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Abstract: Coat protein I (COPI) is necessary for intra-Golgi transport and retrograde transport from
the Golgi apparatus back to the endoplasmic reticulum. The key component of the COPI coat is the
coatomer complex, which is composed of seven subunits (α/β/β’/γ/δ/ε/ζ) and is recruited en bloc
from the cytosol onto Golgi membranes. In mammals and yeast, α- and β’-COP WD40 domains
mediate cargo-selective interactions with dilysine motifs present in canonical cargoes of COPI vesicles.
In contrast to mammals and yeast, three isoforms of β’-COP (β’1-3-COP) have been identified in
Arabidopsis. To understand the role of Arabidopsis β’-COP isoforms in plant biology, we have identified
and characterized loss-of-function mutants of the three isoforms, and double mutants were also
generated. We have found that the trafficking of a canonical dilysine cargo (the p24 family protein
p24δ5) is affected in β’-COP double mutants. By western blot analysis, it is also shown that protein
levels of α-COP are reduced in the β’-COP double mutants. Although none of the single mutants
showed an obvious growth defect, double mutants showed different growth phenotypes. The double
mutant analysis suggests that, under standard growth conditions, β’1-COP can compensate for the
loss of both β’2-COP and β’3-COP and may have a prominent role during seedling development.

Keywords: Arabidopsis; plant growth; coat protein I (COPI); isoforms; β’-COP; α-COP

1. Introduction

Coat Protein I (COPI)-coated vesicles are involved in transport between Golgi cisternae
and in retrograde transport from the Golgi apparatus back to the endoplasmic reticulum
(ER) [1]. In mammalian cells, COPI proteins have been recently proposed as also playing
a role in the last step of anterograde ER–Golgi transport [2,3].

The COPI coat is based on a cytosolic complex (coatomer), containing seven equimolar
subunits (α–, β–, β’–, γ–, δ–, ε– and ζ-COP), which interacts with Golgi membranes via the
GTPase ADP-ribosylation factor 1 (ARF1). Cytosolic (GDP-bound) ARF1 first interacts with
dimers of p24 family proteins, but following GTP/GDP exchange, ARF1–GTP dissociates
from p24 proteins and inserts into Golgi membranes. Coatomer can then interact both
with ARF1–GTP and with sorting signals (i.e., dilysine motifs) in the cytosolic domain of
p24 family proteins and other COPI cargo proteins. Coatomer polymerization induces
COPI vesicle formation, whereas COPI uncoating requires GTP hydrolysis in ARF1 [1,4,5].
In contrast to clathrin and COPII coats, where the inner layer (involved in cargo recogni-
tion) and the outer layer (involved in membrane deformation) are recruited sequentially,
COPI coatomer is recruited en bloc from the cytosol onto Golgi membranes [5,6]. How-
ever, biochemical studies have shown that coatomer is composed of two subcomplexes,
the B-subcomplex, containing the α-, β’- and ε-COP subunits, and the F-subcomplex, con-
taining the β-, γ-, δ- and ζ-COP subunits. The F-subcomplex is structurally very similar
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to clathrin adaptors and has been shown to interact with two molecules of ARF1–GTP.
Therefore, this subcomplex has been proposed to function as an adaptor-like subcomplex.
The B-subcomplex has a domain organization very similar to that of clathrin, including two
N-terminal β-propeller domains followed by an α-solenoid domain [7], and indeed the
crystal structure of “trimeric” α/β’-COP strikingly resembles that of a clathrin triskelion [8].
Therefore, the B-subcomplex has been proposed to function as a cage-like subcomplex.
Despite this structural similarity, clathrin and the COPI B-subcomplex share no sequence
similarity and evolved independently [9]. In the B-subcomplex, α- and β’-COP can be con-
sidered structural homologs, since both contain two β-propeller domains and a α-solenoid
domain and can interact via the α-solenoid region to form a heterodimer [8].

Cargo recognition by the COPI complex is mediated by sorting signals on the cytosolic
domain of transmembrane proteins. The best characterized sorting signals are the dilysine
KKxx and KxKxx motifs, present in many ER-resident membrane proteins, including pro-
teins of the p24 family [4,6,10–16]. These motifs directly bind to the N-terminal β-propeller
domains (containing WD-40 repeats) of α- or β’-COP, that are ideally positioned adjacent to
the surface of the membrane [6,11–13]. The FFxxBB(x)n motif (in which B is a basic amino
acid) that is present in the cytosolic tail of several p24 family proteins binds two distinct
sites in the γ-COP subunit [17]. Dilysine motifs also seem to be responsible for sorting of
the K/HDEL receptor (involved in retrograde Golgi–ER transport of luminal ER-resident
proteins) within COPI vesicles [18]. Other COPI sorting signals include Arginine(R)-based
ER retrieval signals (ϕRxR, in which ϕ represents a hydrophobic amino acid), which inter-
act with the beta and delta subunits [19]. Segments of six of the seven COPI subunits are
membrane proximal, which makes it possible that different COPI subunits are involved in
cargo recognition [6].

In yeast, all COPI subunits are encoded by single genes. Six of the seven subunits
are essential for viability in Saccharomyces cerevisiae. Only ε-COP, emerging last during
evolution, is non-essential [20]. The COPI pathway is essential for life, and depletion of
COPI subunits is lethal in mammalian cells [21,22]. In mammals, two coatomer subunits
(γ- and ζ-COP) have two paralogs (γ1/γ2, ζ1/ζ2), which has led to the proposal that they
may be part of different COPI vesicles [4]. However, a proteomic analysis of paralog-specific
COPI vesicles generated in vitro from HeLa cells did not show any significant difference
in their cargo content, suggesting that these paralogs may be functionally redundant [23].
Nevertheless, the COPI pathway may also have tissue-/cell-type-specific functions. Indeed,
mutations in COPI subunits have been linked to diseases, in particular, neurological
disorders [24] and, very recently, COPI vesicles have been proposed to have a paralog-
specific role in the neuronal differentiation of mouse pluripotent cells [25].

Arabidopsis (and most plant species) possesses several isoforms for most COPI sub-
units. In Arabidopsis, all COPI subunits (except δ- and γ-COP) have two to three isoforms,
including α- (α1 and α2) and β’ (β’1, β’2 and β’3)-COP, with a potential role in cargo
binding (i.e., proteins with a dilysine motif) [14]. Therefore, it is tempting to postulate
that different COPI paralogs may be part of different types of COPI vesicles. Interestingly,
in contrast to mammals, morphologically different COPI vesicles have been detected in
plants [26]. However, it is not yet known whether the different isoforms of each COPI
subunit are functionally redundant, or else may form different populations of COPI vesicles,
perhaps containing different cargo proteins.

Silencing of β’-, γ- and δ-COP caused growth arrest and acute plant cell death in
Nicotiana benthamiana, while silencing of β’-COP in tobacco BY-2 cells caused aberrant
cell plate formation during cytokinesis [27]. Knockdown of ε-COP subunit isoforms in
Arabidopsis changed the localization of endomembrane proteins, containing a KXD/E motif
involved in COPI binding and Golgi localization [28]. Arabidopsis α1-COP has been shown
to be required for the early acceptance of compatible pollen grains [29] and α2-COP for
early secretory traffic and plant growth [30]. Besides, mutants in plant COPI subunits have
been shown to have an altered Golgi morphology, which highlights the importance of COPI
function for Golgi structure [27,28,30,31]. Loss of COPI function has also been shown to
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affect tolerance to salt stress, in particular to chloride ions, possibly due to mislocalization
or reduced activity of chloride channels/transporters [32,33]. Here we have used a loss-
of-function approach to analyze the possible function of the three paralogs of the β’-COP
subunit in Arabidopsis.

