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Abstract.—The genetic distance between biological sequences is a fundamental quantity in molecular evolution. It pertains to
questions of rates of evolution, existence of a molecular clock, and phylogenetic inference. Under the class of continuous-time
substitution models, the distance is commonly defined as the expected number of substitutions at any site in the sequence.
We eschew the almost ubiquitous assumptions of evolution under stationarity and time-reversible conditions and extend the
concept of the expected number of substitutions to nonstationary Markov models where the only remaining constraint is of
time homogeneity between nodes in the tree. Our measure of genetic distance reduces to the standard formulation if the data
in question are consistent with the stationarity assumption. We apply this general model to samples from across the tree of
life to compare distances so obtained with those from the general time-reversible model, with and without rate heterogeneity
across sites, and the paralinear distance, an empirical pairwise method explicitly designed to address nonstationarity. We
discover that estimates from both variants of the general time-reversible model and the paralinear distance systematically
overestimate genetic distance and departure from the molecular clock. The magnitude of the distance bias is proportional to
departure from stationarity, which we demonstrate to be associated with longer edge lengths. The marked improvement in
consistency between the general nonstationary Markov model and sequence alignments leads us to conclude that analyses
of evolutionary rates and phylogenies will be substantively improved by application of this model.[genetic distance; Markov
process; maximum likelihood; molecular clock; nonstationary]

A genetic distance measures the number of
changes that distinguish biological sequences and
is a fundamental metric in molecular evolution.
Measurements of genetic distance are employed to
address questions pertaining to rates of evolution, the
mode and tempo of evolutionary processes, and for
some phylogenetic inference techniques. Models that
represent sequence evolution as a continuous-time
Markov process are the most popular methods for
distance estimation. A common assumption made by
these models is that the substitution process is stationary,
a condition under which the composition of nucleotides
or amino acids across the sequences does not change
through time. Yet it has long been appreciated that
this assumption is often violated (Karlin and Ladunga
1994). Accordingly, alternate metrics that accommodate
such compositional heterogeneity across sequences
have been developed (Lake 1994; Lockhart et al. 1994).
Here we outline the problems with existing methods
and propose a new measurement for nonstationary
processes. We focus on the implications of the new
measure for questions concerning evolutionary rates by
considering the existence of the molecular clock.

The development of genetic distances was strongly
motivated by observations suggesting a uniform,
clock-like accrual of molecular changes in protein
sequences through time. The molecular clock hypothesis
stimulated major theoretical developments in molecular
population and evolutionary genetics, most notably the
neutral theory of molecular evolution (Easteal et al.
1995). Estimates of genetic distance are integral to tests
for the existence of the molecular clock and to its
application of dating historical events.

Errors in genetic distance estimates may contribute
to the numerous controversies in the field (Easteal
et al. 1995; Kumar 2005). Notable controversies include
the reported acceleration of evolutionary rate in the
lineage leading to mice compared with that leading
to humans (Li 1993; Easteal et al. 1995; Huttley et al.
2007) and that molecular clock dates are systematically
more ancient than those estimated from the fossil
record (Blair Hedges and Kumar 2003). Although a
multitude of biological and geological factors have been
identified as potential causes of these discrepancies,
the impact of nonstationarity has received very little
attention (Kumar and Subramanian 2002). Whether
incorrectly assuming reversibility and stationarity could
contribute to the frequent rejection of the clock or to
discrepancies between molecular and geological dates,
therefore, remains unknown.

Before launching into a fuller examination of the
approaches for measuring genetic distance, we first
define the meanings of the words process, model,
and submodel. By process we mean exclusively the
probabilistic notion of a stochastic process (e.g., a Markov
process). We do not use the term process to refer to
a particular history of, or sample from, a stochastic
process that we observe in nature, or to mean any sort
of computation. In our context, a model is a collection
of assumptions about the shape of a phylogenetic tree
and the processes that pertain to each of the edges of a
tree (e.g., a tree of three taxa, all branching from a single
root, with different Markov processes on each edge).
Often the adjectives that we apply to a model describe
the nature of the processes on its edges (e.g., a Markov
model has a Markov process on each edge). A model is
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a submodel of another if it shares all of the first model’s
assumptions, but adds some of its own (e.g., the Jukes
and Cantor (1969) model is a submodel of the general
time-reversible (GTR) model (Lanave et al. 1984)). If we
wish to describe a set of samples from a process or model,
as we might observe in a multiple sequence alignment,
we will describe the sample as being generated by the
process or model. If we say that one model is nested in
another, we mean that the model is a submodel of the
other.

The idea of using the expected number of substitutions
as a genetic distance originated with Eck and Dayhoff
(1966), who fitted a reversible Markov model on amino
acids to closely related amino acid sequences. Since
then, numerous Markov models for nucleotides have
been developed, ranging from the simplest model of
Jukes and Cantor (1969) to the GTR model (Lanave et al.
1984), as well as models of intermediate complexity and
embellishments such as �-distributed heterogeneous
rates (for review, see Whelan et al. 2001). (Here, and
throughout this work, we use the term rate heterogeneity
to specify heterogeneity of rates across sites.) According
to the model of Eck and Dayhoff (1966), substitutions
only happen at regularly spaced time points. However,
in most Markov models of nucleotide substitution,
substitutions can happen at any time. A continuous-time
Markov process is specified by a rate matrix Q, where the
off-diagonal entry Qij is the substitution rate from base i
to base j, and the diagonal entries are such that each row
sums to zero. Most models of nucleotide substitution
are stationary: For a nucleotide sequence undergoing
such a substitution process, the nucleotide composition
remains roughly the same through time. Given a rate
matrix, Q, with strictly positive off-diagonal elements,
this stationary distribution is the unique probability
row vector � satisfying �Q=0. For a stationary Markov
process, the expected number of substitutions in a time
interval of length t is equal to

n(t)=−
4∑

i=1

�iQiit. (1)

A simple application of iterated expectations shows that
this formula also holds for the standard formulation
of �-distributed rates. Thus, n(1)=−∑4

i=1�iQii is the
expected number of substitutions in a unit time interval.
It has been known at least since Yang (1994) that (1)
applies to the GTR model. In all submodels of GTR, (1)
reduces to simpler distance formulae. Eck and Dayhoff
(1966) obtained an expression very similar to (1), based
on the most general time-reversible Markov model for
amino acids. Yet it took almost 20 years before the
analogous GTR model for nucleotides was developed. A
stationary continuous-time Markov process is reversible
if for all i �= j, Qij =Rij�j, where R is a symmetric matrix.
All time-reversible models, including GTR and GTR+�,
are stationary, by definition. Most commonly used
models of nucleotide substitution are time-reversible to

reduce the corresponding complexity: Parameters are
fewer, and only unrooted trees need to be considered.

