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Background:Myocardial infarction (MI) is the leading cause of death from non-infectious

diseases worldwide and results in rapid deterioration due to the sudden rupture of

plaques associated with atherosclerosis, a chronic inflammatory disease. Sleep is a

key factor that regulates immune homeostasis of the body. The imbalance in circulating

immune cells caused by sleep deprivation (SD) may represent a risk factor leading to the

rapid deterioration of plaques and MI. Therefore, it is of profound significance to identify

diagnostic biomarkers for preventing SD-related MI.

Methods: In the present study, we identified coexpressed differentially expressed

genes (co-DEGs) between peripheral blood mononuclear cells from MI and SD samples

(compared to controls) from a public database. LASSO regression analysis was applied

to identify significant diagnostic biomarkers from co-DEGs. Moreover, receiver operating

characteristic (ROC) curve analysis was performed to test biomarker accuracy and

diagnostic ability. We further analyzed immune cell enrichment in MI and SD samples

using the CIBERSORT algorithm, and the correlation between biomarkers and immune

cell composition was assessed. We also investigated whether diagnostic biomarkers are

involved in immune cell signaling pathways in SD-related MI processes.

Results: A total of 10 downregulated co-DEGs from the sets of MI-DEGs and SD-

DEGs were overlapped. After applying LASSO regression analysis, SYTL2, KLRD1, and

C12orf75 were selected and validated as diagnostic biomarkers using ROC analysis.

Next, we found that resting NK cells were downregulated in both the MI samples and

SD samples, which is similar to the changes noted for SYTL2. Importantly, SYTL2

was strongly positively correlated not only with resting NK cells but also with most

genes related to NK cell markers in the MI and SD datasets. Moreover, SYTL2 was

highly associated with genes in NK cell signaling pathways, including the MAPK

signaling pathway, cytotoxic granule movement and exocytosis, and NK cell activation.

Furthermore, GSEA and KEGG analyses provided evidence that the DEGs identified from
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MI samples with low vs. high SYTL2 expression exhibited a strong association with the

regulation of the immune response and NK cell-mediated cytotoxicity.

Conclusion: In conclusion, SYTL2, KLRD1, and C12orf75 represent potential

diagnostic biomarkers of MI. The association between SYTL2 and resting NK cells may

be critically involved in SD-related MI development and occurrence.

Keywords: myocardial infarction, sleep deprivation, diagnostic biomarker, immune cells, bioinformatic analysis

INTRODUCTION

Myocardial infarction (MI) has become one of the major causes
of death and disability worldwide (1, 2). MI mainly occurs in
patients with coronary artery disease (CAD), especially coronary
atherosclerosis, who experience unstable periods with activated
inflammation in the vascular wall (2, 3). Although the exact
cause of MI remains unknown, traditional risk factors, including
hypertension, smoking, diabetes, obesity and unhealthy diet,
might greatly increase the incidence of MI. In addition, up to
5% of elderly people (>75 years old) develop silent MI with no
history of established heart disease (4). Once MI occurs, heart
failure, heart attack, and cardiac arrest might follow if not treated
in a timely and effective manner, ultimately leading to death.
Many epidemiological studies and randomized controlled clinical
trials have suggested that promoting a healthy lifestyle and diet
can help manage hypertriglyceridemia for the prevention of
atherosclerotic cardiovascular disease and MI (5, 6).

A short duration of sleep and sleep deprivation (SD) show
secular trends alongside changes in modern society that require
longer hours of work, which has been considered a global health
epidemic (7, 8). Studies from many countries have indicated
that SD is correlated with overall health and mortality as well
as specific cardiovascular and/or metabolic disorders (9). In a
prospective observational study including 461,347 participants
free of relevant cardiovascular disease, the researchers found
that cases with habitual self-reported short (<6 h) sleep duration
had a 20% increased multivariable-adjusted risk of incident
for MI compared to cases who sleep 6–9 h/night (7). Healthy
sleep duration mitigated MI risk even among individuals at
high genetic risk (7). SD contributes to a greater risk of MI,
which might result in metabolic and endocrine dysfunction, an
imbalanced immune system, and endothelial dysfunction caused
by the lack of sleep (10–13). Given the global burden of MI, it
is vital to identify novel molecular biomarkers involved in the
mechanism of SD-related MI for early detection and continuous
monitoring to guide health care professionals, which might help
to ensure formulation of the correct therapeutic regimen.