2. Materials and Methods
2.1. Plant Material and Stress Treatments

Arabidopsis thaliana (ecotype Col-0) was used as wild type. The loss-of-function mu-
tants β’1-cop-1 (SALK_206753), β’1-cop-2 (WiscDsLoxHs036_02G), β’2-cop-1 (SALK_056771),
β’3-cop-1 (SALK_004817), β’3-cop-2 (SALK_206870) and β’3-cop-3 (SALK_096549) were
from the Salk Institute Genomic Analysis Laboratory and obtained from the Nottingham
Arabidopsis Stock Centre. In β’1-cop-1 and β’3-cop-2 mutants, next-generation sequencing de-
tected only one T-DNA insertion. Mutant lines were characterized by PCR (Supplementary
Table S1). A. thaliana plants were grown in growth chambers under a 16-h-light:8-h-dark
regime and 75% relative humidity at 21 ◦C. To study whether salt tolerance was affected
in the β’-COP double mutants, seeds of wild type (Col-0) and mutants were sown on
Murashige and Skoog (MS) plates containing 135–150 mM NaCl. Plates were transferred to
a controlled growth chamber after cold treatment in the dark for three days at 4 ◦C. After
12 days, the rates of cotyledon greening were scored. To study KCl (100–110 mM) tolerance,
the same protocol was used. Seeds harvested from Col-0 and mutant plants grown under
the same conditions and at the same time were used.

2.2. Reverse Transcription PCR (RT-PCR)

Total RNA was extracted from seedlings using a NucleoSpin RNA plant kit (Macherey-
Nagel, Düren, Germany), and 3 µg of the RNA solution were reverse transcribed us-
ing the maxima first strand cDNA synthesis kit for quantitative RT-PCR (Fermentas,
Burlington, ON, Canada), according to the manufacturer’s instructions. Semi-quantitative
PCRs (sqPCRs) were performed on a cDNA template using the PCR Master kit (Emeral-
dAmp Max–2X Premix) (TaKaRa Bio, Shiga, Japan). The sequences of the primers used for
PCR amplifications are included in Supplementary Table S2. Quantitative PCR (qPCR) was
performed by using a StepOne Plus machine (Applied Biosystems, California, CA, USA)
with SYBR Premix Ex Taq TM (Tli RNaseH Plus) (TaKaRa Bio), according to the man-
ufacturer’s protocol. Each reaction was performed in triplicate with 100 ng of the first-
strand cDNA and 0.3 mM of primers for all the genes and 0.9 mM for SEC31A in a total
volume of 20 µL. The specificity of the PCR amplification was confirmed with a heat
dissociation curve (from 60 to 95 ◦C). Relative mRNA abundance was calculated using
the comparative Ct method, according to Pfaffl [34]. Primers used for qPCR are listed in
Supplementary Table S3.

2.3. Transgenic RFP–p24δ5 Plants

Transgenic plants were generated by transformation of Col-0, β’1β’3-cop-1 and β’2β’3-
cop-2 plants with the RFP–p24δ5 construct via Agrobacterium using the floral dip method,
according to standard procedures [35]. The RFP–p24δ5 construct has been previously
described and encodes a RFP fusion protein with a mRFP located at the N-terminus of
the protein (right after the signal sequence and before the N-terminus of the mature p24δ5
protein) under the control of the 35S promoter [30,36]. The fluorescence of the mRFP used
has been shown to be highly stable at the acidic pH of the vacuole lumen [36,37]. T1 plants
were analyzed by confocal microscopy.

2.4. Confocal Microscopy

Imaging was performed using an Olympus FV1000 confocal microscope with a
60× water lens. A fluorescence signal for RFP (543 nm/593–636 nm) was detected. Se-
quential scanning was used to avoid any interference between fluorescence channels.
Post-acquisition image processing was performed using the FV10-ASW4.2 Viewer®.



Cells 2022, 11, 938 4 of 16

2.5. Generation and Identification of CRISPR–Cas9 Mutants

The sequences of the three β’-COP genes were used with ARES-GT software (https:
//github.com/eugomin/ARES-GT, accessed on 21 December 2021) [38] for selection of two
β’2-COP specific sgRNA sequences targeting exons 5 and 7. The CRISPR–Cas9 constructs
were designed using the GoldenBraid 3.0 assembly approach (https://gbcloning.upv.es/,
accessed on 21 December 2021) [39]. The gRNAs were assembled together using the multi-
plexing strategy: sgRNA1 (TTCGCACTATGTGATGCAAG) and sgRNA2 (GTTGTGTCCA-
GACGCTAGAT) were cloned into level 0 vectors GB1208 and GB1207 and then assembled
into vector pDGB3_alpha2 (GB0017) with U6-26 promoter (GB1001). Assembled sgRNAs
were combined with EGM005 plasmid [40] (pDGB3_alpha1_pAt2S3::DsRED::T35S_pUBQ10::
hCas9:Tnos_SF) into vector pDGB3_omega1 (GB0019) to generate the final CRISPR–Cas9
vector. This final vector was introduced into Col-0 and β’3-cop-2 mutant plants by flo-
ral dip for Agrobacterium-mediated transformation [35]. An Olympus SZX9 microscope
with DsRED filter was used for the selection of fluorescent T1 transformed seeds and
non-fluorescent T2 Transgen-Free seeds.

To confirm CRISPR–Cas9-mediated editing of the target gen, young leaves’ genomic
DNA was obtained following the protocol described by Edwards [41] and the PCRs were
performed using specific primers (Supplementary Table S4). For Sanger sequencing, ob-
tained PCR products were purified and sequenced by Macrogen Co. (Madrid, Spain).
The sequencing was carried out using a specific primer (Supplementary Table S4). Chro-
matograms from sequencing results were analyzed by Synthego “ICE CRISPR analysis
tool” (https://ice.synthego.com/#, accessed on 13 January 2022).

2.6. Protein Extracts, SDS-PAGE and Immunoblotting

Cotyledons of seven-day-old wild type plants and loss-of-function mutants were
ground in homogenization buffer (HB, 0.3 M sucrose; 1 mM EDTA; 20 mM KCl; 20 mM
HEPES pH 7.5) supplemented with 1 mM DTT and a Protease Inhibitor Cocktail (Sigma-
Aldrich Co., St. Louis, MO, USA), using a mortar and pestle. The homogenate was
centrifuged two times for 5 min at 1200× g and 4 ◦C, and the post nuclear supernatant
(PNS) was collected. Then, the PNS was centrifuged for 10 min at 1,000,000× g and 4 ◦C,
and the supernatant was collected as a cytosolic extract.

Protein quantitation was performed by using the Bradford assay (Bio-Rad Laboratories
GmbH, Munich, Germany). Protein extracts were resolved by SDS polyacrylamide gel elec-
trophoresis (SDS–PAGE) and proteins were then transferred to nitrocellulose membranes
(Schleicher and Schuell, Maidstone, UK). Membranes were stained with Ponceau S solution
(Sigma) before incubation with primary antibodies against COPI subunits and peroxidase-
labeled secondary antibodies. The luminescent signal was developed using the SuperSignal
West Pico chemiluminescent substrate (Pierce-Thermo Scientific, Rockford, IL, USA). Poly-
clonal antibodies against mammalian β′-COP (C1PL) and α-COP were kindly provided by
Dr F. Wieland (Biochemie-Zentrum, Heidelberg, Germany). Immunoblots were analyzed
using the ChemiDoc XRS + imaging system (Bio-Rad, California, CA, USA). Immunoblots
in the linear range of detection were quantified using Quantity One software (Bio-Rad
Laboratories), with the Ponceau stain protein as a loading control.

2.7. Statistical Analysis

Differences in stress responses, protein levels in western blotting analysis and mRNA
levels in RT-sqPCR were tested using a two-sample t-test with unequal variances (Microsoft
Excel 2013) among all the β’-COP mutants compared to Col-0.

3. Results
3.1. Arabidopsis β’-COP Genes

Three β’-COP genes were identified in Arabidopsis: β’1-COP (At1g52360), β’2-COP
(At3g15980) and β’3-COP (At1g79990). They all encode proteins between 104–105 kDa.

https://github.com/eugomin/ARES-GT
https://github.com/eugomin/ARES-GT
https://gbcloning.upv.es/
https://ice.synthego.com/#
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β’1-COP and β’2-COP share 88%, β’1-COP and β’3-COP, 85% and β’2-COP and β’3-COP,
81% amino acids, respectively (Supplementary Figure S1).