We now review the expected number of substitutions
as a measure of phylogenetic edge length. Let a and b
be nucleotide sequences from extant species sharing an
ancestral sequence z, which existed t years ago. Then
their phylogeny has the property that the time from z
to both a and b is the same: t years. Suppose that the
substitution processes on both edges follow a stationary
Markov process with rate matrix Q. In most cases, no
exogenous estimate for t exists, so that only Qt can be
estimated, but not Q. One way around this issue is to
consider only calibrated rate matrices, namely Qs for
which the expected number of substitutions in a unit
time interval is one (i.e., n(1)=1 or

∑4
i=1�iQii =−1). Any

rate matrix can be calibrated by dividing the rates by
n(1). Consequently, both the calibrated rate matrix and
the associated edge length can be estimated from data
(Felsenstein 2004). Furthermore, the edge length is the
expected number of substitutions on the edge, which
we now call the genetic distance between the two nodes
joined by the edge. A phylogeny whose edge lengths are
genetic distances is called a molecular phylogeny.

The notion of genetic distance allows the definition of
a molecular clock. In the previous molecular phylogeny,
the genetic distance, d, between z and a equals that
between z and b, or dza =dzb. This is the simplest example
of a molecular clock. Suppose that the rate matrix is Q on
the a edge, but is kQ on the b edge, where k �=1 is a positive
constant. Now we have dza =kdzb, so the two distances
are unequal: The molecular phylogeny is not consistent
with a molecular clock. More generally, a molecular
phylogeny with any number of taxa is consistent with a
molecular clock if the distance from the root to any taxon
is the same; in other words, the tree is ultrametric. We
note that this definition of a clock carries over naturally to
nonstationary substitution models with an appropriate
notion of genetic distance. For stationary models, rate
matrices may vary across edges, but they must share the
same stationary distribution.

Real homologous nucleotide sequences can frequently
exhibit compositional differences. This observation
motivated the study of nonstationary substitution
models and, in some cases, a corresponding derivation
of genetic distance (Yang and Roberts 1995; Galtier and
Gouy 1995, 1998; Jayaswal et al. 2005, 2007). Typically,
they are similar to the stationary models in having a rate
matrix Q, but the initial distribution is not the associated
stationary distribution �. Let f (t) be the nucleotide
frequency of the sequence at time t. Then f (t) varies with
t and converges to � as t tends to infinity. We still use
n(t) to denote the expected number of substitutions in
the interval [0,t]. Now (1) does not hold. A new formula
is needed, giving rise to a new genetic distance.

We now discuss some other approaches to measuring
genetic distance that attempt to take nonstationarity
into account. Approximations to an expected number
of substitutions under very general assumptions exist,
such as the paralinear distance (Lake 1994; Gu and Li
1996), but we know of no comparison of this approach
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with the actual expected number of substitutions for
a nonstationary, continuous-time Markov process. Zou
et al. (2012) defined the number of substitutions for
a discrete-time model (BH: Barry and Hartigan 1987)
via a nonstationary GTR-like model that approximates
the BH fit. They use a reversible instantaneous rate
matrix to represent a nonreversible process, imposing
a constraint that is difficult to interpret biologically. It,
therefore, remains the case that the impact of employing
a reversible process to measure the expected number of
substitutions from a nonstationary generating process
remains unknown.

In this work, we generalize the genetic distance
for stationary processes to nonstationary substitution
processes, producing a measure we call expected
number of substitutions (ENS). To establish the
properties of ENS, we employ a measure of model
goodness of fit to identify alignments that are
plausibly described by the model under consideration
and from which we can, therefore, reliably draw
inferences. We include a broad taxonomic diversity
and different sequence encoding types by utilizing
data from nuclear and mitochondrial protein coding
sequences from mammals, and 16S rRNA data from
microbes. We show that genetic distances from the GTR
and GTR+� models and the paralinear distance are
consistently overestimated in comparison with ENS.
We further demonstrate that the distortions of these
popular tools do impact on inference of important
biological phenomena, overestimating departures from
the molecular clock hypothesis.

METHODS

Expected Number of Substitutions
Let {X(t) : t≥0} be a Markov process on {A,C,G,T}

with initial distribution f (0), a row vector, and transition
rate matrix Q. Let the equilibrium distribution of the
process be �. This substitution process models a single
nucleotide in a sequence along one edge of a phylogeny.
It is stationary if f (0)=�; otherwise, it is nonstationary.
The transition probability matrix over a time interval
of length t is P(t)=exp(Qt). The expected number of
substitutions in [0,t], denoted by n(t), is

n(t)=−
∫ t

0
f (s)dsdiag(Q), (2)

where f (s)= f (0)P(s) is the distribution of X(s) and
diag(Q) is the column vector consisting of the diagonal
elements of Q. This result can be derived by summing
over expressions for the expected number of specific
substitutions such as on page 154 of Guttorp (1995).
For the stationary special case, f (s)=� for any s, so (2)
reduces to (1):

n(t)=−
∫ t

0

4∑
i=1

fi(s)Qiids=−
4∑

i=1

�iQiit. (3)

Note that precisely because f (s)=�, (3) also holds
under standard stationary rate-heterogeneous-across-
sites models. However, (2) would not hold for a
nonstationary rate-heterogeneous model. The extension
is straightforward, but as we do not consider such
models we will discuss it no further.

