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Abstract: The COVID-19 pandemic has led to over
100 million infections and over 3 million deaths world-
wide. Understanding its pathogenesis is crucial to
guide prognostic and therapeutic implications. Viral
infections are known to alter the lipid profile and
metabolism of their host cells, similar to the case with
MERS and SARS-CoV-2002. Since lipids play various
metabolic roles, studying lipid profile alterations in
COVID-19 is an inevitable step as an attempt to
achieve better therapeutic strategies, as well as a
potential prognostic factor in the course of this disease.
Several studies have reported changes in lipid profile
associated with COVID-19. The most frequently
reported changes are a decline in serum cholesterol
and ApoA1 levels and elevated triglycerides. The
hyper-inflammatory state mediated by the Cytokine
storm disturbs several fundamental lipid biosynthesis
pathways. Virus replication is a process that drasti-
cally changes the host cell’s lipid metabolism program
and overuses cell lipid resources. Lower HDL-C and
ApoA1 levels are associated with higher severity and
mortality rates and with higher levels of inflammatory
markers. Studies suggest that arachidonic acid omega-
3 derivatives might help modulate hyper-inflammation
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and cytokine storm resulting from pulmonary involve-
ment. Also, statins have been shown to be beneficial
when administered after COVID-19 diagnosis via
unclear mechanisms probably associated with anti-
inflammatory effects and HDL-C rising effects. (Curr
Probl Cardiol 2022;47:100907.)
Introduction

S
evere acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

the causative agent of COVID-19, is an enveloped, positive-

sense, single-stranded RNA virus from the family Coronaviridae.

It is a member of Nidovirales, the order known to cause respiratory and

GI infections ranging in severity from a mild common cold to illnesses as

severe as MERS and SARS.1

Lipids play different metabolic roles as structural components, energy

resources, signaling mediators, as well as roles in infections, and viral

infections in particular.2-4 Many macrophage regulation and immune-

modulatory pathways depend on lipids,5 and the role of lipid metabolism

in pulmonary infections and inflammatory states have been observed.6

The effect of Coronaviruses on lipid metabolism and serum lipid profile

items had been observed before the current pandemic. Several studies

have reported important changes in the lipid profile of patients with

COVID-19 infection.4,5,7-11

In this article, we initially review how the lipid profile changes in

COVID-19 and its prognostic role by assessing its relationship with dis-

ease severity. Then, we examine the ways SARS-COV2 infection causes

these changes by studying the underlying cellular and molecular mecha-

nisms. Finally, we study the potential therapeutic agents targeting these

mechanisms by providing evidence on fish oil and statins.
Lipid Profile Changes in COVID-19
Lipid profile changes have been reported since the early stages of

COVID-19 pandemic; most notably as decreases in cholesterol levels.12

Qin et al found decreased levels of total cholesterol (TC) and LDL-C in a

retrospective study on the lipid profiles of 248 COVID-19 patients.13

These measures were negatively correlated with the patients’ length of

hospital stay. Also, the patients had lower TC and LDL-C levels upon

admission that would gradually recover as the patients’ clinical condition

improved.13,14 Another retrospective study on 102 patients in Mexico
Curr Probl Cardiol, March 2022



suggested that low levels of TC and LDL-C could predict more severe

involvement.9 They also reported high TG levels as well as high VLDL-

C levels. A study in Saudi Arabia on 80 COVID-19 patients reported an

increased risk of cardiovascular diseases due to changes in the patients’

lipid profiles: decreased level of TC (both HDL-C and LDL-C) and

increased TG.8

A comprehensive study on serum lipids at cellular levels reported

altered cholesterol metabolism resulting from COVID-19 as responsible

for the depressed level of circulating cholesterol.11 They postulate that

infection with SARS-COV-2 reduces Apo-A1 and HDL-C levels, both of

which relate to the severity of the disease. They also reported that serum

lipidome in COVID-19 patients highly resembled the membranes of a

certain type of membrane-bound extracellular vesicles, rich in GM-3

(monosialodihexosylganglioside) and Sphingomyelins (SM). In a series

of 46 COVID-19 patients, a reduction in 100 lipids was noticed, most

notably in the Apolipoproteins related to macrophage regulatory pro-

cesses.5 ApoA, sphingolipids, Glycerophospholipids, some steroid pre-

cursors (e.g. 21-hydroxypregnenolone), ApoM, and choline were down-

regulated, the two latter of which were seen in severe involvement. Cho-

line, a precursor of phosphocholine, is a molecule essential in de novo

biosynthesis of phosphatidylcholine � the main phospholipid in cell

membranes.15 They suggest that the decrease in choline levels might be

due to increased macrophage activation and activity.5,11

To summarize, the alteration observed by most studies in COVID-19

patients’ lipid profiles has been a reduction in cholesterol and apolipopro-

tein levels and increased TG.
Lipid Alterations Associated With COVID-19 Severity
According to plasma content studies, levels of lipid alteration and the

