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We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist
clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient’s response to
the therapy. We propose a unified gravitational fuzzy clustering-based segmentation algorithm, which integrates the
Newtonian concept of gravity into fuzzy clustering. We first perform fuzzy rule-based image enhancement on our
database which is comprised of T1/T2 weighted magnetic resonance (MR) and fluid-attenuated inversion recovery
(FLAIR) images to facilitate a smoother segmentation. The scalar output obtained is fed into a gravitational fuzzy
clustering algorithm, which separates healthy structures from the unhealthy. Finally, the lesion contour is automatically
outlined through the initialization-free level set evolution method. An advantage of this lesion detection algorithm is its
precision and its simultaneous use of features computed from the intensity properties of the MR scan in a cascading
pattern, which makes the computation fast, robust, and self-contained. Furthermore, we validate our algorithm with
large-scale experiments using clinical and synthetic brain lesion datasets. As a result, an 84%–93% overlap performance
is obtained, with an emphasis on robustness with respect to different and heterogeneous types of lesion and a swift
computation time.

1. Introduction

In broad terms, “brain lesion” can be defined as an abnor-
mal damage or change in the brain tissue; this can be
caused by injury, infection, exposure to certain chemicals,
problems with the immune system, and many other fac-
tors. Due to their location, at the center of thought, phys-
ical function, and emotion, brain lesions are difficult to
diagnose and treat. However, thanks to recent advances

in magnetic resonance imaging and computing, brain
lesion diagnosis has made a great leap. The algorithm pre-
sented in this paper could make a huge impact in both
diagnosing and monitoring processes. It can detect dam-
aged or unhealthy regions on MRI scans and delineates
them with high precision. This facilitates the decision
making and the planning of surgical removal of the lesion
(if necessary and possible). It also allows one to apply spa-
tially localized radiotherapy, for example, Cyberknife and
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iMRT [1–3], which in current clinical practice is usually
done manually on both contrast-enhanced T1-weighted
or FLAIR images. Most of the medical imaging modalities
give out images of gray scale intensities, including MRIs.
These images are subject to noise, artifacts, and poor res-
olution and contrast due to instrument and reconstruction
algorithm limitations or even patient movement. Conse-
quently, auto-detection becomes so challenging that the
algorithm advantages and disadvantages may vary depend-
ing on the properties of the image under examination.
Therefore, due to the image deterioration factors men-
tioned, it is hard to develop a standard approach capable
of working with all types of MR images [4]. As a result,
trade-offs have always been present in computer-aided
diagnosis systems. Yet, comparing our unified fuzzy-hard
clustering-based system against classical approaches based
on methods like classifier, region growing, neural net-
works, deformable models, and so forth, a big advantage
of our approach is recognized especially when dealing with
the deteriorating factors mentioned [5]. In Section 2, we
present our framework for lesion detection. Starting with
a brief background of fuzzy sets, we will show how this
theory can be exploited to enhance the inhomogeneous
MR images by adapting appropriate fuzzy rules [6]. Next,
we will give an outline of the segmentation method used,
which is based on a novel gravitational fuzzy clustering
concept and level set evolution that defines the final loca-
tion, shape, and size of the lesion. Experiments and evalu-
ation studies that were carried out on both synthetic and
expert-segmented data sets are presented in Section 3.
We will then finish the paper with a discussion and a con-
clusion in Section 4.

2. Fuzzy and Gravitational Methods Proposed

2.1. The Proposed Fuzzy Set-Based MR Image Enhancement.
Accurate diagnosis of brain lesions depends upon the quality
of the MR scan; in particular, on the visibility of small, low-
contrast objects within the brain image. Unfortunately, the
contrast between these objects is often so low that the detec-
tion of some abnormalities becomes difficult, especially when
dealing with dense tissues. To deal with this issue, contrast
enhancement is normally carried out on original images
before the detection process can take place.

A detailed investigation on image enhancement carried
out by Bankman [7], González and Woods [8], Shih [9],
and Russ [10] shows that classical methods like negative
transformation, Log, Gamma, contrast stretching, or
histogram-based transformations work effectively in enhanc-
ing ordinary images; however, when applied to MR images,
they bring about tradeoffs between the enhancement and
image detail preservation due to the loss of some basic
characteristics in the original image histogram, as it is pro-
nounced in Figure 1.

