) Volcano plot of the DE genes Δcrp compared to WT depicted as adjusted p-value
(log10 scale) versus fold change (log2 scale). The brown dots indicate downregulated genes and the cyan dots indicate upregulated genes. (b) Voronoi treemaps
showing the downregulated metabolic pathways enriched by KEGG classification. Transport, carbohydrate metabolism and TCA cycle were found to be significantly
downregulated ( p < 0.05). (c) Voronoi treemaps showing the upregulated metabolic pathways enriched by KEGG classification. Chaperone and folding catalysts,
other enzymes and TCA cycle were found to be significantly upregulated ( p < 0.05). The size of the hexagon within each pathway is directly proportional to
the absolute fold change observed for the genes. The colour of the hexagon denotes the specific pathways classified by KEGG. (d ) Enrichment of genes under
the regulation of sigma factors; the brown bars and the cyan bars indicate the fraction of downregulated and upregulated genes in Δcrp versus to WT respectively.
Significant increase or decrease is denoted by asterisks ( p < 0.01).
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found to be regulated by CRP, as opposed to the upregulated
genes (approx. 10%, p > 0.1) using targets identified from the
EcoCyc database. Such gene expression patterns could be
attributed to the direct and indirect effects of loss of CRP
regulation. Moreover, approximately 61% ( p < 10−2) of
enriched downregulated genes were found to be regulated
by sigma 70, the major growth-related sigma factor associated
with RNA polymerase (figure 1d ), corroborating the associ-
ation of CRP with sigma 70 reported previously [10,11].
A significant fraction of enriched upregulated genes were
regulated by stress-related sigma factors, sigma 38 (approx.
22%, p < 10−4) and sigma 32 (approx. 13%, p < 10−2). Presum-
ably, this suggested the reallocation of RNA polymerase away
from growth and towards stress-related genes as an indirect
consequence of the loss of a global regulator.

As growth rate changes [52–54] have a profound effect on
gene expression, we sought to disentangle the effects on the
DE genes caused directly due to the loss of CRP from these
growth-mediated effects. We carried out RNA-sequencing
of the WT and the Δcrp cultivated in glucose-
limited chemostat conditions at a fixed dilution rate of
0.21 h−1. First, the key metabolic gene expression changes in
glucose-limited chemostat cultivation for Δcrp compared to
WT were consistent with that observed in glucose excess
batch conditions. Further, the genes that were not differen-
tially expressed in the glucose-limited chemostats were
attributed to lowered growth rates. Genes that were differen-
tially expressed in Δcrp compared to WT under chemostat
conditions represent the genes that are specific to CRP regu-
lation or genes that are not altered due to slow growth effects.
These genes were used to distinguish the CRP regulation-
specific and growth-mediated changes in KEGG pathways
observed under batch exponential growth. Overall, we
observed approximately 64% of the KEGG enriched upregu-
lated genes (63 out of 104 genes) and downregulated genes
(159 out of 242 genes) to be directly regulated by CRP, as
opposed to 36% that were due to the slow growth rate
mediated effects (figure 2a; electronic supplementary
material, file S1). Of the pathways found to be downregu-
lated, we found 79% of carbohydrate metabolism genes (15
out of 19 genes), 68% of transport genes (56 out of 82
genes) and 81% of the TCA cycle genes (9 out of 11 genes)
enriched due to CRP regulation. Similarly, of the upregulated
pathways, genes for other enzymes were found to be under
co-regulation of CRP and growth, whereas 83% of genes of
chaperones and folding catalysts (5 out of 6 genes) and 80%
of TCA cycle genes (4 out of 5 genes) were found to be
enriched mainly due to the growth-mediated effects. The
KEGG-pathway-enriched DE genes identified to be CRP-
specific were compared with known CRP regulated promo-
ters from previous studies and prediction using consensus
motif sequence of CRP binding. Indeed, the majority of
these genes could be attributed to being direct targets of
CRP (electronic supplementary material, file S1). Therefore,
these data assert the significant regulation of CRP on several
metabolic pathways.
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2.2. Adaptive evolution involves mutations in the
intergenic region of the glucose transporter

To decipher how Δcrp copes with the perturbations in its
global gene expression, we adaptively evolved five indepen-
dent replicates of the mutant with multiple passages in batch
culture with non-limiting glucose, strictly during the mid-
exponential phase (electronic supplementary material,
figure S1A). The mutant was evolved until the growth rate
showed no further increase in subsequent passages. We
observed that the growth defect in Δcrp was rapidly recov-
ered (electronic supplementary material, figure S1B) within
approximately 100 generations of adaptive evolution and
the endpoint populations (EvoCrp) were further character-
ized in this study (electronic supplementary material, file S1).

We performed whole-genome resequencing (WGS) to
identify the causal mutations in all the EvoCrp populations
(electronic supplementary material, table S1 and text S1).
Out of eleven unique mutations detected across all the
EvoCrp strains, six were in the upstream promoter sequence
of the ptsG gene, a component of the phosphotransferase
system (PTS) responsible for ATP-independent glucose
uptake in E. coli, known to be under the positive regulation
of CRP [9,11,18]. Previous studies involving aerobic evolution
of the WT in glucose minimal media did not incur mutations
in the promoter region of the ptsG gene [36,55,56]. This
asserted that these mutations were indeed in response to
the loss of CRP and not due to adaptation to glucose in the
medium. The intergenic mutations were mostly SNPs specifi-
cally in the binding sites of the repressors namely Fis [57,58],
Mlc [59,60] and ArcA [61], reported to repress ptsG gene
expression (electronic supplementary material, figure S2).
We therefore hypothesized that these mutations in the ptsG
promoter region are responsible for altered binding affinity,
resulting in the de-repression of the ptsG gene.
First, to examine the adaptive role of the mutations, we
introduced the IG116 promoter mutation (as annotated in
electronic supplementary material, table S1) in the Δcrp back-
ground. The introduction of the mutation resulted in
approximately 85% recovery to the WT growth rate, thereby
confirming the adaptive nature of the promoter mutations
in the EvoCrp strains (electronic supplementary material,
figure S3A,B and text S1). Next, to test our altered binding
hypothesis, we characterized the in vivo binding affinity of
Fis and Mlc in IG116-Δcrp mutant strain using CHIP-qPCR.
We did not observe any significant enrichment for Fis or
Mlc binding to the promoter either in the IG116-Δcrp strain
or in the WT and Δcrp strains (electronic supplementary
material, figure S4A-D), which was in agreement with a pre-
vious study in E. coli K-12 MG1655 [58]. This emphasized the
fact that the regulation of ptsG is not dependent on the inter-
play of the regulators Fis and Mlc. Also, a detailed analysis of
the WGS data indicated that most of the mutations in the ptsG
promoter resulted in new transcriptional start sites (TSS) with
‘Pribnow’ box-like consensus sequence (electronic supplemen-
tary material, text S1), thereby reiterating that these ptsG
promoter mutations could potentially augment the affinity of
RNA Polymerase sigma 70, as previously observed in a
recent study, albeit in a different genetic background [43].
However, the mutation profile and the binding profile of nega-
tive regulators on the ptsG promoter in our study were
markedly different from the previous study that can be attrib-
uted to the underlying differences in the genetic background
of the parent strains used for evolution in both the studies.
2.3. Adaptive rewiring of gene expression of metabolic
pathways in EvoCrp strains