To investigate the relative expression of β’-COP genes, we used the publicly avail-
able expression database GENEVESTIGATOR [42,43] and ePlant-BAR [44]. As shown in
Figure 1A, the three genes show high expression levels throughout plant development.
The main difference between the three isoforms is their expression during seed develop-
ment. As it is shown in Figure 1B, β’1-COP had the highest expression levels, up to four
times higher than β’2-COP and six times higher than β’3-COP, in the last stages of seed
development. This suggests that β’1-COP might exert a function in seed development.
In contrast, β’3-COP showed the lowest expression levels at these stages.

Figure 1. Expression patterns of β’1-COP, β’2-COP and β’3-COP. (A) Developmental stage-specific
expression pattern in Arabidopsis thaliana. Seedlings, rosette leaves, floral organs and siliques are
sequentially marked from left to right. “HIGH”, “MEDIUM” and “LOW” expressions were cal-
culated by Afflymetrix Arabidopsis ATH1 genome array. The number of samples indicates RNA
gene expression data collected by GENEVESTIGATOR (www.genevestigator.com, accessed on
23 November 2021). (B) Seed development expression pattern, from the globular embryo to the green
cotyledons seed stage. β’1-COP shows the highest expression. Data collected and image generated
by AtGenExpress eFP (http://bar.utoronto.ca/eplant, accessed on 15 December 2021) [44–46]. Gene
expression data generated by the Affymetrix ATH1 array are normalized by the GCOS method, TGT
value of 100. Tissues were sampled in triplicate. The legend at the left presents relative expression
levels coded by colours (blue = low, red = high).

www.genevestigator.com
http://bar.utoronto.ca/eplant
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To gain insight into the physiological role of the three Arabidopsis β’-COP genes, T-DNA
mutants were analyzed. Two β’1-cop T-DNA insertion mutants from the SALK collection (http:
//signal.salk.edu/cgi-bin/tdnaexpress, accessed on 7 March 2022), β’1-cop-1 (SALK_206753)
and β’1-cop-2 (WiscDsLoxHs036_02G), were characterized (Figure 2A and Figure S2). No β’1-
COP mRNA could be detected in β’1-cop-1, and the mRNA levels of β’1-COP in β’1-cop-2
were around 40% of wild type levels (Figure 2A). These results indicate that β’1-cop-2
is a knockdown mutant and β’1-cop-1 is a knockout (KO) mutant. Therefore, for the
following experiments, we used β’1-cop-1, a β’1-COP mutant with only one T-DNA insertion
confirmed by Next-Generation Sequencing (NGS).

Figure 2. Relative expression levels of β’-COP genes in β’-cop mutants. RT–qPCR analysis was
performed to characterize β’1-cop (A), β’2-cop (B) and β’3-cop (C) mutants. Total RNA was extracted
from 7-day-old seedlings of the mutants and wild type (Col-0). The mRNA was analyzed by RT–qPCR
with specific primers and normalized to UBQ10 expression (Supplementary Tables S1–S3). Results are
from three biological samples and three technical replicates. mRNA levels are expressed as relative
expression levels and represent fold changes of mutant/wild type. Values represent mean ± s.e.m. of
the three biological samples.

http://signal.salk.edu/cgi-bin/tdnaexpress
http://signal.salk.edu/cgi-bin/tdnaexpress
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β’2-cop-1 (SALK_056771) is the only T-DNA mutant of β’2-COP found in the SALK
collection (Supplementary Figure S2), and it has mRNA levels of β’2-COP around 2% of
wild type levels (Figure 2B).

Three β’3-cop T-DNA insertion mutants from the SALK collection, β’3-cop-1 (SALK_004817),
β’3-cop-2 (SALK_206870) and β’3-cop-3 (SALK_096549), were characterized (Supplemen-
tary Figure S2). mRNA levels detected by RT–qPCR of β’3-cop-1 and β’3-cop-3 were 18%
and 50% of wild type levels, respectively (Figure 2C). No β’3-COP mRNA could be de-
tected in β’3-cop-2 (Figure 2C). When the mRNA levels of β’3-COP were also analyzed
in β’3-cop-1 by RT-sqPCR with primers on both sides of the T-DNA insertion (primers
RPB’3 and LPB’3), not only a reduction in the expression was detected but also the molec-
ular weight of the band obtained was smaller in the mutant compared to wild type
(Supplementary Figure S2B). The sequence of this band suggests that the exon number
23 has been abnormally spliced out, likely due to the T-DNA insertion in the mutant.
In β’3-cop-3, RT-sqPCR showed that the β’3-COP mRNA levels detected by RT–qPCR
(50% wild type levels) were due to the presence of truncated transcripts down the T-DNA
insertion and showed that this mutant indeed lacked the full length β’3-COP transcript
(Supplementary Figure S2B, Fragment 2). In summary, the results obtained indicate that
β’3-cop-2 and β’3-cop-3 are β’3-COP knockout mutants. On the other hand, β’3-cop-1 may
contain reduced protein levels of a truncated β’3-COP (lacking the last 141 amino acids)
that may be partially functional.

None of the β’2-cop and β’3-cop mutants showed any obvious phenotypic alteration
under standard growth conditions when compared to wild type plants, and only β’1-cop-1
mutant showed slightly reduced plant height (Supplementary Figure S2C).

3.2. β’-Cop Double Mutants Showed Different Growth Phenotypes

Next, single mutants were crossed to obtain double mutants. No homozygous β’1β’2-
cop double mutants were obtained when β’1-cop-1 and β’2-cop-1 plants were crossed. In total,
we screened 97 F2 plants but failed to recover homozygous β’1-cop/β’1-cop β’2-cop/β’2-
cop plants. Furthermore, we did not identify any β’1-cop/β’1-cop β’2-COP/β’2-cop or
β’1-cop/β’1-COP β’2-cop/β’2-cop plants either, suggesting that loss of both β’1-COP and
β’2-COP genes compromises viability of the β’1β’2-cop double mutant and that β’3-COP
cannot compensate for it.

β’1-cop-1 plants were crossed with β’3-cop-1, β’3-cop-2 and β’3-cop-3 plants to obtain
β’1β’3-cop-1, β’1β’3-cop-2 and β’1β’3-cop-3 double mutants, respectively. The mutant β’1β’3-
cop-1 showed a dwarf phenotype with smaller rosette leaves, shorter stems and roots and
reduced fertility (Figure 3 and S3). This double mutant is knockout (KO) for β’1-COP but
may express reduced protein levels of β’3-COP, as described before. However, β’1β’3cop-2
and β’1β’3cop-3 mutants that were KO for both β’1-COP and β’3-COP were only viable
as seedlings, albeit strongly reduced in size, and failed to develop beyond the seedling
stage (Figure 3A). Interestingly, in these mutants, β’2-COP expression was induced 60–80%
(Figure 3B), suggesting a possible mechanism of compensation for the loss of β’1-COP and
β’3-COP function. The β’1β’3-cop-1 mutant likely could develop beyond the seedling stage
because it is a knockdown mutant and not a KO mutant for β’3-COP. This result indicates
that the presence of β’1-COP and β’3-COP is essential for normal seedling development.
Therefore, the following experiments were performed with β’1β’3-cop-1, as it was not
possible to obtain a homozygous line for β’1β’3cop-2 and β’1β’3cop-3.
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Figure 3. Characterization of β’1β’3-cop double mutants. (A) All the β’1β’3-cop homozygous double
mutants show a dwarf phenotype at 7-day-old seedling stage. At later stages, the β’1β’3-cop-1 mutant
also showed a dwarf phenotype with smaller rosette leaves, shorter stems and roots and reduced
fertility (Supplementary Figure S3). No homozygous lines could be obtained of β’1β’3-cop-2 and
β’1β’3-cop-3 mutants as they were only viable as seedlings and failed to develop beyond the seedling
stage. White arrows point β’1β’3-cop-2 and β’1β’3-cop-3 homozygous seedlings obtained from seeds
of β’1-cop-1/β’1-COP β’3-cop-2/β’3-cop-2 plants and β’1-cop-1/β’1-cop-1 β’3-COP/β’3-cop-3 plants,
respectively. (B) RT–qPCR analysis show the expression levels of the three β’-COP genes in β’1β’3-cop
double mutants relative to the wild type (Col-0). (C) β’1β’3-cop-1, β’1β’3-cop-2 and β’1β’3-cop-3
mutants show upregulation of the COPII subunit SEC31A gene. Expression of SEC31A and SEC31B
was analyzed by RT–qPCR. Total RNA was extracted from 7-day-old seedlings of wild type (Col-0)
and homozygous mutants (β’1β’3-cop-2 and β’1β’3-cop-3 were selected by size). The mRNA was
analyzed by RT–qPCR with specific primers and normalized to UBQ10 expression (Supplementary
Tables S1–S3). Results are from three biological samples and three technical replicates. mRNA levels
are expressed as relative expression levels and represent fold changes of mutant over wild type.
Values represent mean ± s.e.m. of the three biological samples.