After an intensive study of MR image enhancement tech-
niques, we came up with a much better method based on
adapting fuzzy rules. This technique did correct the above-
mentioned drawback; it has achieved this by enhancing the
contrast of features of interest and improving the visibility
of diagnostic details without creating artifacts or losing image
details as a whole. To get a better understanding of this tech-
nique, we have to go back to the fuzzy set theory.

Normally, in set theory, we are used to the so called
crisp sets whose membership can only be true or false in
the traditional sense of bivalued Boolean logic. This classical
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Figure 1: Corresponding histograms.
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set theory has limited use in practical applications due to its
lack of flexibility [11]. Thus, Professor Zadeh proposed a
more successful theory of fuzzy sets that introduced the idea
of partial memberships described by membership functions
[11]. Suppose Z is a set of elements, and each element is
denoted by z, that is, z ∈ Z. A fuzzy subset A in Z is character-
ized by a membership function, μA z , so

A = z, μA z z ∈ Z 1

When the variables are continuous, A in this equation
can have an infinite number of elements. When the values
of z are discrete, the elements of A can be shown explicitly.
The formalization of the problem into fuzzy rules consists
in finding a way to increase the contrast of certain tissues in
the brain, while leaving other tissues quasi-untouched to
accentuate the difference between these tissues, so the follow-
ing fuzzy rule is proposed:

Fuzzy Rule 1: IF a pixel is dark, THENmake it darker OR,
Fuzzy Rule 2: IF a pixel is gray, THENmake it gray OR,
Fuzzy Rule 3: IF a pixel is bright, THENmake it brighter

2

The first antecedent of the fuzzy rule will seek to relate
the fuzzy set dark to the set darker (the two sets are repre-
sented in blue in Figure 2), and the consequence is achieved
using a fuzzy AND operation, implemented through a min
operation [11], as shown in

μ1 z, y =min μdark z , μdarker y , 3

where z and y are scalar values representing the intensity
levels of the pixels in the input and output fuzzy sets, respec-
tively. z0 denotes a specific intensity level in the interval near
to the visible black color spectrum. The degree of member-
ship of the dark set component in response to this input is
a scalar value μdark z0 . We find the output corresponding

to the first part of the fuzzy rule, and this specific input,
by performing the AND operation between μdark z0 and
the general result μ1 z, y , evaluated also at z0, so therefore,

Q1 y =min μdark z0 , μ1 z0, y , 4

where Q1 y denotes the fuzzy output value due to the first
part of the fuzzy rule and a specific input z0. Using the same
line of reasoning, we obtain the fuzzy responses due to the
other antecedents and consequences along with the input
z0, which are as follows:

Q2 y =min μgray z0 , μ2 z0, y ,

Q3 y =min μbright z0 , μ3 z0, y
5

These equations represent the result of the implication
process. We should keep in mind that each of these responses
is given in a fuzzy set, even though the input is a scalar value.

The application of aggregation method to the above fuzzy
sets to obtain the overall response generated by the rule is
carried out, and this is achieved through an OR operation
as suggested by the proposed fuzzy rule base, that is,

Q y =max
r

min
s

μs z0 , μr z0, y , 6

r = 1, 2, 3 being the number of fuzzy outputs and s= {dark,
gray, bright}. We can see that the overall response is the
union of the three individual fuzzy sets. And this is the com-
plete output corresponding to a specific input. But we are still
dealing with a fuzzy set, so the last step is to obtain a crisp
output y0. This is achieved through defuzzifying the final
output fuzzy set Q obtained above; that is, obtaining a crisp,
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scalar output brought in through computing the center of
gravity of Q, that is,

y0 =
〠p

y=1yQ y

〠p

y=1Q y
, 7

y0 being the crisp output, p being the number of all possi-
ble values that Q y in (6) may have, and y being a scalar
value representing the intensity levels of the pixels in output
fuzzy sets.

In this way, we are able to achieve dynamic range
expansion of the contrast in an efficient way using simple
computation operations to conditionate the image to the
future processes.

2.1.1. Experimental Results of the Contrast Enhancement.Our
contrast enhancement experiment was carried out using
different images from different MRIs, and the proposed
fuzzy set-based technique proved to be the most effective
and this can be proven by the histogram shapes obtained
in Figure 1. By examining the outcome of our method
and comparing it to that of other classical methods, a clear
difference is noted.