To understand the gene expression changes that enabled
enhanced growth rate of the evolved strains, we characterized
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Figure 3. Comparative analysis of the KEGG pathway enriched genes across all the strains. Heatmap depicting the genes of the significantly altered pathways in Δcrp
compared to WT. These pathways were also analysed in the EvoCrp strains and IG116-Δcrp compared to Δcrp and WT to identify the pattern of recovery in the gene
expression.
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the transcriptome of the EvoCrp strains by comparing it to
the Δcrp parent strain as well as the WT strain (electronic sup-
plementary material, file S1). Broadly, all EvoCrp strains
compared to Δcrp showed fewer DE genes (ranging from
approx. 45 to approx. 350 DE genes) as opposed to approxi-
mately 700 DE genes observed in Δcrp compared to WT
(electronic supplementary material, figure S5A). In addition,
a higher proportion of DE genes in EvoCrp showed upregu-
lation relative to Δcrp (electronic supplementary material,
figure S6A–E). To gain a preliminary understanding of the
adaptive response of EvoCrp, we computed the correlation
between the fold-change of gene expression in Δcrp versus
WT and EvoCrp versus WT (electronic supplementary
material, figure S7A-E) and observed a strong positive corre-
lation (Pearson correlation coefficient, r = 0.74, p < 10−15).
Also, the magnitude of the difference of fold change between
EvoCrp and WT was lesser compared to Δcrp versus WT
( p < 10−15, Mann–Whitney test). Both of these observations
indicated a partial restoration in EvoCrp gene expression
states towards WT levels. The transcriptome comparison
of the EvoCrp strains to the WT showed approximately
170–390 DE genes (electronic supplementary material, figure
S5B) with a large number of genes found to be downregulated
compared to the upregulated genes.

Next, we investigated the metabolic pathway enrichment
in EvoCrp strains. For instance, across a majority of EvoCrp
strains compared to Δcrp, we observed upregulated genes sig-
nificantly associated with transporters, and downregulated
genes significantly associated with carbohydrate metabolism
(related to osmotic stress), TCA cycle and anaplerotic
enzymes (related to hedging mechanisms) and chaperone
and folding catalysts (electronic supplementary material,
file S1). The restoration in the gene expression in EvoCrp
relative to Δcrp also suggested a repartitioning of RNA
polymerase sigma factors, as indicated by the large fraction
of the upregulated genes regulated by RNA polymerase
sigma 70 (approx. 76%, p < 10−5) and the downregulated
genes regulated by stress-related sigma factors, sigma 38
(approx. 37%, p < 10−3) and sigma 32 (approx. 14%, p <
10−13) (electronic supplementary material figure S8A–E).
Overall, in EvoCrp strains, we observed rewiring of meta-
bolic pathways, favouring growth over stress-related
functions.

Further, KEGG pathway enrichment of the DE genes
found in EvoCrp compared to WT indicated significant
downregulation of TCA and anaplerotic enzymes (such as
sucABCD and sdhABCD), carbohydrate metabolism (such as
gatDYZ, malPQS), and lipid metabolism (such as dhaKL,
fadBI) (electronic supplementary material, file S1). Addition-
ally, we observed the downregulation of transporter genes
(associated with secondary transporters of glucose such as
manXYZ, malEFGK, lamB) that are unnecessary for exponen-
tial growth on glucose. By contrast, we observed no
pathway to be significantly upregulated in EvoCrp strains
except for the significant upregulation of amino acid metab-
olism and purine metabolism only in EvoCrp5. This
indicated that the majority of the pathways that were affected
in Δcrp were reverted in the EvoCrp strains to the pre-per-
turbed state (figure 3).

To disentangle the effects of increased growth on gene
expression from the mutation-specific effects, we performed
glucose-limited chemostat cultivations of two of the EvoCrp
strains (EvoCrp1 and EvoCrp3) at a dilution rate of 0.21 h−1.
The DE genes observed in these EvoCrp strains when com-
pared to Δcrp grown under chemostat conditions indicated
the effects on gene expression mediated due to the ptsG
promoter mutations acquired during ALE. These genes were
then used to determine the growth-specific and mutation-
specific effects across all the EvoCrp strains during its batch
exponential growth. The mutation-specific effects involved
downregulation of unnecessary metabolic genes irrespective
of the growth and glucose (excess versus limiting) conditions.
Further, changes in growth genes that were not differentially
expressed in the glucose-limited chemostats were attributed
to increased growth rates. Of the KEGG enriched DE genes,
we observed 30–35% changes due to the ptsG promoter
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mutations as opposed to approximately 65–70% as a result of
increased growth rate (figure 2b; electronic supplementary
material, file S1). The mutation-specific effects across the
majority of the EvoCrp strains entailed upregulation of genes
responsible for glucose uptake (ptsG), as well as reduction of
unnecessary genes involved in glycolate metabolism and
amino acid degradation (electronic supplementary material,
file S1).

Next, we asked whether the restoration pattern is relevant
even in the case of the introduction of a single point mutation
in a Δcrp strain (IG116-Δcrp). We observed substantial differ-
ences in the gene expression patterns of metabolic pathways
(IG116-Δcrp versus Δcrp) compared to the evolved popu-
lations (EvoCrp versus Δcrp) that emphasized the
implication of ALE in facilitating the final phenotypic out-
come of the organism (electronic supplementary material,
file S1 and text S1). Despite the differences, on determining
the genes unperturbed as a result of increased growth rate
and that responded purely to the introduced point mutation,
IG116-Δcrp showed a reduction in unnecessary genes associ-
ated with alternate carbon metabolism, amino acid
degradation and osmotic stress, akin to the evolved popu-
lations (figure 2c; electronic supplementary material, file
S1). The amino acid degradation genes are associated with
the degradation of amino acids that yield ammonia as the
end product that can potentially quench the nitrogen require-
ment of the organism [62]. These genes were found to be
upregulated in Δcrp mutant compared to WT. As a result of
the IG116 mutation, we speculate that the mutant strain was
able to overcome the nitrogen deficiency, thereby eliminating
the need to generate ammonia by amino acid degradation ren-
dering them unnecessary. Overall, amino acid degradation,
alternate carbon metabolism and osmotic stress-related genes
represent the unnecessary genes that cause a burden on the
proteome, thereby constraining optimal biomass synthesis.
As faster growth has an inverse correlation with the expression
of unnecessary genes, the IG116 mutation enabled reduction of
the allocation of resources towards unnecessary or stress-
related genes and increased allocation of resources towards
the expression of the necessary growth-related genes, similar
to the EvoCrp strains.
2.4. Accumulation of metabolites illustrates strain-
specific growth effects

Next, to evaluate the metabolite levels that mirror the shifts in
growth profiles [63,64], we characterized several metabolites
of central carbon metabolism in the mid-exponential phase
of batch growth in WT, Δcrp and the evolved strains using
13C-labelled metabolomics (electronic supplementary
material, file S1) and the statistically significant metabolites
(FDR < 0.05) were represented as boxplots (electronic sup-
plementary material, figure S9). We integrated the
metabolite levels with its cognate gene expression profiles
to unravel the strain-specific adjustments at key nodes of
metabolic pathways. Modulation of glucose uptake in E.
coli can be inferred from the pool size of the physiological
signal molecule cAMP, an inducer of CRP activity
(figure 4a). We measured the intracellular cAMP levels and
found that the deletion of CRP leads to approximately 55-
fold higher (adj-p < 10−9) accumulation of cAMP compared
to the WT (figure 4b). Counterintuitively, we observed no
change in cyaA gene expression, which generates cAMP
from ATP, and is known to be activated by the phosphory-
lated EIIA (crr) component of the PTS system (figure 4b)
[65–67]. The cpdA gene, responsible for degrading cAMP,
had lower expression in Δcrp (figure 4a). After evolution,
we observed an approximately 8-fold decrease in cAMP
levels without associated changes in gene expression across
all EvoCrp strains relative to Δcrp that indicated an evolution-
ary restoration of cAMP levels albeit inefficiently (electronic
supplementary material, figure S10A). On the contrary,
there were no significant changes in the ATP levels across
all the strains (electronic supplementary material, figure
S10B), which mostly agrees with the gene expression of the
electron transport chain coupled to ATP synthesis (electronic
supplementary material, file S1). Since the pool sizes of ATP
and cAMP are vastly different in magnitude, we related the
concentrations obtained in our study with the absolute con-
centrations reported for E. coli K-12 MG1655 strain under
similar glucose respiratory conditions [68]. First, we esti-
mated the average concentration (height ratio per gram dry
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cell weight (DCW)) for ATP and cAMP for each of the strains.
Next, we normalized the cAMP level by its ATP level for each
of the strains (electronic supplementary material, file S1). We
assumed that 0.36% of ATP is used for the production of
cAMP in the case of WT. Considering the changes in cAMP
and ATP pools in the Δcrp and the evolved strains, we
obtained that 20% and 3–5% of ATP were used for cAMP syn-
thesis in the Δcrp and EvoCrp strains respectively (electronic
supplementary material figure S10C, file S1), that might be
suggestive of partial recovery of optimization of ATP usage
in the EvoCrp strains.

