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Podocyte injury and the appearance of proteinuria are key features of several progressive

kidney diseases. Genetic deletion or selective inhibition of TRPC5 channels with

small-molecule inhibitors protects podocytes in rodent models of kidney disease, but

less is known about the human relevance and translatability of TRPC5 inhibition. Here,

we investigate the effect of TRPC5 inhibition in puromycin aminonucleoside (PAN)-

treated rats, human iPSC-derived podocytes, and kidney organoids. We first established

that systemic administration of the TRPC5 inhibitor AC1903 was sufficient to protect

podocyte cytoskeletal proteins and suppress proteinuria in PAN-induced nephrosis rats,

an established model of podocyte injury. TRPC5 current was recorded in the human

iPSC-derived podocytes and was blocked by AC1903. PAN treatment caused podocyte

injury in human iPSC-derived podocytes and kidney organoids. Inhibition of TRPC5

channels reversed the effects of PAN-induced injury in human podocytes in both 2D

and 3D culture systems. Taken together, these results revealed the relevance of TRPC5

channel inhibition in puromycin-aminonucleoside induced nephrosis models, highlighting

the potential of this therapeutic strategy for patients.

Keywords: TRPC5 channel, calcium signaling, Rac1, podocyte, kidney disease

INTRODUCTION

Progressive chronic kidney disease (CKD) is associated with increased risk of kidney failure (1), and
its prevalence is rapidly increasing with now more than 850 million people with CKD worldwide
(2). Despite these rising numbers, the therapeutic options available to slow or prevent disease
progression are limited (3, 4). Nephrotic syndrome is an important driver of CKD. Characterized
by the presence of large amounts of albumin spilling into the urine, nephrotic syndrome is the
consequence of damage to the filtering unit of the kidney, the glomerulus. When intact, the
kidney filter, made up of endothelial cells, the basement membrane, and podocytes, is essential for
retaining proteins in the blood and removing waste from the body. Many chronic kidney diseases
are associated with the loss of podocytes, critical post-mitotic, terminally differentiated cells of the
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kidney filter that cannot be renewed once lost (5–9). Due to their
limited capacity to proliferate, podocytes are especially vulnerable
to various stimuli that lead to injury (10). Preventing podocyte
injury therefore remains a critical objective for the development
of effective, targeted therapeutic strategies for kidney diseases.

Numerous studies indicate that dysfunction of the podocyte
cytoskeleton contributes to progressive proteinuric kidney
diseases (3, 11), including Minimal Change Disease (MCD).
Decreased expression of podocyte cytoskeletal proteins,
including synaptopodin, nephrin, and podocin, is an early event
in podocyte injury that results in the disorganization of the
cytoskeleton, the fusion of foot processes, and ultimately the
development of proteinuria and subsequent kidney damage
(12). A significant number of mutations associated with filter
barrier damage result in excess Rac1 signaling in podocytes
including mutations in ARHGAP24 (13), ARHGDIA (14),
and ARHGEF17 (15). A small GTP-binding protein, Rac1, is
closely associated with various proteinuric kidney diseases, and
critically, the regulation of podocyte cytoskeletal proteins. In
addition to disruption of cytoskeletal protein remodeling, Rac1
activation results in increased ROS production and regulation of
ion channels (16).

Ion channels are critical to kidney function, and their
involvement in kidney disease is an active area of investigation.
Transient receptor potential (TRP) channels are receptor-
operated, non-selective, Ca2+-permeable, cationic channels that
were first identified inDrosophila (17, 18). TRPC (TRP canonical)
channels are a subgroup of this larger family that are particularly
relevant to podocyte biology (19) and have been shown to play
an important role in the pathogenesis of kidney disease. Ca2+

influx (20) through TRPC5 elicits dynamic and tightly regulated
biochemical responses that activate Rac1. Rac1 activation leads to
further vesicular insertion of TRPC5 into the plasma membrane,
thus making more TRPC5 channels available for activation
and completing a feed-forward pathway. Critically, data from
three chemically distinct compounds that block TRPC5 activity
(AC1903, ML204, and GFB-8438) have demonstrated beneficial
effects when applied to rodent models of kidney disease (21).
In addition to TRPC5, both gain-of-function (22, 23) and loss-
of-function mutations in TRPC6 channel activity contribute to
podocyte injury (24), further implicating TRPC channel activity
in chronic kidney diseases.