We illustrate how the expected number of
substitutions can differ from distances obtained from
a reversible process using as an example Felsenstein’s
(1981) model, where Qij =��j for i �= j, �>0. Since
the transition probability matrix has a known form,
fi(s)=�i +(fi(0)−�i)e−�s, and we have

n(t)=�t
4∑

i=1

�i(1−�i)+
(

1−e−�t
) 4∑

i=1

(1−�i)(�i −fi(0)).

If the process is stationary, we get the well-known
formula n(t)=�t

∑4
i=1�i(1−�i). Thus, the second term

above is a correction for nonstationarity. If � is the
uniform distribution, then the correction is 0 regardless
of f (0), which is well known in the special case of
the Jukes and Cantor (1969) model, and also holds
for Kimuras two- and three-parameter models (Kimura
1980, 1981). Otherwise, the correction can be positive
or negative. Let �= (0.5,0.2,0.1,0.2), �=1.0, and t=
1.5. Then for the stationary model, n(t)=0.99. For the
nonstationary model with f (0)= (0.1,0.3,0.2,0.4), it is
1.09. If f (0)= (0.6,0.2,0.1,0.1), it is 0.97. Therefore, under
a nonstationary process, a naïve application of (1) can
over- or understate the genetic distance. Note that we
make no representations about the biological realism of
any of these scenarios, and leave claims of systematic
bias to our empirical findings.

The ENS Distance
Consider a rooted phylogeny on which operates a

substitution process specified by an initial distribution
at the root and edge-specific rate matrices. As usual,
assume that given the state at an internal node, the
processes on the edges below it are independent. For
a pair of adjacent ancestor-descendant nodes (�,�), let
the distribution of X� (the state at �) be ��, the rate
matrix be Q��, and the time between the nodes be t��.
Then the expected number of substitutions from � to �
is given by n(t��) in (2), where f (0)=�� and Q=Q��.
The ENS distance between � and � is defined as n(t��),
and is denoted d��

ENS. The ENS distance between any
two nodes is defined as the sum of ENS distances over
the edges on the path between them. Our formulation
of ENS (2) is similar to one by Simon Tavaré (personal
Communication).

For comparison, the expected number of substitutions,
if calculated under a GTR model, is written dGTR.
Likewise, we denote the expected number of
substitutions under GTR+� as dGTR+� . As noted
in the Introduction, (1) suffices for calculating either.
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Further, the paralinear distance between � and �

is denoted d��
para and defined as follows. Let P�� =

exp(Q��t��) be the transition probability matrix from
� to �, �� =��P�� be the distribution of X�, and J�� =
diag(��)P�� be the joint distribution of (X�,X�). The
paralinear distance between � and � is

d��
para =−1

4
lndet

(
diag(��)− 1

2 J��diag(��)− 1
2

)
(4)

=−1
4

lndet
(

diag(��)
1
2 P��diag(��)− 1

2

)
.

It is important to note that the paralinear distance was
intended as an approximation to the expected number
of substitutions that can be calculated purely from the
joint probability distribution of states at adjacent nodes.
For the purpose of comparison, the similar LogDet
transformation is defined dLogDet =−lndet

(
J��
)
. The

LogDet transformation “does not estimate the lengths of
edges” (Lockhart et al. 1994), so we restrict our analysis
to the paralinear distance.

Statistical Methods and Algorithm Implementation
In this study, all model fitting was performed

using PyCogent (Knight et al. 2007). Sequences of
nested, continuous-time Markov models were fitted
using maximum likelihood (ML) in order of increasing
generality to triads of taxa. Where applicable, the initial
parameter estimates for a model were obtained from the
previous model. Sequential fitting ensures that richer
models obtain greater log likelihood. Upper limits were
placed on substitution rate parameter estimates. The
fitting algorithm was deemed successful if the model
converged. Convergence did not fail for any of the fits
that we attempted.

Models of rate heterogeneity across sites were
assumed to have �-distributed rates in four bins. An
upper limit was placed on the shape parameter for the
� distribution. Note that a rate-heterogeneous model
with more than one bin and a finite shape parameter
is not nested in and does not nest any rate-homogeneous
model.

We designate the three types of models that we fitted
as General, GTR, and GTR+�. The GTR model is a
submodel of the General model. The order of sequential
fitting is illustrated in Figure 1. The General model places
no constraints on the rate matrix on each edge or on
the probabilities of states at the ancestor node, so can be
nonstationary. The GTR model uses a common, time-
reversible rate matrix across all edges and shares the
same state probability vector at every node. The common
rate matrix constraint for GTR was chosen to reflect
common practice in the field. Models labeled as clock-
like, which were used in the relative rate tests of the
molecular clock (Wu and Li 1985), constrain the ingroup
edges to be the same length (by the ENS distance).
In all other cases, edge lengths were allowed to vary
by edge. GTR+� models share the same constraints

FIGURE 1. Nested models used for sequential fitting. Arrows
point in the direction of generalization, coinciding with the flow of
optimization parameter seeding. Parenthesized numbers show the
degrees of freedom for the model fitted to a triad of sequences. The
first hierarchy was used in most instances. Those including clock-like
models were used only for molecular clock testing.

FIGURE 2. The General model allows Q and t to vary between edges
and independently of the starting marginal probability vector f (0).

as their GTR counterparts, with one additional degree
of freedom which is the rate shape parameter and is
common through the tree.

It is common to describe the hierarchy of substitution
models that nest in GTR via the way in which they
parametrize Q (e.g., Felsenstein 2004, pp. 196–206). We
include a possible parametrization of Q for the General
model here for the purpose of comparison with such
characterizations:

Q=
⎛
⎜⎝

−�−�−� � � �
	 −	−
−� 
 �
� 
 −�−
−� �
� � � −�−�−�

⎞
⎟⎠.