Let us now examine our results. Figure 3(a) shows an
image whose intensities span a narrow range of the gray scale,
as the histogram in Figure 1(a) reveals. The next result is an
image with low contrast; Figure 3(b) is the result of using
the histogram equalization to increase image contrast. As
shown by the histogram in Figure 1(b), the gray scale was a
bit spread out, but shifted to the right, and it completely lost

the shape of the histogram of the original image. The result
was an image with an overexposed appearance. We can see
that it would be quite difficult to distinguish the healthy from
the unhealthy tissues due to some gray details that are lost. As
we can see in Figure 3(c), the result of the proposed method is
an image having increased contrast and a rich tonality. The
reason for this improvement can be explained by examining
the histogram in Figure 1(c). Unlike the histograms produced
by other techniques, this histogram has kept the same basic
characteristics of the histogram of the original image [8].
And the spread of the gray scale occurred in all directions
and this applies to all MR images tested. As for the gamma
and Log transformations, we can see that a lot of details were
lost, as proved by their histograms. Contrast stretching was a
bit more productive, but its histogram lacked stretching and
this resulted in a negligible enhancement.

2.2. Lesion Detection Process through Segmentation. Gener-
ally, the principal goal of segmentation is to partition an
image into regions (also called classes or subsets) that are
homogeneous with respect to one or more characteristics or
features [11]. This is very important in medical imaging,
since it allows feature extraction, image measurement, and
display. Most importantly, it permits the classification of
image pixels into anatomical or pathological regions such
as lesion and tissue deformities, amongst others.

2.2.1. Unified Gravitational Fuzzy Clustering (UGFC). Some
ground-breaking MR image segmentation approaches have
been developed by the most prominent researchers and run
on modern processors. These include the work by Prastawa

(a) Original image (b) Histogram equalized (c) Proposed method

(d) Gamma transformation (e) Contrast stretching (f) Log transformation

Figure 3: Comparison of different enhancement methods.
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et al. [12] who, with their automatic, multimodal, atlas-based
method, have reported 86.7% average overlap on a small
dataset of three patients with an average 1.5 h processing
time. In a recent study, Hamamci et al. [13] reported an
80%–90% overlap performance, with their method named
“Tumor-cut,” which is based on the cellular automata (CA)
algorithm. A serious drawback with this method, however,
is that it requires diameter drawing initialization, which
raises its computation time to about 16 minutes and prevents
it from being fully automatic. Menze et al. [14] reported 60%
average overlap on 25 glioma patients with their method
which is based on the discriminative random decision forests
framework. Gooya et al. [15] reported 74.5% average overlap
on 15 glioma patients with about 6–14 hours of processing
time, with their methods which are based on EM algorithm.
Geremia et al. [16] adopted a discriminative random decision
forest framework that gave good results in high-quality MRI
with low noise level and high resolution. Another interesting
work was by Liu et al. [17] who used the classical fuzzy
clustering-based method and reported a 95.6% average over-
lap on a well-performing five-patient dataset of FLAIR
images. The latter method needed intensive user interaction
and correction at least 8.4 minutes per patient. Most recently,
Shen et al. [18] extended the Fuzzy C-Means (FCM)
approach by introducing an additional term describing the
distance between the fuzzy membership and the prior tissue
probability maps; they used a simulated image dataset, and
an overlap varying from 34% to 79% was reported, depend-
ing on the signal reduction.

In this paper, we are proposing a novel segmentation
method based on a combined hard and fuzzy clustering
framework. This method adopts the Newtonian gravity con-
cept from a clustering perspective in order to hard-cluster
image pixels that otherwise could unnecessarily be assigned
membership to clusters that they categorically do not belong
to. However, this method fuzzy-clusters those pixels that are
located in controversial areas in order to optimize the partial
volume effect handling. The result is a well-defined region of
interest (ROI) that is made up of unhealthy tissues on theMR
image under consideration.

Generally, Newton’s gravity law can be formulated as
follows:

F = l
m1 ⋅m2

d2
8

F denotes the gravity force between object 1 with mass m1
and object 2 whose mass is m2, d represents the distance
between the two objects, and l is a coefficient that takes the
place of Newton’s constant; we set l = 2 for computational
convenience. To apply this law effectively, we make the fol-
lowing assumptions:

(i) The quality of each pixel is 1.

(ii) m t
i pixels have been clustered into cluster i at

time t.

(iii) Each pixel belonging to a cluster has the same poten-
tial, that is, equal preference.