The gene expression pattern of ptsG (figure 4b) in EvoCrp
strains corroborates with the nature of mutations in the pro-
moter of the ptsG gene. Since glucose uptake in E. coli
involves group translocation with the donation of phosphate
from phosphoenolpyruvate (PEP) (figure 4a), we monitored
the PEP levels [65,69]. We observed an increase in PEP con-
centration (aFC∼ 8-fold) in Δcrp compared to the WT
(figure 5b; electronic supplementary material, figure S9).
Recovery of PEP levels was observed across the majority of
the EvoCrp strains (aFC ∼ 6-fold, versus Δcrp). Akin to PEP,
3-phosphoglycerate (3PG) was found to be higher in Δcrp
(aFC ∼ 3-fold, versus WT) and its level was reduced in
EvoCrp strains (aFC ∼ 2-fold, versus Δcrp). Since increases
in PEP and 3PG levels represent reliable indicators of
carbon limitation [70], their recovery promptly sheds light
on the restoration of carbon import. PEP is a precursor of
the aromatic amino acids, namely phenylalanine, tyrosine
and tryptophan. Concomitant with an increase in PEP
levels, we observed a higher concentration of phenylalanine
levels (aFC ∼1.4) in Δcrp (figure 5b; electronic supplementary
material, figure S9). Conversely, gene expression of aromatic
amino acid biosynthesis genes, namely aroF (aFC ∼ 19),
tyrA (aFC ∼ 13) and trpAB (aFC ∼ 3), showed significant
downregulation in Δcrp mutant. Such antagonism high-
lighted the known negative feedback regulation of amino
acid biosynthesis [71]. However, EvoCrp strains retained cor-
responding levels of phenylalanine compared to Δcrp, despite
lowered levels of PEP and upregulation of aroF gene
expression (aFC > 7). Pyruvate, an α-keto acid and end pro-
duct of glycolysis, is a precursor of the branched-chain
amino acids alanine, valine, leucine and isoleucine
(figure 6a). We found a reduction in valine (aFC ∼ 1.5-fold)
and an increase in leucine levels (aFC ∼ 2-fold) in Δcrp com-
pared to WT. By contrast, we observed, reduction in valine
(aFC ∼ 2.3-fold; figure 6d; electronic supplementary material,
figure S9) and no significant changes in leucine in the EvoCrp
strains compared to Δcrp.

We also determined the concentrations of citrate and
other α-keto acids like alpha-ketoglutarate (αKG) and oxaloa-
cetate (OAA), which are key intermediates of the TCA cycle
(figure 6b). In Δcrp, citrate level was lower (aFC approx.
1.75) compared to WT, in agreement with the reduced gene
expression of gltA (figure 6c,d), whereas its levels were
restored after evolution despite no alteration in gene
expression that might be attributed to increased TCA cycle
activity in the EvoCrp strains [72]. We observed approxi-
mately 1.7-fold higher concentration of αKG in Δcrp
compared to the WT as well as in EvoCrp compared to
Δcrp (figure 6d; electronic supplementary material, figure
S9). αKG accumulation has been known to indicate nitrogen
limitation and is a measure of the anabolic functions of the
organism [73]. Since αKG generation is associated with the
synthesis of many proteinogenic amino acids [71], we specu-
late that the high intracellular levels of αKG in Δcrp as well as
EvoCrp, might indicate either a possible scenario of nitrogen
limitation or increased synthesis of amino acids to account for
protein biomass. The αKG is a precursor for the amino acids
glutamate, glutamine, arginine and proline. In Δcrp com-
pared to WT, glutamate levels were upregulated (aFC ∼ 3),
whereas in the EvoCrp strains compared to Δcrp, we
observed reduced levels of glutamate (aFC ∼ 1.6). OAA,
which can be interpreted from malate levels in the cell [74],
serves as a precursor of amino acids like aspartate, aspara-
gine, lysine, threonine and methionine levels (figure 6b).
Concomitant with the higher OAA (inferred from malate,
aFC ∼ 2-fold) levels, a ∼ 2.5-fold higher aspartate and
∼ 1.5-fold higher levels of lysine were seen in Δcrp mutant
compared to WT (figure 6d; electronic supplementary
material, figure S9). Despite no changes in OAA (inferred
from malate) levels and approximately 1.75-fold reduction
in aspartate concentration, we observed 1.6-fold higher aspar-
agine and identical lysine levels in EvoCrp strains compared
to Δcrp. Methionine, which showed no change in its concen-
tration in Δcrp compared to the WT, was 1.6-fold higher in all
the EvoCrp strains compared to its parent Δcrp. Thus, conco-
mitant with changes in precursors, we observed changes in
proteinogenic amino acids, which elucidated an inefficient
utilization towards its cellular objectives or protein biomass.