We also show the variation of Q by edge for the General
model in the example topology in Figure 2.

Due to the difficulty of identifying parameters
associated with the two edges emanating from the root,
these two edges are considered as a single edge, and the
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fitted process treats the internal node on this new edge
as the root. This simplification entails loss of information
on the two said edges, but not on the others belonging
to the ingroup.

Under mild conditions, ML fits of a Markov model to
triads of taxa are consistent (Chang 1996). One of the
conditions is that the model is identifiable, which is not
always the case for the General model, for two reasons.
(We note that identifiability of the GTR+� model for
triads has been established see e.g., (Allman et al. 2008)).

First, states at internal nodes can be relabelled without
affecting alignment column frequencies. This issue is
explained in detail in Zou et al. (2011) for the BH model,
but is applicable here by Remark 2 in Chang (1996). The
issue can be resolved through imposing the constraint
suggested by Remark 9 in Chang (1996), which is that the
fitted transition probability matrices be Diagonal Largest
in Column (DLC).

Second, multiple continuous-time processes can be
consistent with a single discrete-time process (Higham
2008). That is, it is possible for valid transition rate
matrices Q1 and Q2, where Q1 �=Q2, to give rise to the
same transition probability matrix so that eQ1 =eQ2 . In
fact, one transition probability matrix can correspond
to zero, one, several, or a continuum of transition rate
matrices. It is possible to conservatively identify cases
where more than one valid transition rate matrix exists
using Theorem 1.27 in Higham (2008). We call any such
case a nonunique mapping.

Any fits that did not satisfy the DLC and unique
mapping constraints were rejected. Both tests are offered
in the latest version of PyCogent. Fits that failed the DLC
constraint were rare, representing ∼0.36% of a data set
in the worst case. Nonunique mappings were also rare,
only appearing in the 16S rRNA data set (see the Data
Sets section) and representing ∼2.3% of samples in the
worst case. The effect of removing such samples on our
results was observed to be negligible.

Objective goodness of fit was measured by the
G statistic (Sokal and Rohlf 1995, pp. 686–697), and
assessed (probabilities estimated) via a parametric
bootstrap (Goldman 1993). The null hypothesis says that
the alignment is generated by the fitted model with
parameter values set at our estimates. The expected site-
pattern counts under the model is thus the probability
of the pattern multiplied by the alignment length. The
alternative is the unrestricted multinomial model, as
described in Goldman (1993), taken as the observed
site-pattern counts in the alignment. The G statistic
is computed from the expected and observed counts
using the conventional expression (Sokal and Rohlf 1995,
pp. 686–697). The bootstrap procedure is to:

(i) simulate 100 alignments under the null hypothesis
of the same length as the fitted alignments;

(ii) perform the original sequential fit on each
alignment; and

(iii) calculate the proportion of fitted G statistics that
exceed that of the original statistic.

The result is the G statistic parametric bootstrap P-
value (hereafter termed the G statistic P-value for
succinctness). In every instance we rejected a fit if the
G statistic P < 0.05.

We evaluated the existence of the molecular clock
using likelihood-ratio tests (LRTs) (Gaut et al. 1992). In
each case, the null hypothesis was a clock-like model and
the alternative was the same model with no constraints
on edge length. As such the null model was nested in the
alternative, which has one additional degree of freedom.
The distribution of the test statistic was assumed to be
sufficiently close to a �2 distribution with one degree of
freedom.

The paralinear distance was calculated using our
implementation of (4), which is available in the latest
version of PyCogent. In all instances, the paralinear
distance was calculated directly from the alignments,
using empirical joint probability distribution matrices.
It was not calculated from any fitted model.

We expected the distances measured using stationary
models on data generated by a nonstationary process
to exhibit a bias. We further expected the magnitude
of this bias to increase with increasing departure from
stationarity. We measured the difference in nucleotide
composition between two sequences using the Jensen–
Shannon divergence (JSD) (Lin 1991). The JSD is an
information theoretic measure of distance between
probability distributions that is symmetric and extends
naturally to multiple distributions. We exclusively
employ the equally weighted JSD, defined as

JSD=H

(
1
n

n∑
i=1

pi

)
− 1

n

n∑
i=1

H(pi)

for n probability mass functions pi defined on the same
state space S, where H is the Shannon entropy. We have
implemented the Shannon entropy using the natural
logarithm as

H(p)=−
∑
s∈S

p(s)lnp(s).

In our context, S ={A,C,G,T}, n is the number of
sequences in question (two or three), and p(s) is estimated
using the nucleotide frequencies for each sequence.

The JSD allows us to explore an interesting property
of the General model. It is not difficult to show
that for a nonstationary process, the JSD between
f (0) and f (t), that is the distribution of states at an
ancestor node and the distribution of states at a point
in time t as one moves along a edge, must be a
monotonically increasing function of time. This leads
us to hypothesize that for similar alignments that
exhibit nonstationarity, departure from compositional
homogeneity between sequences should be positively
correlated with genetic distance. Equally, for alignments
that are well explained by stationary processes, we
should expect low empirical JSD.

We used R version 3.1.1 (R Core Team 2013) to calculate
local regressions (or LOESS fits), regressions through the
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origin, quantile regressions (Koenker 2013), quantiles,
and likelihood-ratio P-values. Plots were prepared using
ggplot2 (Wickham 2009) in R. The implementation of the
clock-like General model required the use of a numerical
root finder for which we used SciPy version 0.14.0 (Jones
et al. 2001) in Python.

Calculation of ENS requires the integration of the
matrix exponential (2). There are several ways to
approach this calculation, but a simple cookbook-style
algorithm is to define

C=
( Q −diag(Q)

01×4 0

)
.