With the remarkable evolution of bioinformatics, microarray

gene expression data can be used to identify hub genes and
differentially involved signaling pathways in the course of MI,

which promotes a comprehensive perspective on key cellular
and molecular mechanisms. Research based on bioinformatics
methods found that IL1R2, IRAK3, and THBD expression
levels were notably higher in peripheral blood mononuclear
cells (PBMCs) of patients with acute MI (AMI) and were
identified as diagnostic markers of AMI (14). These genes were

also significantly associated with various subtypes of immune
cells within the AMI samples (14). The occurrence of MI is
accompanied by composition changes in T cells and natural
killer cells (NK cells) as well as monocyte and macrophage
infiltration (15). Of note, long-term SD leads to elevated markers
of inflammatory activity and an abnormal number of immune
cells, which are in the same range as that observed in individuals
at risk for developing cardiovascular disease in the future (16).
For the mentioned reasons, evaluating and ascertaining the
distinctions within the proportion of immune cells are important
in clarifying the potential mechanisms of SD-related MI.

The present study obtained PBMC whole-genome microarray
datasets from a public database to identify co-expressed
differentially expressed genes (co-DEGs) within SD and MI
samples. Then, least absolute shrinkage and selection operator
(LASSO) regression analysis was applied to screen and identify
diagnostic biomarkers of MI based on the co-DEGs. Next, the
correlation between diagnostic markers and the composition
of immune cells was analyzed using CIBERSORT algorithms.
Gene set enrichment analysis (GSEA) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis were performed
to increase our understanding of the underlying immune
mechanisms involved in the development of MI.

METHODS

Microarray Data
Two peripheral-blood whole-genomemicroarray datasets related
to MI, GSE59867 and GSE62646, were selected and obtained
from the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/GEO/). Both datasets were based on the
GPL6244 platform of Affymetrix Human Gene 1.0 ST Array.
The GSE59867 dataset contains data from PBMC samples
from patients (n = 111) with ST-segment elevation myocardial
infarction (STEMI) and stable CAD patients (n = 46) without
a history of MI. The expression profiles of 28 patients with
STEMI and 14 stable CAD patients without a history of MI
were included in the GSE62646 dataset. These two datasets were
combined by batch correction with the “combat” function of the
“sva” package of R using empirical Bayes frameworks (17), and
then used to identify the co-DEGs of MI. The GSE48060 dataset
was obtained from the PBMC samples of 31 patients with MI
and 21 controls based on the GPL570 platform of Affymetrix
Human Genome U133 Plus 2.0 Array and were downloaded
as a validation dataset for the co-DEGs of MI. To identify
the DEGs of SD, the GSE37667 dataset based on the GPL570
platform of Affymetrix Human Genome U133 Plus 2.0 Array was
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downloaded. PBMC gene expression profiles of nine healthymale
volunteers at baseline at night and after 60 h of prolonged SD
were collected.

Gene symbols were transformed from the probes in each
dataset based on their probe annotation files. The final expression
value of the gene corresponding to multiple probes was obtained
by calculating the average expression value. Then, we applied
background correction and quartile normalization for all gene
expression values to obtain normally distributed expression
values using the “limma” package in R.

Screening of DEGs
DEGs between MI and CAD samples as well as SD and control
samples were identified using Wilcoxon test via the “limma”
package in R. Because alterations of RNA expression levels in
PBMCs are generally lower than that in other human tissues
(18), we set the fold change (FC) > 1.3 and original P <

0.05 as significance cut-offs to screen the DEGs based on the
recommended methods from studies that designed and uploaded
the GSE59867 and GSE62646 datasets (19–21). Volcano plots
were used to visualize the distribution of the DEGs. Co-
DEGs between MI-DEGs (GSE59867 and GSE62646 datasets)
and SD-DEGs (GSE37667 dataset) were identified as the genes
overlapping in these three gene sets and were visualized using a
Venn diagram.

Identification of Diagnostic Biomarkers
To identify significant diagnostic biomarkers for the
discrimination of MI and CAD cases, we performed LASSO
regression analysis using the “glmnet” package in R. As a type
of shrinkage method for linear regression models, LASSO
regression analysis identifies the subset of predictors from the
best fitting model by k-fold cross validation, which effectively
reduces the prediction error. With a constraint imposed on
the model parameters, the shrinkage process is conducted to
shrink the regression coefficients of some variables toward
zero. Variables with a regression coefficient unequal to zero are
included in the final model. Thus, the risk score of each case was
calculated using the following formula: Risk score= Σexpgenei∗

βi, where expgenei represents the gene expression value, and βi
represents the regression coefficient of gene i extracted from the
LASSO regression analysis for the GSE59867 dataset.