Following the same strategy as before, β’2-cop-1 plants were crossed with β’3-cop-1,
β’3-cop-2 and β’3-cop-3 plants to obtain β’2β’3-cop-1, β’2β’3-cop-2 and β’2β’3-cop-3 dou-
ble mutants, respectively. All the double mutants showed a wild type growth pheno-
type under standard growth conditions and only showed slightly reduced plant height
(Figure 4 and S3). For the following experiments, β’2β’3-cop-2 (KO for β’3-COP) was used.
In addition, β’2β’3-cop-1 (containing β’3-cop-1, down for β’3-COP) was also used to com-
pare with β’1β’3-cop-1 (containing β’3-cop-1, down for β’3-COP), the only homozygous line
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obtained for the crosses β’1-cop x β’3-cop. We have shown previously that depletion of β-
COP compromises tolerance to NaCl and KCl in Arabidopsis [32,33]. Therefore, we decided
to test whether β’2β’3-cop-2, which has a wild-type phenotype under standard growth
conditions, also showed enhanced sensitivity to NaCl and KCl, using the range of NaCl and
KCl concentrations used in our previous studies with β-cop mutants [32,33]. As it is shown
in Supplementary Figure S4, β’2β’3-cop mutants had enhanced sensitivity to NaCl and KCl,
and this was also the case for β’1β’3-cop-1. β’2β’3-cop-1, which is a knockdown mutant
of β’3-COP, showed less sensitivity to NaCl and KCl than β’2β’3-cop-2 (KO for β’3-COP)
(Supplementary Figure S4). On the other hand, β’1β’3-cop-1, which is also a knockdown
mutant of β’3-COP, has higher sensitivity than any of the other β’2β’3-cop mutants. These
results indicate that loss of function of β’-COP, as it happens to loss of function of β-COP,
affects tolerance to salt stress which could be due to reduced activity or mislocalization of
ions channels/transporters that need COPI for their functional localization [32,33]. Finally,
we found that β’1β’3-cop-1 (Figure 3C), β’2β’3-cop-1 and β’2β’3-cop-2 (Figure 4C) showed
upregulation of SEC31A, that encodes a COPII subunit isoform, but not of SEC31B. This spe-
cific induction of SEC31A was also observed in other mutants affecting COPI function,
including α2-COP mutants [30] as well as β-COP mutants [32] and a quadruple mutant
affecting p24 family proteins, which are essential for COPI vesicle formation [47].

Figure 4. Characterization of β’2β’3-cop double mutants. (A) All the β’2β’3-cop double mutants
show a wild type phenotype at 7-day-old seedling stage. (B) RT–qPCR analysis show the expression
levels of the three β’-COP genes. (C) β’2β’3-cop-1, β’2β’3-cop-2 and β’2β’3-cop-3 mutants show
upregulation of the COPII subunit SEC31A gene. Expression of SEC31A and SEC31B was analyzed
by RT–qPCR. Total RNA was extracted from 7-day-old seedlings of the mutants and wild type (Col-0).
The mRNA was analyzed by RT–qPCR with specific primers and normalized to UBQ10 expression
(Supplementary Tables S1–S3). Results are from three biological samples and three technical replicates.
mRNA levels are expressed as relative expression levels and represent fold changes of mutant over
wild type. Values represent mean ± s.e.m. of the three biological samples.
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3.3. Loss of Two β’-COP Isoforms Causes a Reduction in the Protein Levels of α-COP

Next, we monitored β’-COP protein depletion in the mutants by using an antibody
against mammalian β’-COP [48], since there are no Arabidopsis β’-COP antibodies available.
As shown in Figure 5A, the β’-COP antibody recognized a clear band of approximately
100 kDa, corresponding to the molecular weight of β’-COP, in wild type (Col-0), β’1-cop-1,
β’3-cop-1 and β’3-cop-2 mutants, while in β’2-cop-1 mutant, only a faint band was detected.
The β’-COP antibody also recognized a clear band of approximately 100 kDa in β’1β’3-cop
and a faint band in β’2β’3-cop (Figure 5B). All these results suggest that mammalian β’-COP
antibody has a higher affinity for β’2-COP than for the other isoforms.

Figure 5. Expression levels of coatomer subunit α-COPI in β’1β’3-cop-1 and β’2β’3-cop-2 mutants.
(A) Western blot analysis of cytosol protein extracts from cotyledon of 7-day-old seedlings of wild
type, β’1-cop-1, β’2-cop-1, β’3-cop-1 and β’3-cop-2 mutants using mammalian β’-COP and α-COP
N-terminal peptide antibodies [48,49]. β’1-COP antibodies were raised against the first 12 amino
acids of cow β’1-COP. Cow β’-COP and Arabidopsis β’1-COP, β’2-COP and β’3-COP share 10, 11 and
10 amino acids, respectively. The β’-COP antibody detected a clear band of approximately 100 kDa,
corresponding to the molecular weight of β’-COP, in wild type (Col-0), β’1-cop-1, β’3-cop-1 and β’3-
cop-2, and only a faint band in β’2-cop-1, suggesting that mammalian β’-COP antibody has higher
affinity for β’2-COP. The different affinity for β’2-COP could be due to the sixth N-terminal amino
acid of β’2-COP that is the same in of cow β’-COP and not in β’1-COP and β’3-COP. Alternatively,
different splicing forms involved or postranslational modifications at the N-terminal might decrease
the affinity of the antibody. α-COP antibodies have been previously shown to recognize both α1-COP
and α2-COP isoforms and detected a band of approximately 130 kDa corresponding to the molecular
weight of α-COP [30]. (B) Western blot analysis of cytosolic protein extracts from cotyledon of
7-day-old seedlings of wild type, β’1β’3-cop-1 and β’2β’3-cop-2 using mammalian β’-COP and α-COP
N-terminal peptide antibodies. The β’-COP antibody recognized a clear band of approximately
100 kDa in β’1β’3-cop-1 and a faint band in β’2β’3-cop-2, suggesting again that mammalian β’-COP
antibody has higher affinity for β’2-COP. Bottom panel shows the relative α-COP protein levels
quantified of three biological samples. In (A,B), 12 µg of total protein was loaded in each lane.
Ponceau protein stain was used as a loading control. (C) Relative expression levels of α-COP genes.
Total RNA was isolated from 7-day-old cotyledon seedlings of wild type, β’1β’3-cop-1 and β’2β’3-
cop-2 mutants. RT-sqPCR analysis was performed with the primers listed in Supplementary Table S2.
ACT7 was used as a control. Values represent mean ± s.e.m. of the three biological samples and
were normalized against the band intensity in wild type that was considered to be 100%. Statistical
significance: ns, not significant; * p < 0.05; ** p < 0.01.
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In yeast, β’-COP depletion was shown to affect the levels of other COPI subunits, such
as α-COP [11]. Therefore, we tested the effect of β’-COP depletion by Western blot analysis
using an antibody against mammalian α-COP [49], that has been shown previously to
recognize both isoforms of the Arabidopsis α-COP subunit [30]. Using this α-COP antibody
we found that the levels of α-COP in the single β’-cop mutants were not affected (Figure 5A).
However, β’1β’3-cop-1 and β’2β’3-cop-2 double mutants showed lower levels of α-COP
(Figure 5B).