2.5. Physiological characterization agrees with the
underlying molecular mechanism that defines
shifts in growth

To evaluate how the changes in the transcriptome and the
metabolome have directly impacted the phenotype of the
organism, we characterized the growth rate, glucose uptake
rate (GUR), acetate production rate (APR), oxygen uptake
rate (OUR) and biomass yield (electronic supplementary
material, file S1). It is to be noted that the maximum exponen-
tial growth rate was used as a metric to determine the growth
fitness. We observed a marked reduction in growth rate
(approx. 57%) in Δcrp strain compared to WT (figure 7a).
The GUR and OUR in Δcrp were both significantly reduced
by approximately 56%, compared to the WT ( p < 0.05, Stu-
dent’s t-test) (figure 7b,c), which can be attributed to the
reduction in gene expression of ptsG (figure 4b) and oxidative
phosphorylation (electronic supplementary material, file S1),
respectively. Similar trends were also observed in APR as
well, despite no changes in its gene expression (figure 7d ).
Conversely, we observed an increase in growth rate (112%,
p < 0.05; figure 7a) as well as GUR (approx. 130%, p < 0.05;
figure 7b) and APR (approx. 115%, p < 0.05; figure 7d ) in all
EvoCrp strains compared to the Δcrp. The OUR in EvoCrp
showed variability in its increase compared to Δcrp ranging
from approximately 99% to approximately 155% (figure 7c).
Further, we calculated the pairwise correlation of growth
rate with GUR (Pearson correlation coefficient, r = 0.96, p <
10−3) and growth rate with OUR (Pearson correlation coeffi-
cient, r = 0.92) (figure 8a,b). This indicated that lowered
GUR and lowered OUR strongly correlated with an overall
reduction of growth rate in the Δcrp strain. In summary, our
data suggested that all the parallel populations converged
to phenotypes similar to WT at the end of ALE within
approximately 100 generations.
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The biomass yield for each of the strains was determined
by normalizing the growth rates with their specific GURs.
The WT and Δcrp strains showed similar biomass yields
(approx. 0.42 g DCW per g glucose), thus indicating that
loss of CRP did not perturb the carbon efficiency towards
biomass synthesis in the mutant. However, there was a con-
sistent decrease in the biomass yield (approx. 0.37
g DCW per g glucose) of EvoCrp strains that highlighted
their inefficiency in optimally directing the carbon towards
biomass (figure 7e). Correlation of the measured biomass
yield and growth rate (Pearson correlation coefficient, r =−
0.87, p < 0.05, for EvoCrp and Δcrp) showed the divergence
of evolved strains away from Δcrp and WT (figure 8c).
Since changes in biomass yields can be a consequence of
alterations in ATP maintenance (ATPM, i.e. difference
between the ATP production rate and its consumption rate
towards biomass synthesis) [45,75], we predicted ATPM
yields for each of the strains. Indeed, the EvoCrp strains
had a significantly higher ATPM compared to the WT as
well as Δcrp, which explained the allocation of carbon
towards non-growth energy use. Besides, the accumulation
of costly amino acids was in agreement with the higher unac-
counted energy usage in the evolved strains (figure 8d).
Overall, this phenomenon of lowered efficiency of carbon sub-
strate allocation towards growth reinforced the rate–yield
trade-off mechanism prevalent in ALE-adapted strains [76].

2.6. Model-based prediction of proteome allocation
An inherent property of E. coli is to tightly coordinate the
metabolism and protein economy in the cell towards an
optimal resource allocation favouring growth fitness [34,63].
In the light of all the above observations, we sought to
obtain insights into how necessary and unnecessary meta-
bolic proteomes are affected, which directly associates with
the shifts in growth rate. Towards this, we used the math-
ematical model based on the growth law theory to quantify
the changes in proteome sectors as well as associate them
with the changes in metabolite levels (electronic supplemen-
tary material, text S1). To account for the changes in the
ribosomal sector (R-sector), we experimentally measured
the R/P ratio (total RNA/total protein ratio) for each of the
strains. Though indirect, the R/P ratio has been reported to
be a quantitative agreement with the ribosome measurements
from beta-galactosidase promoter studies as well as proteo-
mics dataset [34,77,78]. We observed an increase in the R/P
ratio in the Δcrp strain and a decrease in the R/P ratio in
the EvoCrp strains (electronic supplementary material, file
S1). Thus, the increase in R-sector is consistent with previous
studies wherein strains faced with stress tend to increase their
ribosome levels to hedge against unfavourable conditions
[34,78]. However, as the investment for R-sector is expensive,
the proteomic resources available for the metabolism become
constrained. Next, we recalled a genome-scale ME-model (for
metabolism and expression) that accounts for 80% of E. coli
proteome [36,45,79,80], to assess how deletion of CRP and
adaptive evolution affects the metabolic proteome allocation
in the organism. The model predicted protein-coding genes
along with transcript per million (TPM) calculations were
employed to depict the necessary metabolic proteome (M-
sector) and the unnecessary metabolic proteome (U-sector)
fractions, specific to aerobic glucose metabolism in E. coli
K-12 MG1655 (electronic supplementary material, file S1).
Further, we used reported protein copies per cell and corre-
sponding TPM values of representative genes to estimate
the proteome fractions in all the strains, as described pre-
viously [81,82]. We observed a reduction in M-sector
(catabolic and anabolic genes related to glucose metabolism)
and an increase in U-sector (alternate carbon, glyoxylate
shunt, osmotic stress-induced, amino acid degradation
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genes and chaperones) fraction in the Δcrp strain compared to
WT that indicated a reduction in genes aligning with growth
and increase in genes related to stress or hedging mechanisms,
respectively (figure 9). Intuitively, our data revealed an upre-
gulation in the M-sector fraction and downregulation in the
U-sector fraction in EvoCrp strains to enhance their growth
rate (figure 9). Further, a lower fraction of TCA cycle genes
and secondary glucose transporters (man and mal genes)
were found to be consistent across all the EvoCrp strains, to
mitigate the unnecessary proteome cost towards their syn-
thesis (electronic supplementary material, file S1).

The decrease in the M-sector and increase in U-sector and
R-sector in Δcrp was reflected as increased mE/tE ratio (meta-
bolic efficiency/translation efficiency). The accumulation of
amino acids and their precursors observed in Δcrp strain
could be attributed to the large perturbation seen in the
mE/tE ratio (electronic supplementary material, file S1),
implying an increase in their synthesis to meet the reduced
translational capacity. On the contrary, the increase in
M-sector and decrease in U-sector and R-sector in EvoCrp
strains was reflected as restoration of the mE/tE ratio towards
the WT. However, the 10–35% higher mE/tE ratios observed
in the EvoCrp strains compared to WT were mirrored as the
accumulation of costly amino acids as well as TCA cycle
metabolites like αKG and citrate. Overall, changes in meta-
bolic and unnecessary metabolic proteome share towards
biomass synthesis outline the trade-offs in proteome allo-
cation, fundamental for balanced exponential growth [34].

3. Discussion
Adaptive mechanisms overarching genetic and metabolic
regulatory networks are fundamental in conferring fitness
advantages to strains when evolved in response to pertur-
bations in their internal or external environments
[37,45,46,48,83]. We systematically elucidated the pleiotropic
changes due to the mutations in the ptsG promoter that enabled
the rapid growth of the strains when evolved in the absence of
CRP. Specifically, we report fine-tuning of proteome allocation,
and corresponding metabolite adjustments such as rewiring of
ATP towards the synthesis of costly amino acids away from the
wasteful cAMP synthesis, in addition to enhanced rates of glu-
cose uptake and related physiological traits that overall resulted
in the increased growth rate of the evolved strains.

During evolution, mutations occurred predominantly in
the ptsG promoter that generated additional ‘Pribnow-box’-
like sequences that could potentially enhance the affinity of
RNA polymerase sigma 70 towards the ptsG gene. Indeed,
the lack of interplay of other regulators seen from in vivo
binding studies and RNA polymerase sigma factor distri-
bution seen from transcriptome analysis supports this basis.
Notably, the mutations resulted in increased ptsG gene
expression and thereby glucose uptake, emphasizing the
role of ptsG promoter mutations in resolving the bottleneck
caused by loss of CRP. Such a phenomenon was also
observed in a previous study, thereby implying genetic paral-
lelism across different E. coli sub-strains [43]. Despite such
similarities, the difference in regulatory control of CRP on
ptsG gene and the profound differences observed in genomic
and phenomic states concur with the genetic background of
the parent strains and the growth phase wherein the serial
passages were carried out. Additionally, the absence of
these mutations in aerobically evolved WT strains [36,55,56]
highlighted the adaptive nature of the ptsG promoter
mutations in response to the loss of CRP rather than adap-
tation to the media conditions.
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Our findings demonstrated two principles of coordinated
regulation: (i) the interplay between global regulators like
CRP and global physiological factors on metabolism instru-
mental for the physiological growth status; and (ii) in the
event of evolution, the mutations acquired together with
growth-mediated effects become relevant to support the
growth regimes of the fast-growing strains. We deconvoluted
the complexity of gene expression by quantifying the extent
of CRP regulation-specific effects and growth-mediated
effects on the dysregulated metabolic pathways. Regardless
of the glucose (excess glucose in batch versus glucose-limited
chemostat) and growth conditions, we observed similar pat-
terns in gene expression favouring stress-related or hedging
functions over growth functions. We extended the quantifi-
cation to the evolved populations as well to decouple the
growth-mediated effects from mutation-specific effects. Our
data not only underscored how evolution enabled the rewir-
ing of the metabolic pathways, but also dissected the
significant role of ptsG mutations in regulating these meta-
bolic pathways from the prominent fast growth-mediated
effects. Overall, we elucidated that the trade-off existing
between the expression of growth-related genes (genes
necessary for glucose metabolism) and the stress- or hed-
ging-responsive genes determines the physiological
outcome of the organism. The stress functions that were per-
turbed could be attributed to the chaperone-protein folding
genes, genes responding to osmotic stress as well as amino
acid degradation genes. Amino acid degradation genes are
known to enable the organism to scavenge against nitrogen
limitation or survive under acid stress conditions [62]. For
instance, in Δcrp, these genes were found to be upregulated
and the growth-related genes were downregulated, whereas
in the evolved strains these stress-related genes were reverted
to the WT state and growth-related genes were enhanced to
facilitate their faster growth. Moreover, a similar pattern of
gene expression was evident in the event of the introduction
of a single point mutation in the ptsG promoter region in a
strain lacking CRP (IG116-Δcrp). However, the substantial
differences observed in its gene expression of metabolic path-
ways compared to the evolved populations can be attributed
to the evolutionary resource adjustments as a result of
enhanced growth fitness during ALE.