Evaluation of Diagnostic Value of MI
Biomarkers
To evaluate the accuracy and diagnostic ability of the biomarkers
and risk score, receiver operating characteristic (ROC) curve
analysis was applied for the GSE59867 dataset using the “pROC”
package in R. In addition, we also used the GSE62646 and
GSE48060 datasets as external validation datasets to verify the
diagnostic value of the identified biomarkers. The area under the
curve (AUC) of the ROC curve was calculated with sensitivity and
specificity values and visualized using the “pROC” package in R.

Discovery of Immune Cell Subtypes
To quantify the relative population-specific immune cell
enrichment for each sample, the CIBERSORT algorithm was

performed with 1,000 permutations to calculate the normalized
enrichment scores of 22 types of immune cells using the
“cibersort” package in R (22). The CIBERSORT algorithm
improves deconvolution performance to obtain normalized
enrichment scores based on support vector regression, which is
a machine learning approach. The CIBERSORT gene signature
matrix, termed LM22, contains 547 genes and distinguishes
22 types of immune cell subtypes. Therefore, the enrichment
scores can be inferred from the eigenmatrix, such as LM22,
and gene expression in each sample within a given dataset. In
addition, we further classified the 22 immune cell types into
4 aggregated immune cell types, including total lymphocytes,
total dendritic cells (sum of activated and resting dendritic
cell percentages), total macrophages (sum of M0, M1, and M2
macrophage percentages) and total mast cells (sum of activated
and resting mast cell percentages) (23). We used the two-sided
Wilcoxon test to compare differences in the composition of 22
immune cell subtypes between two groups (MI vs. CAD, SD vs.
control) and visualized the results with violin plots using the
“vioplot” package in R. Correlation analysis of 22 immune cell
subtypes was visualized using the “corrplot” package.

Correlation Analysis Between Diagnostic
Biomarkers and Immune Cell Subtypes
The correlation of the diagnostic biomarkers with the
differentially distributed immune cell subtypes was analyzed
among the GSE59867, GSE62646, and GSE37667 datasets.
To further explore the correlation with specific immune cell
markers, we downloaded gene sets related to specific human
immune cell markers from the CellMarker database (http://
biocc.hrbmu.edu.cn/CellMarker/) and performed Pearson
correlation analysis between diagnostic biomarkers and each
gene for immune cell markers.

Functional Enrichment Analysis of DEGs
To explore potential biological functions and significant signaling
pathways of DEGs associated with the diagnostic biomarker, we
performed Gene Ontology (GO) and KEGG pathway enrichment
analyses (24) based on the DAVID tools (http://david.ncifcrf.
gov/) and visualized the results using the “clusterProfiler”
package in R. The strict cut-off of a false discovery rate (FDR) <

0.05 and adjusted P-value < 0.05 was used to identify statistically
significant GO terms. In addition, GSEA was also conducted to
explore the functional terms correlated to diagnostic biomarkers
based on an NOM P-value < 0.05 and NES > 1.

Statistical Analysis
All statistical analyses were conducted using R software (Version
4.0.2; R Foundation for Statistical Computing, Vienna, Austria).
Two groups of boxplots for continuous variables were analyzed
using the Wilcoxon test. ROC curve analysis was conducted to
evaluate the diagnostic efficacy of diagnostic biomarkers for MI.
All statistical tests were two-sided, and a P-value < 0.05 was
considered statistically significant.
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RESULTS

Identification of DEGs
The overall data processing workflow is presented in Figure 1.
For DEGs between the MI and CAD samples, 491 DEGs
were screened from the GSE59867 dataset, including 282
downregulated and 209 upregulated genes (Figure 2A and
Supplementary Table 1). A total of 1,108 DEGs were identified
from the GSE62646 dataset, including 593 downregulated and
515 upregulated genes (Figure 2B and Supplementary Table 1).
In addition, a total of 102 DEGs between the SD and control
samples were obtained from the GSE37667 dataset, including 68
downregulated genes and 34 upregulated genes (Figure 2C and
Supplementary Table 1). Volcano plots were used to visualize
the distribution of the DEGs (Figure 2). Hierarchical clustering
analysis demonstrated differences in the expression patterns of
the top 20 MI-DEGs and SD-DEGs between the two groups
(Figure 2).