The ENS is then given by

n(t)= f (0)
(

exp(Ct)1,5 exp(Ct)2,5 exp(Ct)3,5 exp(Ct)4,5
)ᵀ

,

where exp(Ct) is again the matrix exponential that can
be calculated by several standard software packages,
for instance SciPy. This approach is a simplification of
the methods presented in Van Loan (1978). It is not
necessarily the fastest algorithm, depending on context,
but it is included here for ease of exposition and because
it is as robust as matrix exponentiation. Code to calculate
n(t) is available in the latest version of PyCogent.

All scripts used for the analyses reported in this
manuscript can be downloaded from the Dryad data
repository (http://doi:10.5061/dryad.g7g0n).

DATA SETS

All protein coding sequences were sampled from
Ensembl release 68. One-to-one orthologs for nuclear
and mitochondrial genomes were obtained for human
(Homo sapiens), mouse (Mus musculus), and opossum
(Monodelphis domestica) using the database querying
capabilities of PyCogent (Knight et al. 2007). The
sequences were aligned using the PyCogent built-in
codon aligner, employing the Muse and Gaut (1994)
substitution model. For nuclear encoded sequences, we
selected third codon position sites only. Aligned columns
with ambiguity or gap characters were excluded from
analysis. Alignments were filtered by length to contain at
least 500 sites with unambiguous and nongap characters.
For mitochondrial encoded genes, all codon positions
were used, as these genes are too short for reliable
estimation using third codon positions alone. After
filtering by length, 4150 nuclear and eight mitochondrial
alignments remained.

To establish the relationship between sequence
composition and estimation of evolutionary time,
we sampled a molecular marker widely employed
for studying microbial diversity. An alignment
of 408,135 16S rRNA sequences was downloaded
from http://www.secondgenome.com/go/2011-
greengenes-taxonomy/. The alignment consisted of
positions that are conserved in secondary structure
(McDonald et al. 2012). As per the filtering of protein
coding sequences, aligned positions were excluded if

FIGURE 3. The General model fits empirical data much better than the
GTR and General Time-Reversible with rate heterogeneity across sites
(GTR+�) models, and well in some instances. Box plot shows empirical
distributions of G statistic parametric bootstrap P-values by model for
4135 Nuclear, eight Mitochondrial, and 9702 Microbial samples.

they contained an IUPAC ambiguity or gap character.
A sample of 9854 triads was taken. The empirical
probability distribution of JSD of randomly chosen
triads is concentrated near zero. To test the effect
of varying JSD, triads were chosen via a heuristic,
pseudorandom algorithm with the goal of producing
a sample of triads for which the JSD was roughly
uniformly distributed. As a side effect, the triads that
were selected were ultimately formed from only 9339
sequences. After filtering by length, 9702 microbial
alignments remained.

RESULTS

Measurements of Model Fit
We argue that if an evolutionary model adequately

explains a data set, then inferences drawn from that
model are more likely to be robust than if this condition
is not met. Additionally, when a model accounts for
the data well then a more complicated model is
unnecessary. We assessed whether an alignment was
plausibly generated by a model using a goodness-of-
fit statistic; comparing the expected distribution of site
patterns from the ML model with the observed counts.
The probability that an alignment was generated by the
fitted model was assessed using the parametric bootstrap
with 100 replicates, as described in the Methods section.

In all cases considered, the General model was better
able to explain the data than the GTR and GTR+�
models. The box plots in Figure 3 give a graphical
representation of the G statistic P-value distributions
for the three data sets and three models. If a null
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TABLE 1. Rate at which model fits failed to be rejected at 5%
significance

General (%) GTR (%) GTR+� (%)

Nuclear 94 18 20
Mitochondrial 38 0 0
Microbial 47 1.2 2.6

Percentages given to two significant figures.

hypothesis is correct, the P-value should be drawn
from a uniform distribution, implying that 5% of the
tests should produce P < 0.05. The proportion of tests
producing P-values above that level are shown in Table 1.
By this measure the performance of the GTR+� model is
similar to that of the GTR model, and the General model
clearly fits the data better. For the nuclear data, the null
hypothesis rejection rate is very similar to the type I error
rate. In the analysis that follows, we will focus on cases
where the General model plausibly explains the data, so
we restrict the data sets to samples where the G statistic
P-value for the General model exceeded 0.05. For readers
interested in how robust our findings are to admitting
alignments that fail this criterion, we have reproduced
all of our plots for the alignments where the G statistic
P-value for the General model was <0.05 in the online
appendix available as Supplementary Material on Dryad
at http://dx.doi.org/10.5061/dryad.g7g0n.

It is common in a model selection framework to use
the Akaike Information Criterion (AIC) (Burnham and
Anderson 2002, pp. 60–64) to select between competing
models. For reference, we mention that for the data
reasonably explained by the General model, under the
AIC, GTR+� would have been selected ahead of GTR
for ∼23% of the 3906 nuclear alignments and ∼77% of
the 4557 microbial alignments.

Also common in model selection is the notion of a
bias versus variance tradeoff (Burnham and Anderson
2002, pp. 31–35). In our case, we would expect the
General model to give less biased estimates of genetic
distance than GTR+� or GTR, but we would expect
to pay for this accuracy with more variable estimates.
Similarly, estimates from GTR+� should be less biased,
but more variable, than those from GTR. We measured
the standard deviation (SD) of dENS, dGTR, and dGTR+�
from human to mouse using the nuclear data. Over
the alignments reasonably explained by the General
model, the estimates of the SD were ∼0.10, ∼0.12, and
∼0.18, respectively. These estimates of SD confound the
natural variation in the substitution processes between
genes with the fitting error that we seek to measure.
Given that each substitution model was fitted to the
same genes, the contribution of natural variation to the
SDs is the same in each case. Accordingly, the different
SDs indicate that the General model either exhibited
smaller fitting error than the GTR or GTR+� models,
or that the fitting error for the General model was less
correlated with the natural variation than for the GTR
or GTR+� models. Either contingency favors selection

TABLE 2. Median regression results for genetic distance error
versus JSD values across data sets and models, as shown in Figure 4

GTR GTR+�

Slope Intercept Slope Intercept

Nuclear 3.6 0.0 4.1 0.1
Microbial 2.8 0.0 5.9 0.1

Results show slopes and intercepts to one decimal place.

of the General model. Although this result violates
the general rule of the bias-variance tradeoff, it is not
without precedent. Guindon (2013) reported another
example of a parameter-rich evolutionary substitution
model that provides more precise parameter estimates
than a simpler, nested model.