All pixels in a cluster flow into an object whose mass is
equal to the number of these pixels. Based on the above
assumptions, the gravity force F t between kth pixel and
ith cluster will be

F t = l
1 ×m t

i

d2
=
2mt

i

d2
=

2mt
i

xk − vi
2 9

xk is the kth pixel and vi is the ith cluster center.
Now, we will define the gravitational clustering objective

function (JGC) that should be minimized:

JGC = 〠
c

i=1
〠
xk∈Si

d2 xk, vi , 10

where Si denotes the set of pixels clustered to ith cluster and c
stands for the total number of clusters in consideration. Now,
as stated in [19], the standard Fuzzy C-Means objective func-
tion (JCM) is defined as

JCM 〠
c

i=1
〠
N

j=1
μij

w
dij

2 11

N is the number of pixels, and μij is the membership of jth
pixel in the ith cluster and is defined as

μ
t+1
ij = 〠

c

k=1

d t
ij

d t
kj

2/ w−1 −1

, with〠
c

i=1
μij = 1, 12

where t is the iteration number, w being the fuzzifier, and w ∈
(1.4, 2.6), as was recently proven by Ozkan and Turksen [20]
in their study based on Taylor expansion analysis of the
membership value calculation function. In our experiment,
w was chosen to be 1.7 and 1.8 since these two numbers
gave the best clustering. For our three datasets, the effect
of this parameter on the segmentation performance in terms
of Dice overlap measure is plotted in Figure 4. Now, we will
define an integrated gravitational fuzzy clustering objective
function (JGFC):

JGFC = JGC ⋅ JCM 13
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Taking the first derivatives of JGFC with respect to vi and
setting them to zero results in the following linear systems:

∂JGFC
∂vi

= JCM ⋅
∂JGC
∂vi

+ JGC ⋅
∂JCM
∂vi

= 0 14

Based on these equations, the integrated gravitational
fuzzy clustering algorithm is structured as indicated in
Figure 5. ρ being the convergence criterion, in our experi-
ments, it was set to 0.01. It should be noted that the kernel
estimator of the image histogram which was used in defining

Start

Set both the number of clusters c and the
sensitivity parameter �훼 (according to
medical specialist opinion)

Find a critically smoothed kernel estimator
of the image histogram using (18)

Find the statistical modes of critically
smoothed kernel estimator with the number
of modes = c

Initialize cluster Si

If d2(xj,vk) < �훼

If vi
(t+1)– vi

(t) ≤ �휌

d2(xj,vk) d2(xj,vk)

TrueFalse

Assign xj to cluster Sk

Assign xj to cluster Sk

Find cluster Si that satisfies

2mi

(t) (t)

= maxk
2mk

Compute �휇ij of each pixel in each cluster
using (15)

Compute JCM using (14)

Compute the next iteration centroids by
solving (17)

Stop

True

False

Compute JGC using (13)

Figure 5: UGFC algorithm flow diagram.
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initial centroids, that is, v 0 = v 0
1 , v 0

2 ,…, v 0
C

t
, at t = 0, is

defined as

p̂ x =
1
Nh

〠
N

j=1
ψ

x − xj
h

, 15

where ψ is the kernel function—a Gaussian function with
zero mean and variance equal to 1; N is the total number of
pixels; x represents the intensity levels; and h ∈ (0, 50) is
the bandwidth. Moreover, the critical h(hcrit) is defined as
the minimum value of h such that p̂ has c modes that corre-
spond to the number of clusters.

2.2.2. Level Set Evolution on a Constructed Region of Interest.
The contour definition of the constructed region of interest
(ROI) which is based on the level set evolution without rein-
itialization constitutes an important part of our proposed
method. This is because the clinical expert segmentation,
particularly in neuroimaging, mainly outlines the edges of
the ROI using manual contouring, for either surgery plan-
ning, radiotherapy, or treatment response analysis [21, 22].
A variational formulation was proposed which consists of
an internal energy term that penalizes the deviation of the
level set function from a signed distance function, along with
an external energy term that drives the motion of the zero-
level set toward the ROI boundaries set by the GFC algo-
rithm. This approach had the following advantages over the
classical level set formulation [23, 24]:

(i) The contours represented by the level set function
could break or merge naturally during the evolution,
and the topological changes are thus automatically
handled.

(ii) The level set function always remains a function on a
fixed grid, which permits efficient numerical
schemes (a finite difference scheme in our case).