Identification of Diagnostic Biomarkers
We integrated the two sets of MI-DEGs and one set of SD-
DEGs using a Venn diagram, as shown in Figure 3A. A total of
10 genes overlapping among the three datasets were identified
as co-DEGs, all of which were downregulated in both the MI-
DEGs and SD-DEGs. Next, we performed LASSO regression
analysis to identify the diagnostic biomarkers for MI in the
GSE59867 dataset (Figures 3B,C). After running cross-validation
likelihood 1,000 times, a subset of three biomarkers from the
co-DEGs was determined: Synaptotagmin Like 2 (SYTL2), Killer
Cell Lectin Like Receptor D1 (KLRD1), and Chromosome 12
Open Reading Frame 75 (C12orf75). To validate the different
expression levels of the three diagnostic biomarkers between MI
and CAD samples, we analyzed the different expression levels of
the three diagnostic biomarkers between MI and CAD PBMC
samples in the three datasets and found that the expression levels
of all of these genes were notably lower in MI samples compared
with CAD samples (all P < 0.05) (Figure 3D).

FIGURE 1 | Flowchart describing the process used to identify and validate the diagnostic biomarkers of myocardial infarction. DEGs, differentially expressed genes;

MI, myocardial infarction; SD, sleep deprivation; ROC, receiver operating characteristic.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 March 2022 | Volume 9 | Article 843426

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Chen et al. Sleep Deprivation-Related Myocardial Infarction

FIGURE 2 | Identification of MI-DEGs and SD-DEGs. (A) Volcano plot (left) and heatmap (right) of the GSE59867 dataset. In total, 491 MI-DEGs were identified from

the GSE59867 dataset between the MI and CAD PBMC samples, including 282 downregulated and 209 upregulated genes. (B) Volcano plot (left) and heatmap (right)

(Continued)
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FIGURE 2 | of the GSE62646 dataset. In total, 1,108 MI-DEGs were identified from the GSE62646 dataset between the MI and CAD PBMC samples, including 593

downregulated and 515 upregulated genes. (C) Volcano plot (left) and heatmap (right) of the GSE37667 dataset. In total, 102 SD-DEGs were identified from the

GSE37667 dataset between the SD and control PBMC samples, including 68 downregulated and 34 upregulated genes. DEGs, differentially expressed genes; MI,

myocardial infarction; SD, sleep deprivation; CAD, coronary artery disease; PBMCs, peripheral blood mononuclear cells.

FIGURE 3 | Identification of diagnostic biomarkers for SD-related MI. (A) Venn diagram of two sets of MI-DEGs and a set of SD-DEGs. (B,C) LASSO coefficient

profiles and LASSO deviance profiles. (D) The expression levels of three biomarkers identified by LASSO regression analysis between MI and CAD samples in the

GSE59867, GSE62646, and GSE48060 datasets. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. MI, myocardial infarction; SD, sleep deprivation; CAD,

coronary artery disease.

Validation of Diagnostic Biomarkers
After constructing the model using LASSO regression analysis,
the risk score was calculated for each sample based on the
corresponding coefficients and expression value of genes as
follows: Risk score = [(-0.02072662) × Expression value of
SYTL2] + [(-0.13152628) × Expression value of KLRD1] +

[(-0.06924624) × Expression value of C12orf75]. As shown
in Figure 4A and Supplementary Figure 1, ROC analysis
demonstrated favorable diagnostic efficacy of the above three
biomarkers in discriminating MI from CAD samples with an
AUC of 0.807 (95% CI 0.732–0.883) for SYTL2, 0.843 (95% CI
0.776–0.909) for KLRD1, and 0.829 (95% CI 0.758–0.901) for
C12orf75. For the risk score, the diagnostic ability in terms of
AUCwas 0.862 (95% CI 0.800–0.924). The risk score also showed
a high discrimination ability in the GSE62646 dataset with an
AUC of 0.936 (95% CI 0.869–1.000). To externally validate the

diagnostic value of the three identified biomarkers, the GSE48060
dataset was also used, and the results indicated a powerful
diagnostic ability for the feature biomarkers (AUC 0.782, 95%
CI 0.657–0.907). Unsupervised hierarchical clustering of three
biomarkers showed different gene expression between MI and
CAD samples with high sensitivity and specificity (Figure 4B).

Enrichment of Immune Cells in the MI and
CAD Samples
To better understand the difference in the enrichment degree
of immune cell subtypes between the MI and CAD groups, 22
available immune cell subtypes, including the major cell types
related to adaptive immunity [i.e., naïve B cells, memory B
cells, naïve CD4T cells, resting memory CD4T cells, activated
memory CD4T cells, CD8T cells, gamma delta T (Tgd) cells,
T follicular helper (Tfh) cells, and regulatory T (Treg) cells]
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FIGURE 4 | Validation of diagnostic biomarkers for SD-related MI. (A) ROC analysis revealed good diagnostic performance of the risk score associated with MI

among the three datasets. (B) Unsupervised hierarchical clustering of risk scores in the diagnostic prediction model among the three MI-related datasets.