While the role of TRPC5 in podocyte injury has been defined
using various rodent models, whether TRPC5 activity drives
disease-relevant phenotypes in human kidney cells remains
unexplored. The current study addresses these questions
directly by harnessing the technological advances afforded
by human induced pluripotent stem cell (iPSC)-derived
2D podocyte cultures (iPodos) and 3D kidney organoids.
We determined that human podocytes express functional
TRPC5 channels, and that TRPC5 inhibition protects human
podocytes from injury. Our data were cross-validated in the
experimentally tractable PAN-induced nephrotic rat model.
This work provides a rationale for ongoing efforts to move
TRPC5 inhibitors into the clinic (NCT03970122; https://
clinicaltrials.gov/) for the treatment of progressive proteinuric
kidney diseases.

RESULTS

Inhibition of TRPC5 Channel Activity
Reduces Proteinuria and Protects
Podocytes From Injury in PAN-Treated Rats
Studies have shown that a single-dose of PAN administration to
rats causes a marked nephrotic syndrome with severe proteinuria
and the extent of damage depends on the amount and frequency
of the PAN injection (25, 26). Many molecules, including TRPC6
channels, are associated with PAN-induced nephrosis in rats (27–
30). However, a recent study showed little to no protective effects
in the early phase of PAN treatment in rats with genetic deletion
of TRPC6 channels (31), suggesting that other pathways may
mediate the early-stage disease. Previously, we have shown that
inhibition of TRPC5 protects podocytes from injury and loss in
the early phases of disease in several rodent models, suggesting a
clinically relevant role for TRPC5 inhibition.

To investigate the role of TRPC5 in PAN nephrosis, we
administered a single dose of PAN (50 mg/kg body weight rats),
which induced a significant amount of urine albumin 7 days after
injection. In contrast, co-administration of the TRPC5 channel
inhibitor AC1903 twice per day significantly reduced urine
albumin 7 days after PAN injection (Figure 1A). Periodic Acid
Schiff (PAS) staining showed no obvious morphological changes
in glomeruli and tubules from all groups (Figure 1B); however,
transmission electron microscopy (TEM) showed extensive foot
process effacement (FPE) without changes to the glomerular
basement membrane (GBM) or the mesangial cells (Figure 1C),
resembling the clinical manifestations of MCD in patients.
Statistical analysis of rat podocyte foot processes (FPs) showed
that treatment with AC1903 preserved FP number and protected
FPs from effacement (Figures 1D,E). These results indicate that
TRPC5 channels in vivo play an important role in inducing
podocyte injury by PAN.

We further characterized the effects of PAN injection on
several podocyte proteins. In PAN-induced nephrosis rats, the
abundance of two podocyte cytoskeletal proteins, podocin and
synaptopodin, was reduced in PAN-treated rat kidneys, while
the expression levels of podocyte transcription factor WT1
were not affected, indicating that PAN at this concentration
causes alterations in podocyte cytoskeletal structure but does
not drive cell loss. Treatment with AC1903 successfully restored
the PAN-induced depletion of podocin and synaptopodin
(Supplementary Figure 1). Thus, we concluded that inhibition
of TRPC5 channel activity can reduce FPE by protecting
podocyte cytoskeletal structure.

Systemic Administration of TRPC5
Inhibitor AC1903 Reduces PAN-Induced
TRPC5 Activity
To understand TRPC5 channel involvement and contribution
to PAN-induced podocyte injury, we performed TRPC5 single-
channel recordings from acutely isolated rat kidney glomeruli
according to our previously reported protocol and procedures
(16). A single dose of PAN treatment successfully increased
TRPC5 single-channel activity in response to the TRPC5
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FIGURE 1 | AC1903 reduces proteinuria and protects podocytes from injury in a PAN nephrosis rat model. (A) 24-h urine albumin levels from PBS, PAN and PAN +

AC1903 treated rats on day 0, 3 and 7. PAN 50 mg/kg, AC1903 50 mg/kg. PBS n = 6; PAN n = 15; PAN + AC1903 n = 13. ***p < 0.001 PBS vs PAN, ###p <