(iii) Due to the internal energy, the level set function
(LSF) is naturally and automatically kept as an
approximate signed distance function during the
evolution. Consequently, reinitialization is avoided.

Traditionally, ifΩϕ is a subset of the Euclidean space with
a smooth boundary, then the signed distance function (SDF)
of this subset is differentiable practically everywhere, and its
gradient satisfies the Eikonal equation [25], that is,

∣∇ϕ∣ = 1 16

So, any function ϕ satisfying this property is a SDF plus a
constant. Now, we propose the following integral:

P ϕ =
1
2 Ω

∇ϕ − 1 2dxdy, 17

as a metric that defines how close ϕ is to a SDF in Ω ⊂R2 and
we call it “internal energy.” Having P ϕ on our disposal, we
then propose the following variational formulation:

ε ϕ = βP ϕ + εm ϕ , 18

β ∈ [0.04, 0.1] is a parameter controlling the effect of penaliz-
ing the deviation of ϕ from a SDF, and εm ϕ is the external
energy that drives the motion of zero level curve of ϕ and
depends upon the image data.

Now, we consider ∂ε/∂ϕ as being the Gateaux derivative
of ε [26], and the evolution equation,

∂ϕ
∂t

= −
∂ε
∂ϕ

, 19

becomes the gradient flow that minimizes ε. Let I be the
image generated by the GFC algorithm and g the edge indi-
cator function that regularizes ε ϕ in order to stop level set
evolution near the optimal solution [27]. The latter is
defined as

g =
1

1 + ∇Gσ ∗ I
2 , 20

where Gσ is the Gaussian kernel with standard deviation σ.
We then define external energy for ϕ x, y as

εg,λ,v ϕ = λLg ϕ + vAg ϕ , 21

with

Lg ϕ =
Ω
gδ ϕ ∣∇ϕ∣dxdy, 22

and

Ag ϕ =
Ω
gH −ϕ dxdy, 23

where λ ∈ [2,6] and v ∈ [1, 3.5] are constants, δ is the univar-
iate Dirac function, and H is the Heaviside function. So, the
total energy becomes

ε ϕ = βP ϕ + εg,λ,v ϕ 24

Now, to understand the geometrical meaning of Lg ϕ ,
suppose that the zero level set of ϕ is represented by
a differentiable parameterized curve K(τ) with τ ∈ [0, 1].
Then, according to Vemuri and Chen [23], Lg ϕ computes
the length of the zero level curve of ϕ in the conformal
metric ds = g K τ ∣K τ ∣dτ. Note that when function g
is a constant one, Ag ϕ becomes the area of the region
Ωϕ = x, y ∣ϕ x, y < 0 [28]. v of Ag should be positive if
the initial contours are placed outside the ROI and negative
when they are placed inside, to speed up the contraction or
the expansion, respectively. By calculus of variations, the
Gateaux derivative of ε ϕ can be written as [26]

∂ε
∂ϕ

= −β Δϕ − div
∇ϕ
∇ϕ

− λδ ϕ div g
∇ϕ
∇ϕ

− vgδ ϕ

25
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Therefore, the function ϕ that minimizes this function
satisfies the Euler-Lagrange equation:

∂ε
∂ϕ

= 0 26

So, the gradient flow that minimizes ε is

∂ϕ
∂t

= −β Δϕ − div
∇ϕ
∇ϕ

+ λδ ϕ div g
∇ϕ
∇ϕ

− vgδ ϕ ,

27

which is the evolution equation of the level set function in the
proposed algorithm. To explain the effect of the first term in
the right-hand side of equation above, that is, βP ϕ which is
the internal energy, we notice that the gradient flow:

Δϕ − div
∇ϕ
∇ϕ

= div 1 −
1
∇ϕ

∇ϕ , 28

has the factor 1 − 1/ ∇ϕ as its diffusion rate. If ∇ϕ > 1,
the diffusion rate is positive and the effect of this term is
the usual diffusion, that is, making ϕmore even and therefore
reduce the gradient ∇ϕ If ∇ϕ > 1, then the term has effect
of reverse diffusion and therefore increases the gradient [29].