and innate immunity [i.e., activated dendritic cells (DCs),
resting DCs, eosinophils, activated mast cells, macrophages
(M0–M2), resting mast cells, monocytes, resting NK cells,
activated natural killer (NK) cells, neutrophils, and plasma
cells], were assessed using CIBERSORT. GSE59867 dataset results
showed that five types of immune cells were significantly
enriched in a higher proportion in the CAD group, and
four types of immune cells were significantly increased in
the MI samples (all P < 0.05) (Figure 5A). After clustering
the 22 immune cell types into four aggregated immune cell
types, the total lymphocytes and total macrophages were
significantly enriched in the CAD samples, whereas mast cells
were enriched in the MI group (all P < 0.05) (Figure 5B).
The GSE62646 dataset was used to validate the distribution of
immune cells. The proportions of three immune cell subtypes,
including resting memory CD4T cells, resting NK cells, and M2
macrophages, were significantly lower in MI samples compared
with CAD samples (all P < 0.05) (Figure 5D). These results
are consistent with the GSE59867 dataset results. However,
only total macrophages were significantly enriched in the CAD
groups (P < 0.05) (Figure 5E). As shown in Figures 5C,F,
the interrelation among the various immune cell subtypes
in the GSE59867 and GSE62646 datasets varied from weak
to moderate.

Immune Cell Infiltration in SD Samples and
Control Samples
To verify whether the distribution of immune cells in the
SD/control groups was consistent with that in the MI/CAD
groups, we also employed the CIBERSORT algorithm on the
GSE37667 dataset. The results indicated that the proportion
of resting NK cells was significantly lower in the SD
group than in the control group (P < 0.05) (Figure 6A).

Although 4 aggregated immune cell types showed insignificant
differences between the two groups, resting NK cells were
negatively correlated with gamma delta T (Tgd) cells, which
were significantly enriched in the SD samples (P < 0.05)
(Figures 6B,C). These results suggested that immune cells,
especially resting NK cells, were actively involved in SD-
induced disease processes. To further analyse the functional
enrichment during the SD process, GO enrichment analysis was
performed with SD-DEGs using the online DAVID tool. As
shown in Figure 6D, the SD-DEGs were significantly enriched
in the following biological processes: regulation of immune
response and negative regulation of apoptotic processes (all P
< 0.05).

Correlation of Diagnostic Biomarkers and
Immune Cell Types
Combined with the above results, the expression levels of
three diagnostic biomarkers were downregulated in both the
SD and MI samples, and resting NK cells were not enriched
in either the SD or MI groups among the three datasets.
Next, we conducted correlation analyses in two MI-related
datasets and an SD-related dataset to explore the relationship
between the diagnostic biomarkers and immune cell types.
As shown in Figures 7A–C, SYTL2 showed a significantly
strong positive correlation with resting NK cells in the MI-
related datasets as well as the SD dataset, which is consistent
with the changes induced by MI or SD mentioned above
(all P < 0.05). However, these trends were not reflected in
KLRD1 and C12orf75 (Supplementary Figure 2). Moreover,
we downloaded gene sets related to NK cell markers from
CellMarker and performed Pearson correlation analysis between
SYTL2 and gene sets in three datasets (Figure 7D). The results
indicated that SYTL2 was also strongly positively correlated
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FIGURE 5 | The distribution of 22 types of immune cells between the MI and CAD samples. (A,D) Violin plots of 22 types of immune cells that are differentially enriched

in the (A) GSE59867 dataset and (D) GSE62646 dataset. (B,E) Violin plot of four aggregated immune cell types that are differentially enriched in the (B) GSE59867

dataset and (E) GSE62646 dataset. (C,F) Heatmap of correlations for 22 types of immune cells in the (C) GSE59867 dataset and (F) GSE62646 dataset. The size of

the colored squares represents the strength of the correlation. Darker color implies stronger association. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

with most genes related to NK cell markers (all P < 0.05).
These results indicate that SYTL2 plays an important role
in regulating NK cell activation during the process of SD-
induced MI.