severity of the infection are correlated and many research projects have

found an association between COVID-19 and lipid biomarkers.14 A

cross-sectional analysis of 1411 hospitalized patients with COVID-19

showed that low HDL-C and high TG before infection and upon admis-

sion were strong predictors of disease severity and correlated with higher

D-dimer and ferritin levels.16 Another large study showed that while TC

and LDL-C were lower among all patients with COVID-19 and LDL-C

declined as the disease progressed, importantly HDL-C was only abnor-

mally lower in critical cases.17 Another study on 228 COVID-19 cases

from China showed that LDL-C, HDL-C, and TC were lower among

these patients compared to healthy controls and that lower HDL-C upon
Curr Probl Cardiol, March 2022 3



admission was a negative prognostic factor for negative disease

outcomes.18,19 A study of lipid profile trends in ICU-admitted COVID-19

patients showed that all patients had low LDL-C and HDL-C levels;

Although this issue was not a predictor of mortality, lower cholesterol

levels at the start of ventilator-associated pneumonia were associated

with increased mortality.20

Two prospective studies to assess lipid alterations in COVID-19 found

that HDL-C and Apo-A1 are inversely related to disease severity meas-

ures such as mortality rate and inflammatory markers such as CRP and

IL-6.5,21 They also reported significantly higher TG levels and lower TC

and LDL-C levels in their severe patients compared to milder cases.11

Many studies similarly showed an inverse relationship between LDL and

HDL with C-reactive protein (CRP) as a marker of severity of

inflammation.14,16,18

Fan et al. compared 17 patients who survived COVID-19 with 4

patients who died of the disease and found that although LDL-levels

were decreased in both groups, the lipid dysregulation was more persis-

tent, severe, and progressive among non-survivors while it took a course

through recovery in patients who survived the infection.19

Mechanisms of Alterations in Lipids
The role of lipids in biology, like backbones of the cell membrane, in

cellular interconnection, membrane trafficking, energy resources, and

heat insulation is well-known. They are also essential for viruses to cross

the host cell membrane. Besides, it is known that viral infections alter

lipid metabolism in favor of virus replication.2 Lipidomic studies have

revealed that coronavirus significantly modifies the lipid composition of

infected cells.22 Viruses employ and modify both lipid signaling and

metabolism to benefit their replication as lipids constitute not only the

main structure of membranes but also play important roles as intercellular

signaling agents and energy sources.23 Replication of enveloped viruses

like SARS-CoV-2- which enter the cells via endocytosis and use intracel-

lular organelles to produce their different parts requires lipid resources.25

Therefore, studying how an infection with SARS-COV-2 affects lipid

metabolism and profile, might shed light on the correlation between lipid

profile and inflammatory processes during COVID-19.

Direct Intracellular Changes of Lipid Metabolism
Lipids are of essential importance in viral infection: they provide struc-

tural and energy resources to create membranes for cells and viral
4 Curr Probl Cardiol, March 2022



organelles.26,27 RNA-viruses target lipid synthesis to modulate inter and

intracellular signaling in favor of their needed processes in creating their

required particles for host cell entry, infectivity, and hiding from the

immune system.19

Lipid rafts are dynamic regions in the cell membrane with a size rang-

ing from 10 to 200 nm that include sphingolipids, glycosphingolipids,

cholesterol, and GPI-linked proteins, specialized particles that participate

in various mechanisms such as intercellular signaling, trafficking, polar-

ity regulation endocytosis, and autophagy.5,27 To enter the host cells,

SARS-CoV-2 binds to ACE2 receptors, found inside cell membrane lipid

rafts, to produce transformations in the viral molecules and initiate a sig-

naling cascade that allows for virus endocytosis.28,29,26

Like other positive-sense RNA viruses, SARS-COV2 modifies host cell

membranes to create viral replication organelles (RO); factories for RNA syn-

thesis and viral replication.24 Electron microscopy has shown that SARS-

COV-2 produces types of double-layered structures called double-membrane

vesicles (DMV)s, consisting of a plasma membrane interspace with various

organelles.23,25,26 SARS-COV-2 exploits endosomes as replication organ-

elles.23 The replication of SARS-COV-2 is a heavy burden on the host cells’