0.001 PAN vs PAN + AC1903. (B) Representative PAS staining images of PBS, PAN and PAN + AC1903 treated rats on day 7. Scale bar 20µm. (C) Representative

TEM images of podocyte foot processes (FPs) from PBS, PAN and PAN + AC1903 treated rat on day 7. Scale bar 1µm. (D,E) Quantification of podocyte FPEs using

the FP number (D) and width (E) on 1µm glomerular basement membrane from PBS, PAN and PAN + AC1903 treated rats on day 7. **p < 0.01, ***p < 0.001.
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agonist riluzole, while systemic co-administration of AC1903
with PAN in rats significantly reduced TRPC5 activity from
isolated glomeruli (Figure 2A). PAN-treated rats showed a
higher NPo value, the product of channel number and open-
channel probability, while AC1903-treated rats exhibited a lower
NPo value (Figure 2B). We hypothesized that systemic AC1903
administration would significantly lower the number of TRPC5
channels inserted in the podocyte plasma membrane, resulting
in a low NPo. This result shows that, similar to observations in
AT1R transgenic and Dahl spontaneous hypertensive rat models,
AC1903 protects podocytes from PAN-induced injury when
administered systemically by reducing TRPC5 channel activity.

Human iPSC-Derived Podocytes Express
Functional TRPC5 Channels
Generating human podocytes in 2D cultures offers a unique
opportunity to conduct mechanistic studies in vitro. To generate
human iPodos, we adapted a previously published three-step
protocol to induce differentiation into intermediate mesoderm,
nephron progenitors, and finally, mature podocytes (32).
iPodos exhibited typical in vitro mature podocyte morphology
characterized by a large and flat cell body with a dense nucleus
that resembled mouse and human immortalized podocytes
(33, 34). The iPodos from this protocol expressed the major
podocyte markers including SYNPO, NPHS1, NPHS2, andWT-1
(Supplementary Figure 2).

We performed patch clamp electrophysiology, the gold
standard in measuring ion channel activity, using iPodos, 12–
14 days after induction. For whole-cell patch clamp recordings,
a single iPodo was identified and the glass pipette was moved
to the center of the cell body to provide a more effective Giga-
seal (Figure 3A). Upon successful achievement of the whole-cell
configuration, a strong outwardly rectifying current was observed
upon application of a voltage ramp protocol, which decreased
gradually within 30 s of perfusion (Figure 3B). Englerin A,
a compound known to be a nanomolar activator of TRPC4
and TRPC5, was applied once the baseline became stable.
Large outward and inward currents were induced by 100 nM
Englerin A, which could be blocked by TRPC5 inhibitor AC1903
(Figures 3B,C). The inhibitory effect of AC1903 was more
prominent at negative potentials confirming that the baseline
outwardly rectifying current did not correspond to a TRPC5
conductance (Figure 3D). These data provide the first evidence
that human podocytes express functional TRPC5 channels
at baseline, without additional manipulation, indicating that
TRPC5 channels may play a role in human podocyte physiology.

Previous studies have indicated that TRPC5 activity is a
major cause for podocyte injury in various rodent in vitro
and in vivo models (16, 35). To determine whether inhibition
of TRPC5 channel activity is protective in human podocytes,
we investigated the effect of the TRPC5 channel inhibitor
AC1903 on PAN-treated mature human iPodos. Our previous
studies have demonstrated that activation of TRPC5 channels
induces Rac1 activity in podocytes, which leads to the ROS
production, cytoskeletal remodeling and podocyte loss in the
angiotensin II type 1 receptor transgenic and spontaneous

hypertensive nephropathy rat models (16). Therefore, we
hypothesized that PAN treatment may cause iPodo injury
through a similar mechanism. In support of this hypothesis,
incubation with PAN for 24 h significantly increased iPodo
intracellular ROS levels, which were reduced by co-treatment
with AC1903 (Figures 3E,F). These results suggest that inhibition
of TRPC5 channels by the small molecule AC1903 can protect
human iPodos from PAN-induced ROS generation. Previous
experiments in mouse podocytes have shown that AC1903 blocks
ROS generation induced by angiotensin II (AngII), suggesting
that both mouse immortalized podocytes, and now human
iPodos, support a role for TRPC5 in podocyte biology and disease
pathophysiology. In summary, using iPodos, we demonstrated
the presence of active TRPC5 channels, inhibition with AC1903,
and measured downstream reduction of ROS, the sequela of
PAN-mediated TRPC5 activation.