Involvement of SYTL2 in the NK Cell
Signaling Pathway
NK cell signaling pathways are of great importance for
NK cell activation and are currently the target of several
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FIGURE 6 | The distribution of 22 types of immune cells between the SD and control samples. (A) Violin plot of 22 types of immune cells differentially enriched

between the SD and negative control (NC) samples in the GSE37667 dataset. (B) Violin plot of four aggregated immune cell types differentially enriched in the

GSE37667 dataset. (C) Heatmap of correlation of 22 types of immune cells in the GSE37667 dataset. The size of the colored squares represents the strength of the

correlation. Darker color implies stronger association. (D) Biological process of SD-DEGs from the GSE37667 dataset. *P < 0.05; **P < 0.01.

therapeutic strategies (25, 26). NK cells express many receptors
that activate their cytotoxic and secretory functions, which
contribute to immune defense (27). Therefore, we investigated
the correlation of SYTL2 with the genes in the NK cell
signaling pathway that were obtained from the KEGG database
(Supplementary Table 2). As shown in Figure 8, SYTL2 was
highly associated with the genes in the MAPK signaling pathway
(PIK3R3, PIK3CD, SHC1, PAK1, NRAS, and HRAS, all P-values
< 0.05), cytotoxic granule movement and exocytosis (PRF1 and
FASLG, all P-values< 0.05), andNK cell activation (SH2D1B and
CD244, all P-values < 0.05) and might be partially related to the
calcium signaling pathway (PPP3CB, P-value < 0.05).

Detection of Biological Function for SYTL2
To explore the biological function of SYTL2 in the MI process,
we obtained the DEGs using 111 MI samples from the GSE59867
dataset that were divided into the high-SYTL2 (n = 55) and
the low-SYTL2 groups (n = 56) with the median value as the
cut-off. A total of 2 upregulated DEGs and 91 downregulated
DEGs were identified with the high-SYTL2 expression sample
as a reference (Figures 9A,B). Then, GO and KEGG analyses

were performed to analyse the DEGs, indicating the potential
function of SYTL2. The results also suggested a strong association
with NK cell-mediated cytotoxicity and regulation of the immune
response (Figures 9C,D and Supplementary Table 3). Moreover,
GSEA was performed between low- and high-SYTL2 expression
samples in the GSE59867 dataset. Several immune pathways
that involve SYTL2 in relation to MI, such as “natural killer
cell mediated immunity,” “positive regulation of natural killer
cell mediated cytotoxicity,” and “regulation of natural killer cell
mediated immunity,” were identified (Supplementary Table 4).

DISCUSSION

MI is an extremely dangerous cardiovascular disease that
causes rapid deterioration due to the sudden rupture of
plaques associated with the chronic inflammatory disease called
atherosclerosis. Sleep is a key factor in regulating immune
homeostasis of the body. The imbalance of circulating immune
cells caused by sleep deprivation may represent a risk factor
leading to the rapid deterioration of plaques. Therefore, it is vital
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FIGURE 7 | Correlation between the expression level of SYTL2 and enriched immune cells. (A) Correlation between the expression level of SYTL2 and enriched

immune cells in the GSE59867 dataset. (B) Correlation between the expression level of SYTL2 and enriched immune cells in the GSE62646 dataset. (C) Correlation

between the expression level of SYTL2 and enriched immune cells in the GSE37667 dataset. The size of the dots represents the strength of the correlation between

SYTL2 and immune cells; the color of the dots represents the P-value; the greener the color, the larger the P-value; and the red the color, the lower the P-value. P <

0.05 was considered statistically significant. (D) Heatmap showing the correlation between SYTL2 and the marker genes of NK cells.

to explore diagnostic biomarkers and analyse the association with
immune cell enrichment to improve the prognosis of MI.

In the present study, we identified 1,599 DEGs between the
MI and CAD PBMC samples based on the GSE59867 and
GSE62646 datasets as well as 102 DEGs between SD and control
PBMC samples from the GSE37667 dataset. Then, a total of
10 co-DEGs were obtained from the MI-DEGs and SD-DEGs.
After applying LASSO regression analysis, SYTL2, KLRD1, and
C12orf75 were selected and validated as diagnostic biomarkers
using ROC analysis. Next, we found that resting NK cells were
downregulated in both the MI samples and SD samples, which
is similar to the change noted for SYTL2. Importantly, SYTL2
was strongly positively correlated not only with resting NK cells
but also with most genes related to NK cell markers among the
MI datasets and SD dataset. Moreover, we performed correlation
analysis between SYTL2 and the genes in the NK cell signaling
pathway that were obtained from the KEGG database. The
results indicated that SYTL2 was highly associated with genes
in the MAPK signaling pathway, cytotoxic granule movement
and exocytosis, and NK cell activation. Furthermore, GSEA and
KEGG analyses suggested a strong association with regulation
of the immune response and NK cell-mediated cytotoxicity for

the DEGs between low- and high-SYTL2 expression samples
in GSE59867, which were classified based on a median cut-off
value. All of the above evidence demonstrated that the biological
function of SYTL2 might be strongly correlated with the immune
response in SD-related MI processes, especially with NK cells.