endoplasmic reticulum (ER), so much that the ER fails to maintain its homeo-

stasis and produces misfolded proteins. This initiates the unfolded protein

response (UPR) pathway through which apoptosis is preferred over further

attempts to restore ER and intracellular homeostasis.27,28 UPR activation,

through a chain of reactions, stimulates sterol regulatory-element binding pro-

tein-1 (SREBP-1) which transcribes genes involved in the down-regulation of

lipids namely fatty acid synthase (FASN), Acetyl-CoA carboxylase (ACC),

and stearoyl-CoA desaturase-1 (SCD1).29 This provides the virus with the

required structural lipids to create organelles for replication. Increased lipid

stocks also expand DMV luminal volumes decreasing the effective concentra-

tion of misfolded virus proteins which in turn prevents apoptosis induced by

UPR in favor of the virus.30

During its replication phase, SARSCOV2 targets lipid droplets: lipid-

rich cellular organelles that store cholesterol esters and triacylglycerols

for various purposes.31,32 Pharmacological inhibition of LD formation

suppresses SARS-CoV2 replication, production of inflammatory media-

tors, and cell death.33
Apolipoproteins
Several COVID-19 studies have reported changes in apolipoprotein

levels along with other changes.5,21 For instance, a relationship between
Curr Probl Cardiol, March 2022 5



ApoE and COVID-19 severity might be due to neighboring genes in the

gene cluster that happens in response to inflammation.34 Another example

of this is the rise in lipoprotein Lp A that is suggested to be a response to

increased IL-6 levels; Lp A has a receptor for IL-6 and thus is increased

during cytokine storm as an acute phase reactant.35

Adiponectin
Adiponectin is a protein hormone closely related to T2DM pathogene-

sis.36 Plasma adiponectin levels were found to predict and improve insu-

lin sensitivity36 and can thus benefit lipid metabolism. On the one hand,

adiposity, insulin resistance, and obesity were shown to be related to low

adiponectin levels; On the other hand, higher adiponectin concentrations

benefit individuals independent of existing obesity.36 Since insulin is

involved with lipid metabolism, targeting adiponectin levels can be a

strategy to improve HDL-C levels in patients, as Messina et al. suggest

through an appropriate diet.37 They suggest that holding a healthy diet to

maintain adequate levels of adiponectin is both good for prevention of

and recovery from an infection. Also, the correlation between higher adi-

ponectin and higher HDL-C levels is independent of insulin sensitivity of

glucose and can directly lower free fatty acids in circulation.

Cytokine Storm
De Lorenzo suggests that the cytokine storm that occurs as a result of

COVID-19, is key to various pathologies of this disease, including endo-

thelial dysfunction. Lipid metabolism can be altered directly by the cyto-

kine storm and indirectly by the effect of endothelial dysfunction. Many

studies have reported that inCOVID-19 is associated with an exaggerated

immune response that results in excessive production of various pro-

inflammatory cytokines and cells referred to as “cytokine storm”.38,39

Cytokines are proteins serving as mediators to help initiate and control

pro- and anti-inflammatory immune processes.40 This syndrome,

expected to occur within the second week from the onset of symptoms

and particularly in critically ill COVID-19 patients suffering pulmonary

involvement,39,41,42 can seriously complicate the patient’s condition by

causing a systemic inflammatory state resulting in multiple organ fail-

ure.39 De Lorenzo et al. noted that endothelial dysfunction is a remark-

able component of COVID-19 pathogenesis which also plays an

important role in cardiovascular complications.43,44 A healthy endothe-

lium is essential to keep vascular homeostasis, including blood pressure,

insulin resistance, lipids circulation, and particularly expressing ACEII
6 Curr Probl Cardiol, March 2022



receptors � a means for the novel coronavirus to infer infectivity.22 The

excess production of inflammatory agents increases vascular permeabil-

ity, allowing more inflammatory cytokines and cells into the healthy tis-

sues, which in turn expand the inflammation further and can account for

symptom exacerbation in the inflammatory phase of the infection.10
Therapeutic Implications
Polyunsaturated Fatty Acids
The important role of Arachidonic acid both in producing cytokines