Previously, it was demonstrated that during carbon limit-
ation, catabolic gene expression increases upon growth rate
decrease, while during nitrogen limitation catabolic gene
expression decreases upon a decrease in growth. The reverse
was observed in the case of the anabolic gene expression. This
response was shown to be coordinated by cAMP-CRP [31]. In
our study, deletion of CRP entailed both carbon and nitrogen
limitation as perceived from reduction in the GUR and the
predicted ammonia uptake rate (electronic supplementary
material, file S1) or αKG accumulation. Indeed, we observed
reduced expression of the catabolic and the anabolic genes at
a slower growth rate in agreement with the findings of You
et al. [31]. Here, we not only emphasized the effects of
CRP deletion but also demonstrated the effects of adaptive
evolution on the proteome allocation of the organism. We
developed a four-partition proteome model that integrates
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necessary metabolic genes with previously overlooked
endogenous unnecessary metabolic genes. Our predicted
system-wide proteome fraction of Δcrp mutant encompassing
growth-mediated and CRP-driven effects highlighted that the
absence of CRP resulted in disruptions of proteome allocation
specifically as a reduction in necessary metabolic proteins
(M-sector) and increase in unnecessary metabolic proteins
(U-sector) compared to the WT. The M-sector, as inferred
from theoretical proteome fractions of representative genes,
comprised glucose uptake, catabolic and anabolic genes.
Similarly, the U-sector represents the endogenous proteins
entailed for stress (chaperone folding, amino acid degra-
dation, osmotic stress) and hedging functions (alternate
carbon metabolism, secondary glucose transporters) that are
unnecessary under glucose metabolism. This reduced
M-sector was further constrained by the increase in
U-sector and R-sector. Recent studies have reported tight
coordination of ribosomal protein expression with the
growth rate of the organism [34,78]. Since the synthesis of
ribosomes incurs a huge investment of proteomic resources
[34,78], an increase in ribosome levels corresponds to an
increase in unnecessary ribosomes to hedge for unfavourable
conditions [78], thereby reducing the proteome share for
metabolic proteins. Overall, CRP deletion perturbed meta-
bolic and translational efficiency, which in turn resulted in
alterations in growth rate changes that were reflected as the
intracellular accumulation of amino acids and their precursor
molecules. Apart from the known feedback regulation of
these metabolites on the rate of amino acid biosynthesis
[71], such accumulations can affect the carbon import flux
[84], catabolic gene expression [31] as well as ribosomal
levels [85]. This was evident from the increased accumulation
of αKG, OAA (inferred from malate) and proteinogenic
amino acids that were linearly correlated with the lowered
GUR, reduced catabolic gene expression and increased ribo-
somal levels in Δcrp. The high intracellular levels of αKG in
Δcrp also indicated a possible scenario of nitrogen limitation
due to lowered ammonia uptake as indicated by the in
silico flux prediction (electronic supplementary material, file
S1). Further, αKG is known to be involved in the production
of several amino acids which might suggest its anabolic func-
tions to account for the protein biomass that was found to be
consistent with the increased accumulation of amino acids
observed in the strain. Thus, we showed that apart from
carbon uptake, efficient proteome allocation between necess-
ary and unnecessary metabolic proteome and associated
metabolite adjustments are instrumental in facilitating optimal
growth in an organism.

Evolved strains rebalanced the proteome by increasing
the growth-promoting proteome M-sector and restoring the
unnecessary U-sector and the R-sector towards the WT.
Further, the evolved strains mitigated the proteome cost
associated with the synthesis of expensive proteins such as
enzymes of the TCA cycle and wasteful proteins such as pro-
teins associated with secondary glucose transporters,
alternate carbon metabolism and amino acid degradation.
Such orchestration of the proteomic resources in the EvoCrp
strains was reflected as restoration of the metabolic and trans-
lation efficiencies towards the WT state. Despite the
restoration of their proteomic efficiencies, we still observed
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intracellular accumulations of several TCA cycle metabolites
like αKG and costly amino acids that were not used for
protein biomass. We suggest that the higher TCA cycle inter-
mediates could be ascribable to a higher in vivo maximal rate
of TCA cycle enzymes acquired during evolution, to meet the
energetic demands of the cell [35]. In the EvoCrp strains,
increased accumulation of αKG could be attributed to slightly
higher glucose uptake and lowered ammonia uptake rates
compared to the WT, resulting in an internal higher
carbon/nitrogen ratio [absolute GUR (experimental)/absol-
ute ammonia uptake rate (model-predicted)] (electronic
supplementary material, file S1). As the organism perceives
carbon excess to be a nitrogen-limited condition, we speculate
the EvoCrp to be also facing nitrogen limitation indicated as
αKG accumulation.

It is well known that growing cells maintain an optimal
cAMP level necessary for proper carbon sensing [31] and
hence ATP optimization. We observed a high accumulation
of cAMP in the absence of CRP in conjunction with lowered
GUR. On the contrary, evolved strains showed restoration of
their cAMP levels, though inefficiently, mediated by reduced
availability of phosphorylated PTS proteins for activation,
with the net effect being partially alleviated ATP wastage.
We speculate that this surplus ATP pool conserved from
reduced cAMP synthesis was invested towards the synthesis
of costly proteinogenic amino acids such as methionine,
asparagine, lysine and arginine (considering only the
number of activated phosphate bonds used in making the
amino acid without the contribution of precursor synthesis
itself ) [86] that were found to accumulate in the evolved
strains. This might be partially responsible for the higher
ATPM yield, resulting in an overall reduction in the biomass
yields observed in the evolved strains. Nevertheless, such
inefficiencies involving excess carbon usage towards unac-
counted-for energy reflect subpar utilization of carbon
towards biomass in the evolved populations, which limits
their ability to grow as energetically optimal as WT.