Reversible and Stationary Models Overestimate Time
We expected that discrepancy between dGTR+� or

dGTR and dENS would increase with increasing departure
from compositional homogeneity. We measured this
departure using JSD, a distance measure between
the nucleotide frequency distributions. For alignments
defined as being consistent with the General model
(i.e., G statistic P >0.05), we computed the genetic
distance error as dGTR+� −dENS and dGTR −dENS. For
each alignment we selected the pair of species with
maximum JSD, and calculated the genetic distance error
between those species. The results are plotted in Figure 4
as a scatter plot with quartile regression lines. In all
cases, the genetic distance error is overwhelmingly
positive and appears to increase linearly with JSD. The
genetic distance error differs between GTR and GTR+�
primarily in that the latter exhibits larger positive
skew, with the conditional interquartile range being
at least ∼2.1 times larger for GTR+� than GTR in all
cases. Additionally, the median regression is steeper for
GTR+� than for GTR in both cases. We summarize the
slopes and intercepts of the median regressions across
data sets and models in Table 2. The variation of slopes
between data sets is not surprising. Only the third codon
position was sampled for the exonic data, in an effort to
sample closer to a neutral evolutionary process (Table 2).
All of the positions in the microbial data set were used,
so some are likely to be affected by natural selection.
The difference between the slopes may reflect these
underlying differences in the generating processes.

It is common to compare the proportion of G+C
nucleotides in sequences when discussing composition.
For instance, the G+C content at third position in
mitochondrial frog DNA is 27.85%, whereas it is 48.57%
in chicken (from the codon usage database, Nakamura
et al. 2000). Figure 5 shows that dGTR/dENS and
dGTR+�/dENS increase with difference in G+C content
in a similar fashion to the trend shown in Figure 4a,
but the relationship is not as linear as that between
genetic distance error and JSD. For Figure 5 we used

http://dx.doi.org/10.5061/dryad.g7g0n


[12:43 3/2/2015 Sysbio-syu106.tex] Page: 288 281–293

288 SYSTEMATIC BIOLOGY VOL. 64

FIGURE 4. The genetic distance error increases with JSD. Genetic
distance is the expected number of substitutions, denoted dENS, dGTR,
and dGTR+� as estimated using the General, GTR and GTR+� models,
respectively. Scatter plots show an empirical relationship between JSD
and dGTR+� −dENS or dGTR −dENS. In every case the GTR and GTR+�
models tend overwhelmingly toward overestimation. Solid lines show
quantile regressions for 25%, 50%, and 75% quantiles. All General
model fits have goodness-of-fit (G statistic) P-value ≥0.05. a) 3906
alignments of human, mouse, and opossum protein coding genes. b)
4557 alignments of triads of 16S ribosomal RNA.

the pair of taxa in each triad that displayed maximum
difference in G+C content. As the relationship appears
to be nonlinear, we have provided LOESS fits in Figure 5.
We have also chosen to use JSD as our primary measure
of departure from compositional homogeneity because
comparing the G+C content between sequences hides

FIGURE 5. The difference in estimated distances increases
with compositional heterogeneity. Scatter plots showing an empirical
relationship between the change in G+C content and dGTR+�/dENS or
dGTR/dENS. All General model fits have goodness-of-fit P-value ≥0.05.
The solid lines show LOESS fits. The plot shows 3906 alignments of
human, mouse, and opossum protein coding genes.

changes in compositions that trade Gs for Cs, or vice
versa. The following is an indication of the magnitude of
the results. For each alignment in our nuclear data set,
we took the pair of sequences for which we observed
maximal difference in G+C content and calculated
dGTR+�/dENS for this pair. If we then restricted our
attention to the 221 alignments for which the difference
in G+C content was between 19% and 21% (i.e., roughly
the difference between frog and chicken) the average
value for dGTR+�/dENS was ∼1.47. The 2.5% and 97.5%
percentiles were ∼1.06 and ∼3.29, respectively.

The differences that we see in the genetic distance error
between GTR and GTR+� are to be expected: As the GTR
model is nested in the General model, GTR and General
should yield similar results where the assumptions of
GTR are not strongly violated, and depart smoothly in
their inferences as the level of contradiction increases.
The GTR+� and General models are not related in that
way, so we see a more consistent bias in the GTR+�
results across all levels of nonstationarity, and that error
increases as one of its key assumptions, stationarity, is
violated.

Although the magnitude of the correlation between
genetic distance error and nonstationarity varies
between data sets and for the two models tested, the
tendency for the reversible model to overestimate genetic
distance is a consistent property across our data sets and
thus putatively the tree of life. Also consistent is that the
magnitude of this overestimation reflects the degree of
departure from stationarity, that is the extent to which
nucleotide composition differs between taxa.
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FIGURE 6. Nonstationarity increases with distance. Scatter plots
showing an empirical relationship between JSD and the dENS for the
human/mouse pair. All General model fits have goodness-of-fit P≥
0.05. The solid line shows LOESS fit. The plots show 3906 alignments
of human, mouse, and opossum protein coding genes.

Departure from Compositional Homogeneity Increases with
Genetic Distance

In the Methods section, we hypothesized that the
nonstationarity between sequences should increase with
genetic distance. Figure 6 plots JSD against genetic
distance under the General model for the mouse
to human path in the nuclear data for alignments
plausibly modeled by the General model. We do
not postulate the nature of the relationship between
dENS and JSD, other than that it is increasing, so we
provide a LOESS plot of dENS, as it is expected and
observed to be significantly more noisy than JSD. The
relationship is observed to be increasing, supporting the
hypothesis that sequences that are further apart in a
phylogenetic sense tend to display greater compositional
heterogeneity. Note that there is a gray area here—tests of
compositional heterogeneity will lack power for closely
related sequences, so the question really pertains to long
edges only.