TRPC5 Inhibition Preserves Podocin,
Synaptopodin, and Nephrin Abundance in
PAN-Treated Human Kidney Organoids
To further evaluate the effect of AC1903 in podocytes as
well as other kidney cells, we took advantage of the human
iPSC-derived kidney organoid model. Organoids contain self-
organized nephrons composed of early glomerular structures
connected to tubular cells including proximal tubules, loops
of Henle and distal tubules. These 3D organoids thus hold
the potential to be excellent in vitro models for preclinical
drug testing, because they allow simultaneous monitoring
of drug effects on multiple kidney cell types (36–38). We
differentiated kidney organoids for 25 days and observed
nephron-like structures that were similar with previous reports
(Supplementary Figure 3). Using immunofluorescence imaging,
we found that PAN treatment reduced nephrin, podocin
and synaptopodin, but not WT1 expression levels (Figure 4;
Supplementary Figure 4). Co-treatment with AC1903 preserved
podocyte cytoskeletal proteins, as also observed in PAN rats.
Taken together, our data suggest that inhibition of TRPC5
channel activity protects human podocytes from PAN-induced
injury in an in vitro 3D model.

DISCUSSION

The majority of studies investigating podocyte biology in vitro
have relied on immortalized cell lines. Although these cell
lines express podocyte markers such as podocin, synaptopodin,
nephrin, and WT-1, and respond to many stimuli, they are
prone to de-differentiation, resulting in variability. Moreover,
immortalized cell lines fall short of recapitulating the crosstalk
and interactions between podocytes and other cell types of the
kidney. Following successful generation of 2D human podocyte
cultures (iPodos) and 3D kidney organoids in vitro from human
iPSCs, we showed that PAN treatment causes elevated ROS in
iPodos and disruption of podocyte cytoskeletal proteins, such
as synaptopodin and podocin in kidney organoids, through the
activation of TRPC5. We demonstrated the podocyte-protective
effects of small-molecule inhibitors of TRPC5 channels in human
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FIGURE 2 | Single-channel recordings from acutely isolated glomeruli show that systemic treatment with AC1903 abrogates TRPC5 activity. (A) Representative

TRPC5 single-channel current traces from PBS, PAN and PAN + AC1903 treated rats in response to TRPC5 channel agonist Riluzole (30µM). (B) Quantification of

TRPC5 single-channel activity by analysis of NPo values. **p < 0.01, ***p < 0.001.

podocytes and kidney organoids, establishing these systems as
reproducible, human-specific tools to study podocyte-associated
kidney diseases (32, 36–38).

Our previous data demonstrated TRPC5 expression and
activity in mouse kidney tissues as well as rat glomeruli,
and that a TRPC5-specific small-molecule inhibitor AC1903,
can rescue podocytes and attenuate the progression of kidney

diseases in angiotensin II type 1 receptor transgenic, and
spontaneous hypertensive rat models (16, 35). Mechanistically,
activation of TRPC5 channels by angiotensin II type 1 receptor
increases Rac1 activity, which increases ROS production and
cytoskeletal remodeling in podocytes, eventually leading to
podocyte injury and loss. These findings provided a mechanistic
rationale for therapeutically targeting TRPC5 channels in the
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FIGURE 3 | Functional TRPC5 channel activity blocked by AC1903 reduces cytosolic ROS and protects cytoskeletal proteins in PAN-treated iPodos. (A)

Representative image of a human iPodo patch clamp recording in the whole-cell configuration. P, Glass pipette; N, iPodo nuclear; C, iPodo cytosol. (B) Representative

(Continued)
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FIGURE 3 | diary plots of whole-cell currents from iPodos in response to TRPC5 channel agonist Englerin A (100 nM) in the absence or presence of TRPC5 channel

inhibitor AC1903 (30µM). Currents shown are from +100mV and −100mV of a ramp protocol. (C) Representative TRPC5 channel current-voltage (I-V) curves from

iPodo whole-cell recording. (D) Statistical analysis of I-V curves from iPodos treated with Englerin A in the absence or presence of AC1903. *p < 0.05, ***p < 0.001.