The current ALE study using a multi-omics approach has
revealed mechanistic insights into the inherent systemic con-
straints that facilitate the final phenotypic response in
conjunction with the selected mutations in the evolved strains
to overcome the defects due to the loss of a global regulator.
Despite perturbed proteome allocation towards necessary
and unnecessary metabolic proteins in Δcrp, the carbon utiliz-
ation efficiency towards biomass was not affected. On the
contrary, we revealed that the evolved strains restored
finely tuned proteome allocation that favoured growth over
uneconomical hedging strategies and mitigation of costly
proteome fractions at the expense of reduced carbon utiliz-
ation efficiency. Our findings, based on proteome allocation
in parent and evolved strains, bear striking similarities with
proteome sector changes, representing a corollary to resource
allocation defined by growth laws [34,85]. Future studies
characterizing the genotype-to-phenotype relationship using
such a multi-omics approach would expedite our under-
standing of microbial evolution across diverse conditions.
4. Material and methods
4.1. Strains
Escherichia coli K-12 MG1655 (CGSC#6300) was used as the
parent strain in this study. All the other strains used in this
study were derived from this strain (electronic supplemen-
tary material, file S1). We constructed Δcrp knockout in this
genetic background by λ-Red mediated recombination [87],
using plasmids pKD46, pKD13 and pCP20. After strain veri-
fication, glycerol stocks were made and stored at −80°C.

4.2. Physiological characterization in a bioreactor
For transcriptome, metabolome and phenotype characteriz-
ations, cells were grown in 500 ml bioreactor (Applikon)
(planktonic state, batch culture) containing 200 ml M9
media (6 g/L anhydrous Na2HPO4, 3 g l–1 KH2PO4, 1 g l–1

NH4Cl, 0.5 g l–1 NaCl + 2 mM MgSO4 + 0.1 mM CaCl2),
with 2g l–1 glucose and 40 mM MOPS. Briefly, cells from gly-
cerol stocks were plated out on LB agar plate and a single
colony was inoculated in LB media. A fixed volume of
100 µl cells was used to inoculate 50 ml preculture M9 +
40 mM MOPS media with 4 g l–1 glucose which was grown
overnight in a shake flask at 200 rpm in a 37°C incubator
(Eppendorf). The preculture cells, while still in exponential
phase, were centrifuged and washed with M9, and inocu-
lated in a bioreactor containing 200 ml M9 media with
2 g l–1 glucose such that the start optical density (OD) of all
the cultures were ∼ 0.05 OD. The temperature of the bio-
reactor was maintained at 37°C and the pH of the media
was maintained at pH 7.2 using 40 mM MOPS buffer to
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prevent the effects of pH change on growth. Aeration was
done by sparging air in the bioreactor at 700 ml min–1 and
at all times the dissolved oxygen (DO) levels were maintained
above 40% saturation using mass flow controllers. Growth
was monitored by collecting samples at regular intervals
and measuring the OD at 600 nm in a spectrophotometer
(Thermo Multiskan GO) until the organism reached its
stationary phase. The growth rate was calculated from the
slope of the linear regression line fit to ln (OD at 600 nm)
versus time (in hrs) plot in the exponential phase. The
DCW was determined from the OD at 600 nm values by
using the experimentally derived relationship that 1.0
OD at 600 nm corresponds to 0.44 g DCWh−1. The phenoty-
pic characterizations were done for three biological replicates
(n = 3) across the exponential phase. The transcriptome and
metabolomics characterizations were performed in the mid-
exponential phase (0.6–0.7 OD). Samples were also collected
during regular intervals to determine the rate of glucose
uptake as well as the rate of secretion of extracellular metab-
olites. The samples were centrifuged and the supernatant was
collected which was then used to determine the concen-
trations and rates using HPLC (Agilent 1200 Series)
equipped with Bio-Rad Aminex HPX-87H ion exclusion
column with 5 mM H2SO4 as the mobile phase. The column
was maintained at a temperature of 50°C and the flow rate
at 0.6 ml min–1. The specific rates were calculated from the
change in substrate concentration over time, normalized to
the biomass of each strain [88]. The biomass yield for each
of the strains was determined by normalizing with their
specific GUR (g DCW per g glucose). OUR was measured
using a DO probe (Applikon) while growing the cultures in
the bioreactor during its exponential phase.

For chemostat cultivations, the composition of the feed
media was identical to the batch media. For all the strains,
the cells were grown in batch condition until 80% of maxi-
mum biomass was obtained (as monitored by OD
measurements) or until 80% of the glucose was consumed
(as monitored by HPLC) after which the addition of feed
media was started. The dilution rate was set to 0.21 h−1.
After the cells reached the steady-state as indicated by OD
measurements, cells were harvested after 3–5 residence
times for transcriptomics analysis [45]. All physiological
measurements were checked for statistical significance using
unpaired two-tailed Student’s t-test.

4.3. Adaptive laboratory evolution protocol
Adaptive evolution of replicate populations of Δcrp was car-
ried out in shake flasks (planktonic state, batch culture) with
M9 minimal media with 2 g l–1 glucose and 40 mM MOPS at
37°C. MOPS was added to maintain the populations at a con-
stant pH during evolution (electronic supplementary
material, figure S1A). All the replicate cultures were passaged
serially into fresh media strictly in the mid-exponential phase
to ensure that fitness gains occur primarily via increased
exponential growth rates. This also prevents the cultures
from entering the glucose-limited stationary phase and
thereby avoids complexities associated with the onset of the
stationary phase. As the growth rate of the organism changed
during evolution, the volume of culture passaged was
adjusted to prevent entry into the stationary phase. Glycerol
stocks were made during each passage and were PCR veri-
fied for WT contamination using specific primers for the
crp gene. This procedure was followed for 10 days (approx.
100 generations) and after it had reached a stable growth
and no further increase in growth rate was observed, ALE
was terminated. Genotype and phenotype characterizations
of the evolved replicates were done for the population and
not for individual clonal samples to ensure that all the
traits of the population are taken into consideration. Charac-
terization at the population level is a more efficient and
feasible approach to understand the underlying mechanisms
of evolution in an unbiased manner as it better reflects the
properties of the population as a whole [89].

4.4. Whole genome resequencing
Genomic DNA from all the endpoint populations was
extracted using GenElute Bacterial Genomic DNA Kit
(NA2120; Sigma-Aldrich, St. Louis, MO) using the manufac-
turer’s protocol. The integrity of the extracted genomic DNA
was analysed by running it on an agarose gel and the quality
was assessed and quantified using Multiskan GO (Thermo
Scientific). The genomic DNA library was prepared using
Illumina TruSeq DNA Nano Kit. The quality of the libraries
was checked using Agilent Bioanalyzer. The libraries were
then sequenced from both ends (paired-end) on Illumina
HiSeq250 platform with 2 × 100 cycles. All the samples had
an average of 275× mapped coverage.

The raw reads obtained from the sequencer were trimmed
using CUTADAPT to remove TruSeq adapter sequences. The
breseq pipeline [90] was used to identify the point mutations
(SNPs), insertions and deletions mapped to E. coli K-12
MG1655 genome (GenBank accession no. NC_000913.3).
Breseq was run using the -p option (for population samples)
with default parameters to identify mutations present in the
population at a frequency of less than 100%. Mutations that
had 100% frequency were assumed to be mutations present
in the WT strain and were not considered. Only the mutations
predicted with high confidence under the category ‘predicted
mutations’ were further analysed in this study.

4.5. Mutation validation
To determine the causality of the mutations detected by
WGS, the mutations were introduced into the Δcrp back-
ground using in vivo site-directed mutagenesis [91].
However, to limit the scale of this study and given the con-
sistent occurrence of mutations in the Fis binding region,
only the IG116 mutation (SNPs) detected in the promoter of
ptsG gene in the EvoCrp1 strain was selected for validation.
Additionally, IG116 mutation was also investigated for Mlc
binding. To construct the strains, scarless editing of the
E. coli K-12 MG1655 Δcrp genome was done using a two-
step recombination method using pSLTS plasmid (Addgene
plasmid no. 59386). After the construction of the strains,
they were sequenced to verify the correct introduction of
the SNPs in the genome. This strain was further used to
add 3X FLAG-tag to Fis protein or Mlc protein as described
in the section below.