Comparison Between ENS and Paralinear Distance
Paralinear distances were originally proposed to

address the known occurrence of nonstationarity (Lake
1994). Our analysis shows that this distance, dpara, is also
prone to systematic bias (Fig. 7), and is almost always
greater than or equal to dENS. A linear regression of this
data in which the intercept is constrained to be zero has
a slope of ∼1.158 with an R2 value of ∼0.97, meaning
that there is still a strong relationship between dpara

FIGURE 7. The paralinear distance (dpara) exceeds dENS in almost
all cases. Scatter plot of dpara versus dENS between human and mouse
from 3906 alignments of opossum, mouse, and human protein coding
genes. All General model fits have goodness-of-fit P≥0.05. Straight
line shows the diagonal.

and ENS. The 95% confidence interval for the slope was
(1.152,1.164).

Purely for comparison, we also give the results for
the relationship between dGTR and dENS. In this case, a
linear regression through the origin yielded a slope with
a 95% confidence interval of (1.034,1.040) and an R2 of
∼0.99. It is interesting that the GTR model outperforms
the paralinear distance in this instance. It would appear
that the errors that are introduced by the paralinear
approximation are greater than the errors introduced by
neglecting the existence of nonstationarity in the data.

Influence of Substitution Model Choice on the
Molecular Clock

We sought to determine whether a fundamental
feature, the existence of a molecular clock, was altered
by model selection between the GTR or GTR+� and
General models. We found that departure from a
molecular clock was overstated under the GTR model,
and more so under the GTR+� model.

We compared the fit of clock-like and unconstrained
models (Methods section) to the nuclear data where the
ingroup was specified to contain mouse and human.
That is, we tested the existence of a molecular clock on
the mouse and human edges. We found that the clock-
like model was rejected in favor of the unconstrained
model more often by the GTR or GTR+� models
than by the General model (Fig. 8). For instance, at
5% significance the GTR model rejected the molecular
clock in ∼61% of cases and the GTR+� model rejected
the molecular clock in ∼65% of cases, whereas the
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FIGURE 8. The molecular clock is rejected more often under the
GTR and GTR+� models. Empirical cumulative distribution functions
of likelihood ratio test P-values between constrained clock-like and
unconstrained models based on GTR, GTR+�, and General models
over 3909 alignments of human, mouse, and opossum protein coding
genes. All General model fits have goodness-of-fit P≥0.05.

General model clock rejection rate was ∼53%. Of 3909
alignments, application of the General model led to the
clock being rejected 2062 times (at the nominal 5% level).
Of these instances, the mouse branch was longer than
the human branch in 2024 cases, consistent with the
hypothesis of an accelerated substitution rate on the
mouse branch.

Figure 9 illustrates a more direct comparison, where
we plot the ratio of dENS between mouse and human
edges to the ratio of dGTR and dGTR+� between mouse
and human edges. There is a tendency for the length
of the mouse edge to exceed that of the human edge
by a greater amount under both the GTR and GTR+�
models. In other words, the speedup of substitution rates
on the mouse lineage is overstated by the stationary
models.

The results from our analysis of the properties of a
molecular clock show that the systematic overestimation
of genetic distance by GTR and GTR+� can effect
different edges to different extents. This overestimation
was shown to be stronger on the mouse edge than the
human edge, resulting in a different level of inference
being drawn about a fundamental quality of the data.
The effect was found to be stronger for GTR+� than for
GTR. Specifically, the estimated ratios of mouse/human
substitution rates and 95% confidence intervals were:
General 1.92 (1.89, 1.95); GTR 2.08 (2.04, 2.12); GTR+�
2.49 (2.42, 2.57). Employing a time-reversible, rate-
heterogeneous model would, therefore, be expected to
cause an overestimation of the ratio of rodent to primate
evolutionary rate by ∼1.3-fold.

FIGURE 9. GTR and GTR+� models overestimate departures from
the molecular clock. Scatter plots of the ratio of mouse and human edge
lengths measured as dGTR or dGTR+� against dENS from 3906 alignments
of human, mouse, and opossum protein coding genes. All General
model fits have goodness-of-fit P≥0.05. Plots were truncated near six;
distance estimates greater than 100 were rejected as outliers. The curved
lines show LOESS fits. Straight lines show the diagonal.

DISCUSSION

Acknowledging that all models are wrong, we have
sought to identify ways in which the prevailing
nucleotide substitution models in use by the
phylogenetics community might be importantly
wrong (in the sense used by Box 1976). We have
given particular attention to the GTR model, as the
most general model in popular use, and its extension,
GTR+�. Across our spectrum of tests, we found that
neither model explains evolutionary processes very
well, and that in comparison to a model that can (the
General model), application of the GTR or GTR+�
model leads to incorrect fundamental inferences.
We also assert that use of the General model, which
is the most general identifiable time-homogeneous
continuous-time nucleotide substitution model, in their
stead is practical and sensible.

We separately and objectively assessed the goodness
of fit of the GTR, GTR+�, and General models across
samples of nuclear, mitochondrial, and microbial genes.
Where the GTR and GTR+� models performed best, for
the nuclear sample, they were rejected as the possible
generating process more than 80% of the time at 5%
significance. We are not the first authors to observe that
a GTR model fails parametric bootstrap tests (Jayaswal
et al. 2007). For the same data set, the G statistic P-
values for the General model were roughly uniformly
distributed, indicating that it could plausibly be the
generating process for this data. For the mitochondrial
and microbial genes, the General model failed to be
rejected at least an order of magnitude more often than
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the GTR and GTR+� models. We do not contend that any
of our data sets were necessarily generated by a process
that satisfies the assumptions of the General model,
only that it is plausibly the generating process in some
instances. Further investigation of models of nucleotide
substitution that relax the General model assumption
that sites evolve identically and independently may be
justified.