Biomarkers in the circulation play a key role in risk
stratification and therapeutic management of cardiovascular
diseases due to the difficulty of obtaining anatomical tissue
biopsies (28, 29). A previous study indicated that the expression
levels of over 80% of peripheral blood transcriptomes were
shared among 9 different human tissue types, suggesting that
PBMCs are sensitive to ongoing cardiac dysfunction and
respond by altering their transcriptome. However, the reason
why tissue-specific upregulated or downregulated gene patterns
are synchronized to circulating cells remains unclear (18, 30).
In this context, our current study highlights the potential
to use mRNA signatures in PBMCs as diagnostic biomarkers
of SD-related MI. PBMCs are an innate circulating cell
population with inflammatory properties that have significant
associations with atherosclerotic plaque formation and MI risk
and progression (31–33). A transcriptome study of PBMCs
from early onset MI patients indicated that lncRNA-NEAT1
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FIGURE 8 | Association between SYTL2 and the NK cell-mediated cytotoxicity signaling pathway. (A) Regulation network of the NK cell-mediated cytotoxicity

signaling pathway as obtained from the KEGG database. The red square indicates that the gene was significantly correlated with SYTL2 (P < 0.05). (B) Correlation

between the expression level of SYTL2 and the genes in the NK cell-mediated cytotoxicity signaling pathway.

expression levels were significantly downregulated in MI PBMC
samples. LncRNA-NEAT1 was identified as an immunoregulator
affecting T cell andmonocyte-macrophage lineage differentiation
and functions in vivo, which may impact the course of
diseases (34). ALK4 expression levels in PBMCs of MI patients
were significantly higher than that in PBMCs of healthy
volunteers, and ALK4 function was associated with cardiac
inflammation and vulnerability to ventricular arrhythmia after
acute myocardial injury. The establishment of an MI mouse
model suggested the potential involvement of macrophage-
mediated ALK4 expression in the inflammatory phase of MI (35).
Moreover, a bioinformatics study based on the gene expression
profiles of PBMCs between AMI samples and controls was
performed. IL1R2, IRAK3, and THBDwere collectively identified
as a diagnostic marker of AMI and showed a close correlation
with immune cells, such as M2 macrophages, monocytes,
activated NK cells, and gamma delta T cells (14). The present
study identified SYTL2, KLRD1, and C12orf75 as diagnostic
markers of SD-related MI and demonstrated that immune cells,
especially resting NK cells, played important roles in disease
progression. Therefore, this gene set represents a promising
measurement from a clinical perspective. Specifically, the PBMC
expression profile of atherosclerosis patients who undergo SD
might have prognostic value regarding the clinical course or
response to anti-inflammatory treatment.

The amount of sleep time has drastically decreased in modern
society due to changes in lifestyle behavior and the presence
of sleep disorders. Several intermediate pathophysiological
mechanisms have been reported to be induced by short sleep
duration, such as inflammatory responses, atherosclerosis,
oxidative stress, and insulin resistance, resulting in the
development of cardiovascular and metabolic disorders

(36–40). In a large prospective study from London with more
than 10,000 participants and a mean follow-up time of 15 years,
participants with a short sleep duration showed the highest risk
of CAD (MI and angina, relative risk 1.55, 95% CI 1.33–1.81),
especially in people with sleep disorders (41). Sleep loss exerts a
strong regulatory influence on peripheral levels of inflammatory
mediators of the immune response, which contributes to the
development of atherosclerosis (42). Inflammatory cytokines,
such as IL-1α, IL-1β, IL-6, and TNF-α, exhibit a positive linear
association with habitual short sleep duration. C-reactive protein
(CRP), which is considered a predictor of cardiovascular events,
was also elevated in plasma after partial SD, and the levels
remained high even after two nights of sleep recovery (42, 43).
As the main source of these cytokines, the expression levels in
monocytes are strongly regulated by circadian rhythms (44).
Generally, the leukocyte population increases after acute SD.
However, the number of circulating NK cells was decreased
after SD, which subsequently led to an increase in B and T
lymphocytes and total white blood cells (43). A previous study
indicated that the number of apoptotic NK cells in peripheral
blood was significantly increased in CAD patients compared to
healthy patients, and this effect was induced by oxidative stress
(45). Our study found that resting NK cells were enriched in
neither MI samples nor SD samples. One reasonable hypothesis
is that NK cells undergo apoptosis due to oxidative stress
induced by SD, which subsequently stimulates the increase
in other inflammatory cells and enhances the inflammatory
response, finally increasing cardiovascular events.