To check whether the decrease in α-COP protein levels found in the β’1β’3-cop-1
and β’2β’3-cop-2 double mutants correlated with a decrease in mRNA levels, these were
analyzed by RT-sqPCR. As shown in Figure 5C, β’1β’3-cop-1 (but not β’2β’3-cop-2) showed
reduced mRNA levels of both α1-COP and α2-COP, although the reduction in α1-COP was
much higher than in α2-COP.

3.4. Loss of Two β’-COP Isoforms Causes Impaired Trafficking of p24δ5, a COPI Dilysine Cargo

β’-COP has been shown to bind to dilysine motifs, which are present in canonical
COPI cargoes. One of these cargoes is p24δ5, a protein of the p24 family, which has been
previously shown to localize to the ER due to COPI-dependent Golgi-to-ER transport
based on a dilysine motif at its C-terminal tail [36,50]. Therefore, we investigated whether
trafficking of RFP–p24δ5 was affected in β’-COP double mutants. As shown in Figure 6,
RFP–p24δ5 localized to the ER in wild type transgenic plants. In contrast, in both β’1β’3-cop
and in β’2β’3-cop mutants RFP–p24δ5 showed a predominant localization to the vacuole
lumen, with some partial ER localization. This is consistent with impaired retrograde
trafficking of p24δ5 from the Golgi back to the ER in the mutants and with previous results
showing that transport to the vacuole may be a default pathway for membrane proteins in
the plant secretory pathway [36]. This result is also consistent with the role of β’-COP in
trafficking of dilysine cargoes.

Figure 6. β’-cop double mutants show abnormal distribution of RFP–p24δ5, a COPI dilysine cargo.
Confocal laser scanning microscopy of epidermal cells of 4.5-day-old cotyledons. All images shown
were acquired using comparable photomultiplier gain and offset settings. RFP–p24δ5 mainly localized
to the ER network in wild type plants (Col-0) (A,B) (see a z-stack projection in (B)). In contrast,
it mainly localized to the vacuole lumen in β’1β’3-cop-1 (C,D) and β’2β’3-cop-2 (E,F) double mutants,
although a partial ER localization was also found (C,E). Scale bars, 10 µm.
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3.5. A Double Mutant That Combines New CRISPR/Cas9-Generated β’2-Cop KO Alleles with the
β’3-Cop-2 Allele Confirms the β’2β’3-Cop-2 Phenotype

As it has been described above, the mRNA levels of β’2-COP in β’2-cop-1 were
around 2% of wild type levels (Figure 2B). On the other hand, the mRNA levels of
β’2-COP detected in β’2β’3-cop-2 mutant were around 15% of β’2-COP wild type lev-
els (Figure 4B) perhaps due to simultaneous depletion of β’3-COP. Therefore, it could not
be discarded that the absence of growth phenotype in β’2β’3-cop-2 was due to remain-
ing β’2-COP (15% of wild type). To confirm this, KO β’2-cop mutants were generated
by CRISPR/Cas9 gene editing. Two sgRNA sequences were designed using ARES-GT
software (https://github.com/eugomin/ARES-GT, accessed on 21 December 2021) target-
ing exons 5 and 7 of β’2-COP, respectively (Supplementary Figure S5A). The KO β’2-cop
mutants were generated in both wild type (Supplementary Figure S5B,C) and β’3-cop-2
(Supplementary Figure S6) background. As it happened in β’2-cop-1 (Figure 5A) and β’2β’3-
cop-2 (Figure 5B) mutants, a faint band was detected by Western blot analysis with the
mammalian β’-COP antibody in β’2-cop-cr (Supplementary Figure S5B) and β’2β’3-cop-cr
mutants (Supplementary Figure S6A).

The phenotype of β’2-cop-cr and β’2β’3-cop-cr mutants under standard growth con-
ditions (Supplementary Figure S5C and S6B, respectively) was similar to that of β’2-cop-1
(Supplementary Figure S2C) and β’2β’3-cop-2 (Supplementary Figure S3), respectively.
These results confirmed that under standard growth conditions, β’1-COP can almost com-
pletely compensate for the loss of both β’2-COP and β’3-COP.

Finally, Western blot analysis using α-COP antibody showed that β’2β’3-cop-cr double
mutants contained lower levels of α-COP, as it happened to the β’2β’3-cop-2 (Supplementary
Figure S6A and Figure 5B, respectively).

4. Discussion

Over the last years, several studies have been performed to elucidate putative specific
functions of different COPI subunits in mammals. Particularly, a paralog-specific role has
been proposed for the γ- and ζ-COP subunits, since these are the only COPI subunits
codified by two different genes in mammals [4]. Proteomic studies of COPI vesicles gener-
ated in vitro with different γ- and ζ-COP isoforms, using HeLa cells as donor membranes,
were not able to reveal a differential protein composition, arguing against selective cargo
content [23]. However, it has been recently shown that γ1-COP and γ2-COP isoforms are
differentially expressed during the neuronal differentiation of mouse pluripotent cells and,
although they are functionally redundant to a large extent, γ1-COP specifically promotes
neurite outgrowth [25].

Despite the fact that most COPI genes (including α-, β-, β’-, ε- and ζ-COP) have
different paralogs in Arabidopsis, it is not yet known whether different COPI subunit
isoforms are functionally redundant or may have specific functions, tissue, or development
specificity, or perhaps bind different cargo proteins. Interestingly, and in contrast to
mammals, morphologically different COPI vesicles have been described in plants [26],
which might be formed by different COPI subunit isoforms, although this hypothesis still
needs to be demonstrated.

In this work, we have used a loss-of-function approach to analyze the function of the
three Arabidopsis β’-COP isoforms. To this end, we characterized single and double β’-COP
mutants. Under standard growth conditions, none of the single β’-COP mutants displayed
severe developmental defects, which was likely caused by at least partial functional redun-
dancy among Arabidopsis β’-COP genes. β’-COP double mutant analysis under standard
growth conditions suggests that β’3-COP cannot compensate for the simultaneous loss of
β’1-COP and β’2-COP. Similarly, β’2-COP cannot compensate for the simultaneous loss
of β’1-COP and β’3-COP, as the β’1β’3-cop double mutant failed to develop beyond the
seedling stage. However, β’2β’3-cop double mutants had no major phenotypic alterations,
indicating that β’1-COP does seem to compensate for the simultaneous lack of β’2-COP
and β’3-COP. The results of double mutant analysis appear to correlate with the seed

https://github.com/eugomin/ARES-GT
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development expression patterns of β’1-COP and suggest a role of β’1-COP during seed
development that may affect seedling growth.

Coatomer is made of seven equimolar COPI subunits and is recruited en bloc from the
cytosol onto Golgi membranes. However, it is not clear how the levels of the different COPI
subunits are regulated and how the absence of any of the subunits affects the structure
of the complex and the stability of the other subunits. In this work, we found that the
protein levels of another COPI subunit, α–COP, was not affected in the single β’-COP
mutants. However, β’-COP double mutants showed a dramatic decrease in the levels of
α-COP. This is consistent with the known interaction between α- and β’-COP subunits in
the B-subcomplex, and suggests that the α–COP subunit is destabilized in the absence of
β’-COP. Strikingly, the sec27-1 yeast β’-COP mutant (harboring a point mutation in the
carboxy-terminal region) also showed a reduction in the levels of α-COP [11]. This was
proposed to be due to a local instability of the α-solenoid structure in β’-COP which would
affect its interaction with α-COP. Strikingly, β’1β’3-cop-1, but not β’2β’3-cop-2, have also
lower α1/α2-COP mRNA levels than wild-type, which may also contribute to the decrease
in α-COP protein levels in this mutant. As α1-COP mRNA levels were more affected
than α2-COP mRNA levels in β’1β’3-cop-1, it would be interesting to test in the future
whether the isoform α1-COP is a specific partner of β’1-COP. Further experiments should
be performed to clarify these issues.