(causing a cytokine storm) and in resolving inflammation has been exten-

sively described.44-46 PUFAs are Arachidonic acid derivatives that act

both as inflammatory and inflammation-resolving agents.40

Studies show that the resolution of the inflammatory phase in COVID-

19 does not occur passively by consumption of inflammatory mediators,

but is rather an active process that can be switched on.47,48 Omega-3

long-chain fatty acids have been associated with inflammation resolution,

reduced severity of lung involvement, and lower infection severity in

humans as well as animal models.49-53 The most important precursors of

omega-3-long-chain-poly-unsaturated-fatty-acids (v-3-LC-PUFA)s are

a-linolenic acid (ALA), and long-chain derivatives such as eicosapentae-

noic acid (EPA) and docosahexaenoic acid (DHA).39 PUFAs modulate

and regulate membrane domain properties. Since the lipid raft microdo-

mains (discussed earlier) are important mediators in virus entry, this

“lipid raft-regulating” effect might be a therapeutic strategy since it will

interfere with the mechanisms by which SARS-COV-2 exploits cell lipid

metabolism. Among v-3-LC-PUFAs, DHA has been shown to directly

modulate lipid rafts.54 PUFAs interfere with virus-induced lipid metabo-

lism to restore homeostasis by inhibiting the cell’s lipid biosynthesis

apparatus. EPA and DHA inhibit the transcription and maturation of

SREBP to its mature active form and in turn, weaken the replication pro-

cesses via decreased lipid biosynthesis.55 Furthermore, DHA and EPA

can down-regulate the transcription of ACC, FASN, and Stearoyl-CoA

desaturase further slowing down lipid production.55

Administering v-3-LC-PUFAs in hospitalized COVID-19 patients

lowered the incidence of superinfections and sepsis to 40% and 56%

respectively.56 It also correlated with shorter ICU stay, decreased mortal-

ity rate, shorter hospital stay, and lower need for mechanical ventila-

tion.57-60
Curr Probl Cardiol, March 2022 7



Omega 3 PUFAs are well-known specialized agents that initiate and take

part to start resolving the inflammation61. Specialized pro-resolving lipid

mediators (SPMs) work differently from Anti-inflammatory medications;

rather than ceasing the inflammatory processes, they switch the cells towards

resolving the inflammation. Three important SPM types are resolvins, mare-

sins, and protectins. They reduce inflammation via various mechanisms;

including destabilizing lipid rafts, decreasing vascular permeability, reducing

immune cell recruitment, inhibiting the inflammatory activities of polymor-

phonuclear white blood cells, turning macrophages towards an anti-inflamma-

tory type, stimulating neutrophil phagocytosis,62,63 and down-regulation of

pro-inflammatory cytokines by inhibiting NF-kB pathway.64 They also stimu-

late wound healing and induce tissue regeneration.65 The biosynthesis of

SPMs highly depends on PUFAs, most importantly on DHA and ETA.40
Statins
Statins may be another plausible therapeutic adjunct in COVID-19 manage-

ment owing both to their anti-inflammatory as well as HDL-enhancing

effects.66-68 These drugs have been mainly used for their LDL-lowering effects

but research shows they also have TG-lowering and HDL-raising effects inde-

pendent of LDL-reduction. The HDL-raising effect is stronger among patients

with lower baseline HDL-C, higher baseline TG, levels. It is important to note

that certain statins may have stronger HDL-raising capacities than others: Rosu-

vastatin and Simvastatin being superior to Atorvastatin, the magnitude of their

effect increased in a dose-response manner.69 However, there has been a con-

cern for these agents potentially aggravating SARS-COV2 replication by

enhancing cellular entry via inducing the ACE-2 gene.70 At least two system-

atic reviews have specifically addressed the effects of statins among patients

with COVID-19. One systematic review that included 13 RCTs with a total of

52,122 patients showed that while prehospital use of statins did not affect the

rate of mortality, its prescription during hospital admission significantly reduced

the risk of death (RR=0.54 (95%CI:0.5-0.58)66. The result of another system-

atic review that included 13 cohorts with over 110,000 patients had consistent

results with a death-hazard ratio of 0.53 (95%CI: 0.26-1.64) among patients

who had administered statins after a COVID-19 diagnosis.71 Both of these stud-

ies provide supportive evidence for the benefit of statins in COVID-19.
Conclusion
Lipid metabolism is altered in patients with COVID-19 through direct cel-

lular infection as well as systemic inflammatory response. These alterations
8 Curr Probl Cardiol, March 2022



mainly result in a decrease in TC, LDL-C, and HDL-C levels and increased

TG levels among these patients. Lower HDL-C levels appear to have a signifi-

cant prognostic role in predicting poor clinical outcomes. Certain interventions

such as fish oil and statins targetting this aspect of COVID-19 pathogenesis

may have beneficial roles for these patients.
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