Three diagnostic biomarkers, including SYTL2, KLRD1, and
C12orf75, were identified to be associated with SD-related MI.
The synaptotagmin-like protein homology domain (SHD) of
SYTL2 specifically binds to the GTP-bound form of Ras-related
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FIGURE 9 | Significant pathways influenced by SYTL2 in the GSE59867 dataset. (A) Volcano plot of the GSE59867 dataset. A total of two upregulated DEGs and 91

downregulated DEGs were identified between low- and high-SYTL2 expression samples. (B) Heatmap of DEGs between low- and high-SYTL2 expression samples in

the GSE59867 dataset. (C) DEGs with the top 15 enriched GO terms and KEGG terms. (D) Distribution of DEGs for different GO-enriched functions.

protein Rab-27A (RAB27A), which suggests a role of vesicle
trafficking and exocytosis in epithelial cells and haematopoietic
cells, including neutrophils, cytotoxic T cells, NK cells, and
mast cells (46–48). SYTL2 has been reported to control the
podocalyxin-rich vesicles tethering and fusion in conjunction
with Rab27/Rab3/Rab8 via synaptotagmin-like protein 4a (Slp4a)
to promote vascular lumen formation (49). SYTL2 is recruited

to the apical membrane where it regulates secretion of Weibel-
Palade Body components into the luminal space (50). Knockout
of SYTL2 blunts the vascular lumen formation during angiogenic
development, suggested its potential role in the setting ofMI (50).
KLRD1, which is also named CD94, is an antigen preferentially
expressed on NK cells (51). NK cells are important in the
onset of AMI given their ability to secrete IFN-γ and other
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inflammatory cytokines (52). However, NK cell activity and
quantity were suppressed in MI patients with significant mRNA
downregulation of inhibitory and activating NK cell receptors
(53, 54). The specific mechanism of these clinical manifestations
remains unclear. The present study might provide potential
evidence that the downregulated expression levels of SYTL2
and KLRD1 in SD-related MI patients lead to dysfunction of
exocytosis in NK cells and suppress NK cell activity, which
subsequently contributes to neutrophil and T cell activity and
the immune response. This hypothesis also needs to be further
validated by in vivo and in vitro experiments.

It should be noted that cardiac troponin (cTn), including
cardiac-specific troponin T (cTnT) and I (cTnI), are now widely
used as a gold standard to identify patients with MI (55).
Despite the cardiac specificity of troponin, there are other clinical
conditions except for MI in which troponin may be elevated,
including cardiac and non-cardiac causes (56). Previous studies
indicated that high-sensitivity cTnI was elevated in patients with
obstructive sleep apnea (OSA), which higher OSA severity was
related to higher concentrations of high-sensitivity cTnI (57, 58).
However, the presence of OSA may have a protective effect on
myocardial ischemic injury in the setting of AMI, which was
manifested as lower concentrations of cTnI than patients without
OSA (59). These above evidences showed that the use of troponin
to diagnose MI caused by sleep disorders is still controversial.
Thus, the exploration for other interesting insights of areas like
peripheral blood genomics biomarkers might assist troponin in
the diagnosis of true MI in patients with sleep disorder.

Several unavoidable limitations in the present study should
be acknowledged. First, the sample size of the included study
was relatively small, and only 9 individuals were recruited
in the GSE37667 dataset for SD. Second, due to the rapid
progress of sequencing technology, heterogeneity exists between
different batches and experimental platforms. Third, the study
was performed based on microarray datasets with two different
populations to explore the role of genes from PBMCs in SD-
related MI. However, direct evidence, such as clinical studies or
in vivo experiments, are not available to support the conclusion.
It is better to design study as in the previous literature. They
collected peripheral blood samples from 302 patients for a case-
control study to further confirm the bioinformatics analysis
results based on the GSE59867 and GSE62646 datasets that
dysregulated circulating hub genes expression were associated
with MI development (60). Therefore, experiments using in vitro
and in vivo models as well as prospective clinical studies will be

indispensable for validation of the diagnostic and theragnostic
value of these biomarkers.

CONCLUSION

In summary, a set of genes from PBMCs, including SYTL2,
KLRD1, and C12orf75, were identified as diagnostic biomarkers
for SD-related MI. SYTL2 exhibited a strong positive correlation
with resting NK cells, which were both downregulated in the
MI samples and SD samples and involved in NK cell signaling
pathways, including the MAPK signaling pathway, cytotoxic
granule movement and exocytosis, and NK cell activation.
These diagnostic biomarkers and hypothetical signaling axes
may provide prognostic value and therapeutic targets for SD-
related MI.
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