4.6. ChIP-qPCR
A 3X FLAG-tag was added to the C-terminus of the Fis or
Mlc protein using pSUB11 plasmid [92] as the amplification
template. The amplified construct was then introduced into
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E. coli K-12 MG1655 WT, Δcrp and IG116-Δcrp strain. The con-
structed strains were verified by PCR and Sanger sequencing.
ChIP experiment was carried out using the protocol as
described previously [93]. The DNA samples immune-preci-
pitated by this method were recovered by PCR purification
and were quantified by qPCR using primers for the specific
as well as non-specific region ( frr). Fold change in immuno-
precipitated (IP-ed) DNA compared to mock DNA was
calculated as 2−ΔΔCt as described previously [94].

4.7. RNA extraction and enrichment of mRNA
For each strain, RNA extraction of two biological replicates
was performed. The cells were grown till the mid-exponential
phase and then 50 ml cells were harvested by centrifugation.
RNA extraction was done using the TRIzol (Invitrogen)-
chloroform method as previously described [44,95]. DNase
treatment was done to remove any DNA contamination
after which enrichment for mRNA was done using the
MicrobExpress Kit (Invitrogen) following the manufacturer’s
protocol. Single-end, strand-specific libraries for RNA
sequencing were prepared using NEBNext Ultra II Direc-
tional RNA library kit (New England Biolabs). The quantity
of the mRNA was assessed using Multiscan GO (Thermo
Scientific) Nanodrop and the quality, as well as integrity,
was checked using BioAnalyzer. The sequencing was carried
out on HiSeq 2500 Rapid Run Mode using a 1 × 50 bp format.

4.8. Transcriptome data analysis
The raw transcriptome files from batch mid-exponential and
chemostat conditions were first trimmed using CUTADAPT
to remove adapter sequences and low-quality reads. The
reads were then mapped to the E. coli K-12
MG1655 genome (GenBank accession no. NC_000913.3)
using BWA [96]. The sam file generated was then converted
to compressed bam format using Samtools [97]. Feature-
Counts [98] was used to assign counts at the gene level
using the reference genome provided in the GTF format.
Ecocyc database [99] (v. 21.5) was used to retrieve the anno-
tations for 4466 genes. It is to be noted that rRNA, tRNA and
sRNA genes were excluded from the analyses. Differential
gene expression was analysed from the raw counts by
EdgeR [100] after removing genes having less than 10
reads. The genes that showed≥ 2-fold change in expression
(in both directions) and had adjusted p < 0.05 (Benjamini–
Hochberg) were considered as DE genes and used for further
analysis. The DE genes of the strains from both experimental
conditions were enriched for metabolic pathways using
KEGG pathway classification [101] as defined in Proteomaps
(www.proteomaps.net). The mapped genes were represented
as Voronoi treemaps (v. 2.0) [102]. The significance of the
upregulated and downregulated genes within each category
was validated using a hypergeometric test ( p < 0.05) in R
(R Core Team 2019). For each up/downregulated category,
we arbitrarily chose atleast five DE genes enriched to be con-
sidered for significance analysis. Those DE genes which do
not have an assigned ‘Accession ID’ (Ecocyc V. 21.5) such
as phantom genes and crp gene itself were excluded from
the above analysis.

For sigma factor enrichment analysis, the KEGG pathway
enriched DE genes obtained under batch mid-exponential
conditions for the strains were further assessed based on
gene targets of sigma factors using data available in EcoCyc
and RegulonDB [103]. The upregulated and downregulated
genes belonging to each regulator were then tested for signifi-
cance using a hypergeometric test in R ( p-value < 0.01). Only
those sigma factors which regulated atleast 10% of the KEGG
enriched upregulated and downregulated DE genes, were
retained for this over-representation analysis. Pearson corre-
lation of log2 fold changes of EvoCrp versus WT and Δcrp
versus WT and statistical significance were performed in R
(R Core Team 2019). For comparison of point mutation
strain (IG116-Δcrp) with EvoCrp1, the transcriptome of
IG116-Δcrp and EvoCrp1 was analysed with respect to WT
and Δcrp independently.

For transcriptome analysis of WT and Δcrp from glucose-
limited chemostat cultivations, the DE genes were annotated
as ‘CRP-specific’ (electronic supplementary material, file S1).
These represent genes that are not altered due to slow
growth. These genes were then used to identify the CRP
regulation-specific genes in the transcriptome changes of
Δcrp compared to WT in batch mid-exponential phase. For
identification of mutation-specific genes in EvoCrp strains,
transcriptome analysis was carried out for two EvoCrp
strains (EvoCrp1 and EvoCrp3) in comparison to Δcrp from
glucose-limited chemostat cultivations. These represent
genes that are not altered due to the faster growth of the
EvoCrp strains. These genes from both the EvoCrp1 and
EvoCrp3 chemostat cultivations were then used together to
identify the mutation-specific genes in the transcriptome
changes of all the EvoCrp strains compared to Δcrp in batch
mid-exponential phase. To characterize the mutation-specific
effects in the transcriptome of IG116-Δcrp strain compared to
Δcrp in batch mid-exponential phase, the differentially
expressed genes annotated as ‘CRP-specific’ from transcrip-
tome analysis of WT and Δcrp from glucose-limited
chemostat cultivations, were used. In the heatmaps generated
based on log2 fold change in gene expression, only those
genes with FDR less than 0.05 and 2-fold change in at least
one condition were retained for comparative analysis (the
same gene with FDR > 0.1 in other conditions were not
considered).

4.9. Metabolomics

4.9.1. Chemicals for metabolomics

LC-MS grade methanol, acetonitrile and ammonium hydr-
oxide (≥25% in water) were purchased from Honeywell.
Analytical grade chloroform, HPLC-grade water and LC-
MS grade ammonium acetate were purchased from Sigma.
All metabolites used as external standards were purchased
from Sigma. Uniformly labelled U-13C (>99% purity) glucose
was purchased from Cambridge Isotope Laboratories.

4.9.2. Extraction of metabolites

Metabolite samples were harvested in the mid-exponential
phase in biological triplicates and technical duplicates. A
fast-cooling method [104,105] was used to quench the har-
vested cells as reported previously. Briefly, approximately
10 ml culture (∼ 6–7 OD cells) was directly poured into
2 ml chilled (4°C) M9 (without glucose) in a 50 ml falcon
tube. The tube was then dipped in liquid nitrogen for 10 s
to bring down the sample temperature to 0°C. To prevent

http://www.proteomaps.net
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the formation of ice crystals, the sample was vigorously agi-
tated with the help of a digital thermometer. Samples were
then immediately centrifuged at 0°C, 7800 rpm for 5 min.
The supernatant was discarded and the pellet was snap-
frozen in liquid nitrogen and stored at −80°C until metabolite
extraction was done.