The β’-COP subunit has been shown to play a role in binding to dilysine motifs in
canonical COPI cargo proteins. Therefore, we hypothesized that loss of β’-COP may affect
trafficking of dilysine cargo proteins, as observed in the sec27-1 yeast β’-COP mutant [11].
Indeed, we have found that the two β’1β’3-cop and β’2β’3-cop double mutants showed
a mislocalization of p24δ5, which contains a cytosolic C-terminal dilysine motif, from the
ER to the vacuole. This may be due to impaired COPI-dependent Golgi-to-ER transport
of p24δ5 (Figure 7), which is mediated by its dilysine motif [36]. Indeed, we have shown
previously that p24δ5 mutants lacking the dilysine motif were transported along the
secretory pathway to the prevacuolar compartment and the vacuole, although a significant
fraction was also found at the plasma membrane [36]. This suggests that transport to the
vacuole is an alternate default pathway for membrane proteins in the secretory pathway.
Therefore, both the absence of the dilysine motif or impaired COPI function have the same
trafficking defect in p24δ5, a canonical COPI cargo.

Figure 7. Trafficking of p24δ5 in wild-type and β’-COP double mutant plants. (A) In wild-type
plants, p24δ5 mainly localizes in the ER at steady-state due to efficient, COPI-dependent, Golgi-to-ER
transport. (B) In β’-COP double mutants, p24δ5 is not efficiently retrieved from the Golgi apparatus
and thus follows a default pathway to the vacuole, where the luminal part of the protein (including
RFP in the case of RFP–p24δ5) is cleaved and released to the vacuole lumen.

The sequences of Arabidopsis β’-COP proteins are very similar. Residues which have
been shown to be important for the interaction of β’-COP with dilysine motifs [8] are
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conserved among the three β’-COP Arabidopsis paralogs, and thus one would not expect
differential cargo binding among these paralogs. This may explain why β’1β’3-cop and
β’2β’3-cop, although they showed different phenotypes under standard growth conditions,
both showed mislocalization of p24δ5. The different phenotypes could be explained
by different expression patterns of the β’-COP isoforms, as described above. However,
it cannot be discarded that the different β’-COP isoforms have subsets of specific cargoes
that could be responsible for the different observed phenotypes.

Altogether, our findings support an essential role of β’1-COP during seedling de-
velopment. Future experiments should be performed to determine whether this role is
due to its tissue or/and development pattern of expression or to a unique function of the
β’1-COP isoform.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells11060938/s1, Figure S1. Alignment of the protein sequences of Arabidopsis β’1-COP,
β’2-COP and β’3-COP, Figure S2. Characterization of β’1-cop, β’2-cop and β’3-cop mutants, Figure S3.
Adult plant stage phenotype in double mutants, Figure S4. Phenotypic analysis of β’1β’3-cop-1, β’2β’3-
cop-1 and β’2β’3-cop-2 mutants exposed to salt (NaCl) and KCl stress, Figure S5. Characterization of
β’2-cop-cr mutant, Figure S6. Characterization of β’2β’3-cop-cr mutant, Table S1: β‘1-COP, β‘2-COP
and β‘3-COP mutants and PCR primers used for their characterization, Table S2. List of primers
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Cas9 primers.

Author Contributions: Conceptualization, M.J.M. and F.A.; methodology, M.J.M., F.A. and J.S.-S.;
software, J.S.-S.; validation, M.J.M., F.A. and J.S.-S.; visualization, M.J.M., F.A. and J.S.-S.; formal
analysis, M.J.M., F.A. and J.S.-S.; investigation, J.S.-S., P.S., E.G.M., C.B.-S., M.J.M. and F.A.; writing—
original draft preparation, M.J.M. and F.A.; writing—review and editing, M.J.M., F.A., J.S.-S. and
E.G.M.; supervision, M.J.M. and F.A.; project administration, M.J.M. and F.A.; funding acquisition,
M.J.M. and F.A. All authors have read and agreed to the published version of the manuscript.

Funding: F.A. and M.J.M. were supported by Ministerio de Economía y Competitividad (grant n◦

BFU2016-76607P), Ministerio de Ciencia e Innovación, MCIN/AEI/10.13039/501100011033 (grant
n◦ PID2020-113847GB-I00) and Generalitat Valenciana (AICO/2020/187). C.B.-S. and J.S.-S. were
recipients of a fellowship from Ministerio de Ciencia, Innovación y Universidades (FPU program)
and a short-term fellowship from Ministerio de Ciencia, Innovación y Universidades. C.B.-S. was
also the recipient of an EMBO short-term fellowship.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in the current study are available upon request to
the corresponding authors.

Acknowledgments: We thank the Salk Institute Genomic Analysis Laboratory for providing the
sequence-indexed Arabidopsis T-DNA insertion mutants, Diego Orzaez for help in CRISPR gene
editing and the greenhouse, genomic and microscopy sections of Serveis Centrals de Suport a la
Investigació Experimental, University of Valencia (SCSIE).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Aniento, F.; Sánchez de Medina Hernández, V.; Dagdas, Y.; Rojas-Pierce, M.; Russinova, E. Molecular mechanisms of endomem-

brane trafficking in plants. Plant Cell 2022, 34, 146–173. [CrossRef] [PubMed]
2. Shomron, O.; Nevo-Yassaf, I.; Aviad, T.; Yaffe, Y.; Zahavi, E.E.; Dukhovny, A.; Perlson, E.; Brodsky, I.; Yeheskel, A.; Pasmanik-Chor, M.; et al.

COPII collar defines the boundary between ER and ER exit site and does not coat cargo containers. J. Cell Biol. 2021, 220,
e201907224. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/cells11060938/s1
https://www.mdpi.com/article/10.3390/cells11060938/s1
http://doi.org/10.1093/plcell/koab235
http://www.ncbi.nlm.nih.gov/pubmed/34550393
http://doi.org/10.1083/jcb.201907224
http://www.ncbi.nlm.nih.gov/pubmed/33852719


Cells 2022, 11, 938 15 of 16

3. Weigel, A.V.; Chang, C.L.; Shtengel, G.; Xu, C.S.; Hoffman, D.P.; Freeman, M.; Iyer, N.; Aaron, J.; Khuon, S.; Bogovic, J.; et al.
ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER. Cell 2021, 184, 2412–2429.
[CrossRef] [PubMed]

4. Popoff, V.; Adolf, F.; Brugger, B.; Wieland, F. COPI Budding within the Golgi Stack. Cold Spring Harb. Perspect. Biol. 2011,
3, a005231. [CrossRef]

5. Béthune, J.; Wieland, F.T. Assembly of COPI and COPII Vesicular Coat Proteins on Membranes. Annu. Rev. Biophys. 2018, 47,
63–83. [CrossRef] [PubMed]

6. Arakel, E.C.; Schwappach, B. Formation of COPI-coated vesicles at a glance. J. Cell Sci. 2018, 131, 218347. [CrossRef]
7. Jackson, L.P. Structure and mechanism of COPI vesicle biogenesis. Curr. Opin. Cell Biol. 2014, 29, 67–73. [CrossRef]
8. Lee, C.; Goldberg, J. Structure of Coatomer Cage Proteins and the Relationship among COPI, COPII, and Clathrin Vesicle Coats.