Under the GTR or GTR+� models and in comparison
with the General model, one is led to overstate genetic
distances for nuclear and microbial sequences, overstate
how frequently the molecular clock assumption is
violated by mouse and human evolution, and overstate
the ratio of mouse to human phylogenetic edge lengths.
Importantly, the extent to which distances are overstated
was found to be proportional to the change in nucleotide
composition between sequences. We have also found a
theoretical basis and empirical evidence for the notion
that longer edges are more likely to exhibit greater
compositional heterogeneity. It is, therefore, easy to
postulate that under the GTR or GTR+� models the
worst effect of overestimation will be evident in long
edges. This effect is reminiscent of the classic problem of
long branch attraction that is associated with parsimony
methods. Note that long branch attraction is also known
to manifest in ML approaches where the model is not
supported by the data (Bergsten 2005).

Our results have important implications for published
and future studies concerning molecular clocks.
Although we confirmed substitution rate acceleration
on the rodent lineage, our results indicate that the
choice of a time-reversible model can markedly increase
estimates of the magnitude of acceleration. Our results
further established a greater tendency to reject the clock
under time-reversible models. More troubling is the
observation that under the commonly employed GTR+�
model, the average rodent substitution rate increase
was ∼1.3-fold larger. In contrast, estimates from GTR
alone were much closer to those from the General
model. The tendency of time-reversible models toward
overestimation of edge lengths, particularly for long
edges, is a plausible contributor to the tendency for
molecular clock based estimates of divergence time to
be older than those from the fossil record (Blair Hedges
and Kumar 2003). This potential was noted earlier by
Kumar and Subramanian (2002) through elimination of
sequences based on tests for nonstationarity (Kumar
and Gadagkar 2001; Kumar and Subramanian 2002).
Our results predict that using dENS for estimation
of divergence times will improve reliability of those
estimates and conceivably reduce their discrepancy with
geologically based dates.

It is tempting to infer that the General model will not
give markedly different distance estimates to the GTR
model when a measure of nonstationarity, such as JSD
or the disparity index (Kumar and Gadagkar 2001), is
small. However, it is possible that sequences that are
not significantly compositionally different may still have
been generated by processes that were not reversible,
which could again lead to bias that would not be present

under the General model. Evidence for nonreversible,
stationary evolutionary processes has been reported
(Jayaswal et al. 2005). We have not pursued this line of
enquiry here.

We also tested a pairwise distance measure that is
intended for use in instances where the stationarity
assumption is violated, the paralinear distance, and
found that it, too, systematically overestimates distances
in comparison to those implied by the General model fits
to the nuclear data.

It is surprising that the bias introduced by using
the GTR or GTR+� models or paralinear distance to
measure genetic distance rather than the General model
is consistently positive. This is an empirical result, not
a manifestation of a mathematical principle. Figure 4
presents plentiful examples of distances below the
diagonal, indicating dENS is greater than dGTR or dGTR+� .
We also showed in the Methods section that naïve
application of (1), which gives the expected number
of substitutions in the stationary case, can over or
underestimate the true number of expected substitutions
in the nonstationary case. Guindon (2013) showed via
simulation that a bias exists between two extensions
of the model of Hasegawa et al. (1985). The two
extensions both allowed the rate matrix Q to vary along
edges, one deterministically and the other stochastically.
However, direct comparison between those results and
those presented here is made difficult by significant
differences in modeling assumptions and experimental
setup.

It is widely held that the GTR model underestimates
genetic distance in comparison to its rate-heterogeneous
extensions (see Waddell and Steel 1997, and references
therein). However, we note that in comparison to the
General model, the GTR model performed better than
the GTR+� model in all of our genetic distance and
molecular clock tests. That is, biases were greater and
the molecular clock hypothesis rejected more frequently
under GTR+�. This result is counterintuitive because
use of the AIC would lead one to select GTR+� ahead
of GTR for modeling the majority of our microbial
and a substantial proportion of our nuclear data. If
the General model is excluded from the comparison,
taking just AIC or maximized log-likelihood values as
a guide, one might be tempted to confirm the results in
Waddell and Steel (1997). We argue that the community
has been misled by these sorts of results. Although
accommodating rate heterogeneity may be justified, our
results suggest that it is far more important to relax the
assumption of stationarity.

Although our goodness-of-fit results establish the
merits of the General model, we have not considered
its suitability for the phylogenetic reconstruction
problem. We previously demonstrated from a survey
across a diverse array of lineages that, for the
vast majority of considered cases, the BH and
General models were equivalent (Verbyla et al.
2013). Accordingly, the statistical advantages and
pitfalls of the General model for the phylogenetic
reconstruction problem correspond to those already
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identified for BH (e.g., Jayaswal et al. 2005, 2007).
In both cases, a major barrier to application of
these models for full tree-space searches is the large
number of free parameters. Application to phylogenetic
reconstruction of even modest numbers of taxa
will require attention be paid to fast approximation
techniques.

With advances in software and hardware and the
prodigious amount of genetic information available
online, it is now possible and practical to measure
distances using the parameter rich General model,
as we have demonstrated. An important property of
distances measured under the General model is that
they reduce to those measured under the GTR model,
and all its submodels, should the data at hand reflect
the assumptions of GTR or its submodel. From this
perspective we see no reason to use the GTR model
to estimate distances. Any remaining concerns about
performance could be addressed by approximation
techniques or potentially by adding constraints to the
General model that do not impede its ability to fit the
data, although we have not explored that here.

Our analyses strongly indicate that when estimating
genetic distances, stationary, time-reversible models
should be avoided. The widely employed model
selection approaches select from a collection of similarly
violated processes. We have shown that as evolutionary
processes they fail to plausibly explain available
observations and add a positive bias of a magnitude that
varies by phylogenetic edge to genetic distance estimates.
In our view, it is difficult to justify their continued
use when a better alternative exists, which yields the
same estimates as any submodel, including GTR, if its
assumptions are justified.
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