For extraction of metabolites, the sample pellet was
dissolved in 700 µl chilled (−80°C) methanol: 300 µl chilled
(−20°C) chloroform [105], followed by snap freezing in
liquid nitrogen and homogenization using a hand-held
pestle (Sigma no. Z359971) all within 2 min. 13C-labelled
extracts as internal standards were generated for the quanti-
fication of key metabolite pool sizes using an isotope-based
dilution method [106]. The samples were spiked at the ear-
liest stage of extraction with a fixed volume of internal
standard taken from the same batch. The sample tubes
were then placed overnight on a Thermo-shaker maintained
at 0°C and 400 rpm. To the sample tubes, 500 µl of 2%
ammonium hydroxide (4°C) prepared in HPLC-grade water
was added and incubated on ice for 10 min to enable phase
separation. The tubes were then centrifuged at 4°C,
13 000 rpm for 15 min, and the aqueous layer was collected
in a chilled 1.5 ml tube. The samples were then completely
dried in a vacuum concentrator and stored at −80°C. Before
analysis in LC-MS/MS, samples were reconstituted in
100 µl chilled (−20°C) acetonitrile: buffered water (60 : 40,
v/v), centrifuged at 4°C for 10 min, and the supernatant
was transferred to pre-chilled glass vials. Buffered water con-
sisted of 10 mM ammonium acetate, pH 9.23 adjusted with
ammonium hydroxide prepared in HPLC-grade water
[107]. The volume of the pooled internal standard was stan-
dardized such that the external standard and internal
standard peak height differed less than 5-fold [68]. Metab-
olites were extracted from three biological and two
technical replicates (n = 6).
4.9.3. LC-MS/MS settings

The samples were analysed using a high-resolution mass
spectrometer in Orbitrap Q Exactive Plus (Thermo) equipped
with a SeQuant ZIC-pHILIC column (150 mm× 2.1 mm× 5-
micron packing, Merck) and a ZIC-pHILIC guard column
(20 mm× 2.1 mm× 5-micron packing, Merck) under alkaline
mobile phase conditions with ESI ion source. The ESI was
operated in positive (M +H)+ and negative (M – H)− polarity
switching mode. The spray voltage was set at 4.2 kV and
3.5 kV for the positive and negative modes respectively.
The temperature was maintained at 300°C and 320°C for
the ion transfer capillary (ITC) and probe heater, respectively.
A heated electrospray ionization probe II (H-ESI-II) probe
was used with the following tune parameters: sheath gas,
29; auxiliary gas, 7; sweep gas, 0; S-lens at 45 arbitrary
units. A full scan range of 66.7 to 1000 m/z was applied for
positive as well as negative modes and the spectrum data
type was set to profile mode. The automatic gain control
target was set at 1e6 with a resolution of 70 000 at 200 m/z.
Before analysis, cleaning of the LC-MS system and ITC
along with mass calibration was done for both positive and
negative ESI polarities by using Thermo Calmix solution
along with MS contaminants to take into account lower
mass ranges. The signals of compounds 83.06037 m/z (2 ×
ACN+H) and 119.03498 m/z (2 × Acetate-H) were selected
as lock masses for positive and negative modes respectively
with lock mass tolerance of 5 ppm [108].

The mobile phase for chromatographic separation com-
prised non-polar phase A (acetonitrile: water mixed in the
ratio 9 : 1, 10 mM ammonium acetate, pH 9.23 using
ammonium hydroxide) and polar phase B (acetonitrile:
water mixed in the ratio 1 : 9, 10 mM ammonium acetate,
pH 9.23 ammonium hydroxide). A linear gradient with
flow rate of 200 µl/min was set as follows: 0–1 min: 0% B,
1–32 min: 77.5% B, 32–36 min: 77.5% B to 100% B, 36–
40 min: hold at 100% B, 40–50 min: 100% B to 0% B, 50–
65 min: re-equilibration with 0% B [107]. An injection
volume of 5 µl was used for all the samples and standards.
4.9.4. Metabolomics data analysis

The data from the machine was processed using the software
package Xcalibur 4.3 (Thermo Fisher Scientific) Quan Brow-
ser. A semi-quantitative analysis was performed using peak
heights of precursor ions with a signal/noise (S/N) ratio of
more than 3, a retention time window of less than 60 s, and
less than 5 ppm mass error. The peak heights of the samples
were normalized to the peak height of the internal standards
to obtain a height ratio. Only those metabolites were retained
for analysis, which had naturally occurring 12C peak height
less than approximately 10% of the 13C-labelled peak height
in the internal standard. MetaboAnalyst [109] was used for
identifying statistically significant metabolites on biomass
normalized and g-log-transformed metabolite concentrations.
Missing value imputation was performed using SVD impute
function before normalization. The concentration of metab-
olites is expressed as height ratio normalized to biomass (as
height ratio/gDCW). Metabolite levels with false discovery
rate (FDR) less than 0.05 and≥ 1.2-fold change in concen-
trations (in both directions) were considered for further
analysis. In the heatmaps generated based on log2 fold
change of metabolites, only those metabolites with FDR <
0.05 in atleast one condition were retained for comparative
analysis (the same metabolite with FDR > 0.1 in other con-
ditions were not considered).
4.10. ME model simulation and proteome fraction
estimation

The ME model [79,80] was simulated to generate a protein-
coding gene list, by constraining the GURs in a range as
reported previously [36]. Any gene predicted to be expressed
in any of the 20 simulations was classified as ‘M-sector’;
genes within the scope of the ME model but not expressed
or having very low expression (low protein synthesis flux)
are classified as ‘U-sector’. Next, only the DE genes in atleast
one condition (i.e. Δcrp versus WT, EvoCrp versus Δcrp, and
EvoCrp versus WT) were combined and enriched for M-
sector and U-sector gene list. Genes encoding ribosome-
affiliated proteins were not considered in this categorization.
Next, the theoretical estimation of proteome fraction for all
these genes was done from proteome mass calculation [82]
and using previously reported protein copies per cell [81].
The proteome fractions were estimated assuming the TPM
values yield the proteome fraction in WT and a constant
mRNA to protein translation efficiency rate across the strains.
Majorly, genes having reported protein copy per cell values
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were used to represent M and U-sectors. The calculation of
missing protein copies per cell for genes was performed as
described previously [82]. This was followed by summing
the proteome fractions of all M-sector and U-sector genes.
These fractions were depicted as percentages after calcu-
lations using the growth law equation. The U/M ratio was
obtained by dividing the U-sector and M-sector proteome
fractions (electronic supplementary material, file S1).

4.11. Total RNA and total protein (R/P) estimation
Untreated total RNA was extracted in the mid-exponential
phase using TRIzol-chloroform as mentioned previously
[33,44,95] from two biological replicates (n = 2). Total protein
was extracted and estimated in the mid-exponential phase
using a protocol described previously [31,33] from two bio-
logical replicates (n = 2). The R/P (μg/μg) was calculated
from total RNA concentration (μg ml−1) and the total protein
concentration (μg ml−1) after normalizing to its respective OD
at 600 nm and gram (dry cell weight) conversion factor (0.44
mg ml−1).

4.12. Calculation of non-growth ATP maintenance
The experimentally measured growth rates, glucose uptake,
acetate secretion and OURs were used as flux constraints in
the iJO1366 metabolic model [110]. Constrained-based flux
balance analysis was performed using COBRApy [111] by
maximization of ATPM reaction flux. This predicted ATPM
flux was normalized to glucose uptake flux to calculate the
yield (g ATP per g glucose) for each of the strains. The pre-
dicted ammonia uptake rates were obtained from this flux
distribution.

4.13. Promoter prediction analysis
Prediction of CRP binding sites was performed using the
FIMO tool (5.4.1) from the MEME suite. The consensus
motif used for the analysis was ‘WTBKBKVNNNNNNTMA-
CANW’ where W is A/T, B is any base except A, K is G/T, V
is any base except T, M is A/C and N is any of the four bases.
The consensus motif was determined from the position-
weight matrix from previously identified binding sites
[9,10]. Statistically significant motifs (p < 0.01) were retained
such that the binding sites were strictly within 250 bp
upstream of the transcription start site of the target gene.
Any motif found within the coding region of any gene was
excluded from the analysis.
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