Cell 2010, 142, 123–132. [CrossRef]
9. Schledzewski, K.; Brinkmann, H.; Mendel, R.R. Phylogenetic analysis of components of the eukaryotic vesicle transport system

reveals a common origin of adaptor protein complexes 1, 2, and 3 and the F subcomplex of the coatomer COPI. J. Mol. Evol. 1999,
48, 770–778. [CrossRef]

10. Schroder-Kohne, S.; Letourneur, F.; Riezman, H. Alpha-COP can discriminate between distinct, functional di-lysine signals
in vitro and regulates access into retrograde transport. J. Cell Sci. 1998, 111, 3459–3470. [CrossRef]

11. Eugster, A.; Frigerio, G.; Dale, M.; Duden, R. The α- and β′-COP WD40 Domains Mediate Cargo-selective Interactions with
Distinct Di-lysine Motifs. Mol. Biol. Cell 2004, 15, 1011–1023. [CrossRef] [PubMed]

12. Jackson, L.P.; Lewis, M.; Kent, H.M.; Edeling, M.A.; Evans, P.R.; Duden, R.; Owen, D.J. Molecular Basis for Recognition of Dilysine
Trafficking Motifs by COPI. Dev. Cell 2012, 23, 1255–1262. [CrossRef]

13. Ma, W.; Goldberg, J. Rules for the recognition of dilysine retrieval motifs by coatomer. EMBO J. 2013, 32, 926–937. [CrossRef] [PubMed]
14. Gao, C.; Cai, Y.; Wang, Y.; Kang, B.H.; Aniento, F.; Robinson, D.G.; Jiang, L. Retention mechanisms for ER and Golgi membrane

proteins. Trends Plant Sci. 2014, 19, 508–515. [CrossRef] [PubMed]
15. Pastor-Cantizano, N.; Montesinos, J.C.; Bernat-Silvestre, C.; Marcote, M.J.; Aniento, F. p24 family proteins: Key players in the

regulation of trafficking along the secretory pathway. Protoplasma 2016, 253, 967–985. [CrossRef]
16. Lindquist, E.; Alezzawi, M.; Aronsson, H. Bioinformatic indications that COPI- And clathrin-based transport systems are not

present in chloroplasts: An arabidopsis model. PLoS ONE 2014, 9, e104423. [CrossRef]
17. Béthune, J.; Kol, M.; Hoffmann, J.; Reckmann, I.; Brügger, B.; Wieland, F. Coatomer, the Coat Protein of COPI Transport Vesicles,

Discriminates Endoplasmic Reticulum Residents from p24 Proteins. Mol. Cell. Biol. 2006, 26, 8011–8021. [CrossRef]
18. Robinson, D.G.; Aniento, F. A Model for ERD2 Function in Higher Plants. Front. Plant Sci. 2020, 11, 343. [CrossRef]
19. Michelsen, K.; Schmid, V.; Metz, J.; Heusser, K.; Liebel, U.; Schwede, T.; Spang, A.; Schwappach, B. Novel cargo-binding site in

the β and δ subunits of coatomer. J. Cell Biol. 2007, 179, 209. [CrossRef]
20. Duden, R.; Kajikawa, L.; Wuestehube, L.; Schekman, R. epsilon-COP is a structural component of coatomer that functions to

stabilize alpha-COP. EMBO J. 1998, 17, 985–995. [CrossRef]
21. Hobbie, L.; Fisher, A.S.; Lee, S.; Flint, A.; Krieger, M. Isolation of three classes of conditional lethal Chinese hamster ovary cell

mutants with temperature-dependent defects in low density lipoprotein receptor stability and intracellular membrane transport.
J. Biol. Chem. 1994, 269, 20958–20970. [CrossRef]

22. Shtutman, M.; Baig, M.; Levina, E.; Hurteau, G.; Lim, C.U.; Broude, E.; Nikiforov, M.; Harkins, T.T.; Carmack, C.S.; Ding, Y.; et al.
Tumor-specific silencing of COPZ2 gene encoding coatomer protein complex subunit ζ2 renders tumor cells dependent on its
paralogous gene COPZ1. Proc. Natl. Acad. Sci. USA 2011, 108, 12449–12454. [CrossRef] [PubMed]

23. Adolf, F.; Rhiel, M.; Hessling, B.; Gao, Q.; Hellwig, A.; Béthune, J.; Wieland, F.T. Proteomic Profiling of Mammalian COPII and
COPI Vesicles. Cell Rep. 2019, 26, 250–265.e5. [CrossRef] [PubMed]

24. Dell’Angelica, E.C.; Bonifacino, J.S. Coatopathies: Genetic Disorders of Protein Coats. Annu. Rev. Cell Dev. Biol. 2019, 35, 131–168.
[CrossRef]

25. Jain Goyal, M.; Zhao, X.; Bozhinova, M.; Andrade-López, K.; de Heus, C.; Schulze-Dramac, S.; Müller-McNicoll, M.; Klumperman, J.;
Béthune, J. A paralog-specific role of COPI vesicles in the neuronal differentiation of mouse pluripotent cells. Life Sci. Alliance
2020, 3, e202000714. [CrossRef]

26. Donohoe, B.S.; Kang, B.H.; Staehelin, L.A. Identification and characterization of COPIa- and COPIb-type vesicle classes associated
with plant and algal Golgi. Proc. Natl. Acad. Sci. USA 2007, 104, 163. [CrossRef]

27. Ahn, H.K.; Kang, Y.W.; Lim, H.M.; Hwang, I.; Pai, H.S. Physiological Functions of the COPI Complex in Higher Plants. Mol. Cells
2015, 38, 866. [CrossRef]

28. Woo, C.H.; Gao, C.; Yu, P.; Tu, L.; Meng, Z.; Banfield, D.K.; Yao, X.; Jiang, L. Conserved function of the lysine-based KXD/E motif
in Golgi retention for endomembrane proteins among different organisms. Mol. Biol. Cell 2015, 26, 4280–4293. [CrossRef]

29. Cabada Gomez, D.A.; Chavez, M.I.; Cobos, A.N.; Gross, R.J.; Yescas, J.A.; Balogh, M.A.; Indriolo, E. COPI complex isoforms are
required for the early acceptance of compatible pollen grains in Arabidopsis thaliana. Plant Reprod. 2020, 33, 97–110. [CrossRef]

30. Gimeno-Ferrer, F.; Pastor-Cantizano, N.; Bernat-Silvestre, C.; Selvi-Martínez, P.; Vera-Sirera, F.; Gao, C.; Perez-Amador, M.A.;
Jiang, L.; Aniento, F.; Marcote, M.J. α2-COP is involved in early secretory traffic in Arabidopsis and is required for plant growth.
J. Exp. Bot. 2017, 68, 391–401. [CrossRef]

http://doi.org/10.1016/j.cell.2021.03.035
http://www.ncbi.nlm.nih.gov/pubmed/33852913
http://doi.org/10.1101/cshperspect.a005231
http://doi.org/10.1146/annurev-biophys-070317-033259
http://www.ncbi.nlm.nih.gov/pubmed/29345989
http://doi.org/10.1242/jcs.218347
http://doi.org/10.1016/j.ceb.2014.04.009
http://doi.org/10.1016/j.cell.2010.05.030
http://doi.org/10.1007/PL00006521
http://doi.org/10.1242/jcs.111.23.3459
http://doi.org/10.1091/mbc.e03-10-0724
http://www.ncbi.nlm.nih.gov/pubmed/14699056
http://doi.org/10.1016/j.devcel.2012.10.017
http://doi.org/10.1038/emboj.2013.41
http://www.ncbi.nlm.nih.gov/pubmed/23481256
http://doi.org/10.1016/j.tplants.2014.04.004
http://www.ncbi.nlm.nih.gov/pubmed/24794130
http://doi.org/10.1007/s00709-015-0858-6
http://doi.org/10.1371/journal.pone.0104423
http://doi.org/10.1128/MCB.01055-06
http://doi.org/10.3389/fpls.2020.00343
http://doi.org/10.1083/jcb.200704142
http://doi.org/10.1093/emboj/17.4.985
http://doi.org/10.1016/S0021-9258(17)31915-4
http://doi.org/10.1073/pnas.1103842108
http://www.ncbi.nlm.nih.gov/pubmed/21746916
http://doi.org/10.1016/j.celrep.2018.12.041
http://www.ncbi.nlm.nih.gov/pubmed/30605680
http://doi.org/10.1146/annurev-cellbio-100818-125234
http://doi.org/10.26508/lsa.202000714
http://doi.org/10.1073/pnas.0609818104
http://doi.org/10.14348/MOLCELLS.2015.0115
http://doi.org/10.1091/mbc.e15-06-0361
http://doi.org/10.1007/s00497-020-00387-9
http://doi.org/10.1093/jxb/erw446


Cells 2022, 11, 938 16 of 16

31. Ritzenthaler, C.; Laporte, C.; Gaire, F.; Dunoyer, P.; Schmitt, C.; Duval, S.; Piéquet, A.; Loudes, A.M.; Rohfritsch, O.; Stussi-Garaud, C.; et al.
Grapevine Fanleaf Virus Replication Occurs on Endoplasmic Reticulum-Derived Membranes. J. Virol. 2002, 76, 8808. [CrossRef]
[PubMed]

32. Sánchez-Simarro, J.; Bernat-Silvestre, C.; Gimeno-Ferrer, F.; Selvi-Martínez, P.; Montero-Pau, J.; Aniento, F.; Marcote, M.J. Loss of
Arabidopsis β-COP Function Affects Golgi Structure, Plant Growth and Tolerance to Salt Stress. Front. Plant Sci. 2020, 11, 430.
[CrossRef]

33. Sánchez-Simarro, J.; Bernat-Silvestre, C.; Aniento, F.; Marcote, M.J. ß-COP mutants show specific high sensitivity to chloride ions.
Plant Signal. Behav. 2021, 16, 1858629. [CrossRef] [PubMed]

34. Pfaffl, M.W. Quantification strategies in real-time PCR. In A-Z of Quantitative PCR; Bustin, S.A., Ed.; International University Line
(IUL): La Jolla, CA, USA, 2004; pp. 87–112.

35. Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana.
Plant J. 1998, 16, 735–743. [CrossRef] [PubMed]

36. Langhans, M.; Marcote, M.J.; Pimpl, P.; Virgili-López, G.; Robinson, D.G.; Aniento, F. In vivo trafficking and localization of p24
proteins in plant cells. Traffic 2008, 9, 770–785. [CrossRef]

37. Shinoda, H.; Shannon, M.; Nagai, T. Fluorescent Proteins for Investigating Biological Events in Acidic Environments. Int. J. Mol.
Sci. 2018, 19, 1548. [CrossRef]

38. Minguet, E.G. Ares-GT: Design of guide RNAs targeting multiple genes for CRISPR-Cas experiments. PLoS ONE 2020, 15,
e0241001. [CrossRef]

39. Vazquez-Vilar, M.; Bernabé-Orts, J.M.; Fernandez-del-Carmen, A.; Ziarsolo, P.; Blanca, J.; Granell, A.; Orzaez, D. A modular
toolbox for gRNA-Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods 2016, 12, 1–12. [CrossRef]
[PubMed]

40. Aliaga-Franco, N.; Zhang, C.; Presa, S.; Srivastava, A.K.; Granell, A.; Alabadí, D.; Sadanandom, A.; Blázquez, M.A.; Minguet, E.G.
Identification of Transgene-Free CRISPR-Edited Plants of Rice, Tomato, and Arabidopsis by Monitoring DsRED Fluorescence in
Dry Seeds. Front. Plant Sci. 2019, 10, 1150. [CrossRef]

41. Edwards, K.; Johnstone, C.; Thompson, C. A simple and rapid method for the preparation of plant genomic DNA for PCR
analysis. Nucleic Acids Res. 1991, 19, 1349. [CrossRef]

42. Zimmermann, P.; Hirsch-Hoffmann, M.; Hennig, L.; Gruissem, W. GENEVESTIGATOR. Arabidopsis Microarray Database and
Analysis Toolbox. Plant Physiol. 2004, 136, 2621. [CrossRef] [PubMed]

43. Hruz, T.; Laule, O.; Szabo, G.; Wessendorp, F.; Bleuler, S.; Oertle, L.; Widmayer, P.; Gruissem, W.; Zimmermann, P. Genevestigator
V3: A Reference Expression Database for the Meta-Analysis of Transcriptomes. Adv. Bioinform. 2008, 420747. [CrossRef] [PubMed]

44. Waese, J.; Fan, J.; Pasha, A.; Yu, H.; Fucile, G.; Shi, R.; Cumming, M.; Kelley, L.A.; Sternberg, M.J.; Krishnakumar, V.; et al. ePlant:
Visualizing and Exploring Multiple Levels of Data for Hypothesis Generation in Plant Biology. Plant Cell 2017, 29, 1806–1821.
[CrossRef] [PubMed]

45. Schmid, M.; Davison, T.S.; Henz, S.R.; Pape, U.J.; Demar, M.; Vingron, M.; Schölkopf, B.; Weigel, D.; Lohmann, J.U. A gene
expression map of Arabidopsis thaliana development. Nat. Genet. 2005, 37, 501–506. [CrossRef]

46. Nakabayashi, K.; Okamoto, M.; Koshiba, T.; Kamiya, Y.; Nambara, E. Genome-wide profiling of stored mRNA in Arabidopsis
thaliana seed germination: Epigenetic and genetic regulation of transcription in seed. Plant J. 2005, 41, 697–709. [CrossRef]

47. Pastor-Cantizano, N.; Bernat-Silvestre, C.; Marcote, M.J.; Aniento, F. Loss of Arabidopsis p24 function affects ERD2 traffic and
Golgi structure and activates the unfolded protein response. J. Cell Sci. 2017, 131, jcs203802. [CrossRef]

48. Stenbeck, G.; Harter, C.; Brecht, A.; Herrmann, D.; Lottspeich, F.; Orci, L.; Wieland, F.T. 3’-COP, a novel subunit of coatomer.
EMBO J. 1993, 12, 2841–2845. [CrossRef]

49. Gerich, B.; Orci, L.; Tschochner, H.; Lottspeich, F.; Ravazzola, M.; Amherdt, M.; Wieland, F.; Harter, C. Non-clathrin-coat protein
alpha is a conserved subunit of coatomer and in Saccharomyces cerevisiae is essential for growth. Proc. Natl. Acad. Sci. USA 1995,
92, 3229. [CrossRef]

50. Montesinos, J.C.; Sturm, S.; Langhans, M.; Hillmer, S.; Marcote, M.J.; Robinson, D.G.; Aniento, F. Coupled transport of Arabidopsis
p24 proteins at the ER–Golgi interface. J. Exp. Bot. 2012, 63, 4243. [CrossRef]

http://doi.org/10.1128/JVI.76.17.8808-8819.2002
http://www.ncbi.nlm.nih.gov/pubmed/12163601
http://doi.org/10.3389/fpls.2020.00430
http://doi.org/10.1080/15592324.2020.1858629
http://www.ncbi.nlm.nih.gov/pubmed/33432878
http://doi.org/10.1046/j.1365-313x.1998.00343.x
http://www.ncbi.nlm.nih.gov/pubmed/10069079
http://doi.org/10.1111/j.1600-0854.2008.00719.x
http://doi.org/10.3390/ijms19061548
http://doi.org/10.1371/journal.pone.0241001
http://doi.org/10.1186/s13007-016-0101-2
http://www.ncbi.nlm.nih.gov/pubmed/26839579
http://doi.org/10.3389/fpls.2019.01150
http://doi.org/10.1093/nar/19.6.1349
http://doi.org/10.1104/pp.104.046367
http://www.ncbi.nlm.nih.gov/pubmed/15375207
http://doi.org/10.1155/2008/420747
http://www.ncbi.nlm.nih.gov/pubmed/19956698
http://doi.org/10.1105/tpc.17.00073
http://www.ncbi.nlm.nih.gov/pubmed/28808136
http://doi.org/10.1038/ng1543
http://doi.org/10.1111/j.1365-313X.2005.02337.x
http://doi.org/10.1242/jcs.203802
http://doi.org/10.1002/j.1460-2075.1993.tb05945.x
http://doi.org/10.1073/pnas.92.8.3229
http://doi.org/10.1093/jxb/ers112

	Introduction 
	Materials and Methods 
	Plant Material and Stress Treatments 
	Reverse Transcription PCR (RT-PCR) 
	Transgenic RFP–p245 Plants 
	Confocal Microscopy 
	Generation and Identification of CRISPR–Cas9 Mutants 
	Protein Extracts, SDS-PAGE and Immunoblotting 
	Statistical Analysis 

	Results 
	Arabidopsis ’-COP Genes 
	’-Cop Double Mutants Showed Different Growth Phenotypes 
	Loss of Two ’-COP Isoforms Causes a Reduction in the Protein Levels of -COP 
	Loss of Two ’-COP Isoforms Causes Impaired Trafficking of p245, a COPI Dilysine Cargo 
	A Double Mutant That Combines New CRISPR/Cas9-Generated ’2-Cop KO Alleles with the ’3-Cop-2 Allele Confirms the ’2’3-Cop-2 Phenotype 

	Discussion 
	References