3. Evaluation and Experimental Results

Quantitative and qualitative validation studies of the devel-
oped method were conducted over three different datasets.
These sets comprise multimodal MR images (T1, T1Gd, T2,

and FLAIR) of 80 low-grade and high-grade gliomas from
synthetic and real patient cases, with 1mm of isotropic reso-
lution. These datasets were obtained from the following:

(i) University of Utah database [30]: Synthetic brain
tumor datasets were used in the first part of valida-
tion. This data simulates contrast-enhanced T1-
weighted MR images with synthetically generated
tumors. The tumor probability maps and levels of
intensity nonuniformity (bias field) are also avail-
able. This dataset is included in the performance
evaluations since the ground truth segmentation is
readily available.

(ii) Real MR images with ground truth from Kitware
database (KIT) [31]: KIT offers both synthetic and

(a) (b)

(c) (d)

(e) (f)

Figure 7: FLAIR images (a, d), T1-Gad ground truth (b, e), and T1-
Gad proposed method (c, f). KIT001 (a, b, c) and KIT002 (d, e, f).

(a) Patient MR (b) Segmentation by [30]

(c) Segmentation by proposed

method

(d) Hypertense part of

the lesion

Figure 6: Lesion contour calculation.
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real brain images with manually guided expert seg-
mentation results.

(iii) Brain tumor datasets obtained from our INNN: A
large dataset of brain tumor/lesion patients, who
received treatment from the Instituto Nacional de
Neurología y Neurocirugía (INNN), Mexico, was
utilized in the second set of experiments. As a
ground truth for our segmentation phase, we used
the tumor contours outlined manually by a radio-
oncology specialist in the same hospital. These
images were both T1-weighted and FLAIR modali-
ties, and they provided an effective way to suppress
cerebrospinal fluid (CSF) to bring out periventricu-
lar hyperintense lesions. It is worth mentioning that
a 1.5T MRI scanner located at INNN was used to
generate the images.

To evaluate the segmentation quantitatively, we used
the Jaccard coefficient (R) and the Dice overlap (D) [32],
for similarity measurement and sensitivity (Se) and speci-
ficity (Sp) for success and error rate measurements [33].
These measures can be expressed as

R T , S =
T ∩ S
T ∪ S

=
TP

TP + FP + FN
, 29

D T , S =
2 T ∩ S
T + S

=
2 TP

TP + FP + FN
, 30

Se =
TP
T

=
TP

TP + FN
, 31

Sp =
TN
T

=
TN

TN + FP
, 32

where T=ground truth, S=pixels labelled by the algorithm,
TP= true positive, FP= false positive, and FN= false negative.
As was previously mentioned, experiments were conducted
on both real and synthetic images.

Figure 6 shows the same challenging patient’s MR image
demonstrated in Figure 2, whose contrast is very poor and
has very small intensity shift along the lesion edges, making
the detection more complex. This can be witnessed in
Figure 2(b), where after the enhancement, detection was car-
ried out by a robust system described in [33] and ended up
being misleading due to the intensity inhomogeneity present
in the image. However, by applying the proposed method,
the lesion was detected with greater accuracy, as seen in
Figure 6(c). This improvement owes a lot to the hard-fuzzy

(a) (b)

(c) (d)

(e) (f)

Figure 8: T1-image (a, b), ground truth (c, d), and proposed
method (e, f). INNN1 (a, c, e) and INNN2 (b, d, f).

Table 1: Performance criteria of the proposed method applied on
synthetic images from Utah database: Dice, Jaccard, sensitivity,
and specificity score.

ID Dice Jaccard Sensitivity Specificity

Syn001 0.467 0.341 0.654 0.993

Syn002 0.324 0.284 0.525 0.991

Syn003 0.545 0.439 0.713 0.997

Syn004 0.442 0.322 0.611 0.991

Syn005 0.449 0.328 0.613 0.994

Syn006 0.621 0.564 0.784 0.998

Syn007 0.578 0.458 0.733 1

Syn008 0.233 0.169 0.499 0.989

Syn009 0.669 0.587 0.795 0.999

Syn010 0.611 0.536 0.743 0.997

Syn011 0.378 0.381 0.416 0.987

Syn012 0.558 0.431 0.701 0.992

Syn013 0.471 0.351 0.662 0.995

Syn014 0.342 0.299 0.546 0.994

Syn015 0.482 0.359 0.666 1

Mean 0.478 0.390 0.644 0.994

Standard deviation 0.122 0.114 0.109 0.004
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clustering, which reflects the gravity concept. Generally, in
classical fuzzy clustering, all pixels in an image are assigned
a membership to every structure, regardless of the magnitude
of the corresponding membership. This makes it easier, as we
discovered in our experiment, for some pixels to be misclas-
sified especially when they fall into the intensity range of the
structure. For this reason, when considering the presence of
some random intensity-inhomogeneities that are spread
across the image and physically linked not to the tissue prob-
lem but rather to the radiofrequency MR signal, one needs
not only to consider the intensity level of the pixel but also
its spatial location in order to guarantee a proper clustering.
Spatial location of pixels is of great importance because it
helps us carry out a gravitation-based clustering in areas
where fuzzy clustering is not suitable. For instance, pixels at
the center of WM/GM tissues could unnecessarily be
assigned membership to other tissues that they do not in fact
belong to; this is why it is preferable that they are hard-
clustered. Applying the gravitation concept, these same pixels
will attract all the other pixels located not far from this neigh-

borhood as long as d2 is small enough andm t
i is big enough

to outweigh the attraction by other clusters. Moreover,
they will be joined together to form a stronger cluster as
was explained in the algorithm. On the other hand, pixels
located in the intersection zone of tissues, which have an
intensity range that could make them fit in any of these
tissues, would do better if fuzzy-clustered. This would
eliminate every sort of uncertainty, take care of partial vol-
ume effect, and reach optimal state more promptly. The
advantages of this gravitational fuzzy clustering phenome-
non can be explicitly witnessed in Figure 6(c), where all the
pixels wrongly assigned to the lesion in Figure 6(b) just
because their intensity range matched that of the lesion were
discounted in Figure 6(c) not because of their intensity but
because of their spatial location.

The same scenario can be witnessed in Figure 7 where
each of the two FLAIR images on the top row carries a
lesion on the left frontal lobe, but there is also a seemingly
detectable lesion on the right frontal lobe. However, the
algorithm disregarded it, despite its convincing intensity
range, which is in accordance with the ground truth in
the second row.

Table 3: Performance criteria of the proposed method applied on
high-grade/low-grade tumor images from INNN: Dice, Jaccard,
sensitivity, and specificity score.

ID Dice Jaccard Sensitivity Specificity

INNN001 0.942 0.851 0.943 1

INNN002 0.899 0.785 0.926 1

INNN003 0.907 0.839 0.938 1

INNN004 0.860 0.763 0.918 1

INNN005 0.968 0.882 0.978 1

INNN006 0.801 0.701 0.880 1

INNN007 0.795 0.699 0.834 1

INNN008 0.807 0.731 0.890 1

INNN009 0.861 0.725 0.914 1

INNN010 0.842 0.711 0.906 1

INNN011 0.828 0.701 0.886 1

INNN012 0.837 0.707 0.901 1

INNN013 0.871 0.765 0.933 1

INNN014 0.933 0.831 0.940 1

INNN015 0.911 0.876 0.939 1

INNN016 0.907 0.855 0.927 1

INNN017 0.732 0.658 0.811 1

INNN018 0.790 0.684 0.839 1

INNN019 0.801 0.713 0.846 1

INNN020 0.951 0.873 0.967 1

INNN021 0.511 0.440 0.816 0.901

INNN022 0.887 0.778 0.949 1

INNN023 0.819 0.718 0.850 1

INNN024 0.918 0.877 0.942 1

INNN025 0.851 0.728 0.944 1

Mean 0.850 0.756 0.905 0.996

Standard deviation 0.091 0.097 0.048 0.019

Table 2: Performance criteria of the proposed method applied on
low-grade/high-grade images from Kitware: Dice, Jaccard,
sensitivity, and specificity score.

ID Dice Jaccard Sensitivity Specificity

KIT001 0.742 0.611 0.793 0.999

KIT002 0.843 0.703 0.852 1

KIT003 0.798 0.731 0.884 1

KIT004 0.738 0.601 0.785 0.993

KIT005 0.913 0.852 0.908 1

KIT006 0.822 0.765 0.925 1

KIT007 0.877 0.797 0.932 1

KIT008 0.932 0.868 0.958 1

KIT009 0.668 0.526 0.790 0.994

KIT010 0.880 0.798 0.912 1

KIT011 0.929 0.862 0.947 1

KIT012 0.757 0.630 0.818 0.999

KIT013 0.862 0.756 0.924 1

KIT014 0.893 0.828 0.939 1

KIT015 0.971 0.890 0.975 1

KIT016 0.778 0.661 0.792 1

KIT017 0.832 0.758 0.922 1

KIT018 0.840 0.748 0.852 1

KIT019 0.952 0.898 0.968 1

KIT020 0.722 0.665 0.825 0.996

KIT021 0.852 0.795 0.925 1

KIT022 0.902 0.838 0.928 1

KIT023 0.834 0.769 0.923 1

KIT024 0.898 0.841 0.944 1

KIT025 0.618 0.478 0.750 0.992

Mean 0.834 0.747 0.887 0.999

Standard deviation 0.088 0.112 0.067 0.002
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Figure 8 portrays the segmentation results for the two
high-grade gliomas, and we can see that the UGFC results
in the third row perfectly match the ground truth in the
second row. As mentioned before, evaluation studies were
carried out using (29), (30), (31), and (32). Furthermore,
performance measures, that is, Dice overlap, Jaccard, sensi-
tivity, and specificity between the ground truth segmentation
and the result of the algorithm are reported in Tables 1, 2,
and 3 for both synthetic and clinical datasets. Good results
on real MR images were obtained as can be seen in Tables 2
and 3, which demonstrate the performance on Kitware data-
sets and Instituto Nacional de Neurología y Neurocirugía

datasets. However, this was not the case on synthetic images.
Figure 9 shows some synthetic MR images from the Univer-
sity of Utah database where the detection was successful;
however, as demonstrated in Table 1, a poor overlap perfor-
mance was obtained due to a misleading ground truth. Nev-
ertheless, based on visual inspection, one can see that the
detection was good enough. Figure 10 shows more challeng-
ing cases of patients with multiple sclerosis (INNN17,
INNN21), where the intensity spectrum of the lesion almost
matches that of the healthy tissues. Moreover, the lesions
present a high degree of discontinuity which was a big
challenge to this algorithm, thereby resulting in a very poor

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9: MR images of the synthetic dataset. syn001 (a, b, c, d), syn002 (e, f, g, h), and syn003 (i, j, k, l). Original image (a, e, i), ground truth
(b, f, j), GFC-result (c, g, k), and final result (d, h, l).
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performance as can be seen in Table 1 where INNN17 has a
0.732 overlap and INNN21 has a 0.511 performance. We also
compared the proposed method against the Automated

Lesion Detection on MRI Scans Using Combined Unsuper-
vised and Supervised Methods by Guo et al. [34] and Multi-
plicative Intrinsic Component Optimization (MICO) [35]
method by Li et al., and their results are reported in
Figures 11, 12, and 13.

Finally, Figure 14 shows two KIT images processed by the
proposed method and the Multiplicative Intrinsic Compo-
nent Optimization (MICO), and it can be seen that a visual
inspection witnesses a much more precise detection by our
method than the MICO method. We should emphasize that
the intensity inhomogeneity presented in Figure 14 did con-
fuse the MICO method, which went even beyond the lesion
contour. Yet, our method got it right.

4. Discussion and Conclusions

We presented a brain lesion detection algorithm along with
validation studies over a synthetic lesion dataset and two real
datasets: one from Kitware Repository and another from a
clinical database of tumors that underwent radiosurgery
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Figure 12: Comparison of the proposed method against CUS and
MICO methods as carried out on the Kitware dataset.
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Figure 13: Comparison of the proposed method against CUS and
MICO methods as carried out on INNN dataset.
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Figure 11: Comparison of the proposed method against CUS and
MICO methods as carried out on the synthetic dataset.

(a) (b)

(c) (d)

(e) (f)

Figure 10: Multiple sclerosis cases. INNN17 (a, c, e) and INNN21
(b, d, f). Original image (a, b), ground truth (c, d), and proposed
method (e, f).
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planning at Instituto Nacional de Neurología y Neurocirugía
de México (INNN). The performance over these datasets of
highly heterogeneous tissue content demonstrated an aver-
age overlap of 0.83 and 0.85. However, a poor performance
of 0.48 was registered in synthetic MR images from the Utah
database, mostly due to the poor ground truth presented. In
all cases, the proposed algorithm provided superior quality
segmentation when compared to the benchmark algorithms.
On an average, the proposed automated algorithm takes
about 8 seconds (measured using MATLAB R2007b on a
3.00GHz, dual processor) in comparison to 21 and 12 sec-
onds taken by the MICO and CUS respectively. Strengths
of the proposed method include its automatic nature, its effi-
ciency in terms of computation time, and its robustness with
respect to different and heterogeneous lesion types. Another
important aspect to consider is that the algorithm can work
on different MR modalities.
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