(E) Representative cytosolic ROS images in iPodos after 24-h treatment with PAN (150µg/mL) with or without AC1903 (30µM). Scale bar 10µm. (F) Statistical

analysis of the ROS signal intensities. ***p < 0.001.

FIGURE 4 | Inhibition of TRPC5 protects podocytes from injury in human kidney organoids. Representative immunostaining images of podocyte cytoskeletal and

marker proteins, nephrin (Green) and WT1 (Red) in PBS, PAN and PAN + AC1903 treated human kidney organoids. Scale bar 20µm.

treatment of progressive chronic kidney diseases. In this study,
we generated human iPSC-derived podocytes and used patch
clamp electrophysiology to demonstrate their response to a
more potent TRPC4/5 channel agonist, Englerin A. The currents
induced by Englerin A were blocked by the TRPC5-selective
inhibitor AC1903. We believe these results further strengthen the
idea that AC1903 remains effective with different TRPC5 channel
activators. To our knowledge, this is the first demonstration that
human podocytes express functional TRPC5 channels, further
strengthening the notion that these channels play an important
role in progressive kidney diseases.

Prior work has shown that Rac1 activation is a nodal event
in a spectrum of glomerular diseases, while inhibition of Rac1
activity ameliorates podocyte injury in response to various
noxious stimuli (14, 39–42). In this study, we investigated
the contribution of the TRPC5 channel in a PAN-induced

nephrosis rat model. In contrast to angiotensin II type 1 receptor
transgenic and spontaneous hypertensive rat models, PAN-
induced nephrosis rats displayed strong foot process effacement,
but not podocyte loss, resembling the clinical phenotype ofMCD.
A single dose of PAN was sufficient to induce podocyte injury
and proteinuria in rats within a week, which was consistent
with the PAN-induced injury observed in human podocytes
and kidney organoids. Previously, we confirmed the protective
effect of AC1903 both before and after disease onset in two
rodent models (16). In this study, therefore, we decided to
administer AC1903 before disease onset, since our goal was to test
whether inhibition of TRPC5 can prevent podocyte injury at an
early time point. As expected, inhibition of TRPC5 channels by
AC1903 was sufficient to protect podocyte cytoskeletal proteins
and suppress proteinuria in PAN-induced nephrosis rats within
a week. The accelerated timeline of injury in PAN-induced
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nephrosis increases the ease with which this model could be
used in pre-clinical studies, especially in comparison to AT1R
transgenic and Dah1 Salt-sensitive spontaneous hypertensive rat
models which require at least a month for podocyte injury and
proteinuria to be established. A recent study has also shown
that another TRPC5 channel inhibitor GFB-8438, which has a
IC50 of 0.18µM, protects mouse podocytes from injury induced
by protamine sulfate (PS) in vitro and significantly reduces
both urinal total protein and albumin levels in a hypertensive
deoxycorticosterone acetate (DOCA)-salt ratmodel of FSGS (43).
We speculate that the effects of AC1903 and GFB-8438 would be
comparable in the PAN rat model as well.

Taken together, these data indicate that inhibition of TRPC5
channel activity protects podocytes from PAN-induced injury.
Our data also highlight the utility of human iPodos, kidney
organoids, and the PAN-induced nephrosis rat model as
useful tools for the preclinical development of TRPC5 channel
inhibitors. This diverse set of validated models spans both
human in vitro systems conducive for mechanistic studies
and experimentally tractable in vivo disease models with
physiological readouts. In sum, this study bolsters the human
relevance and scientific rationale for a TRPC5-targeted podocyte-
protective strategy.

METHODS

Animals
Wild-type Sprague-Dawley rats (Male, 4–5 weeks, Charles River)
were housed under a controlled environment with a 12 h
light-dark cycle and access to food and water ad libitum. All
animal experiments were performed in accordance with the
guidelines established and approved by the Animal Care and Use
Committee at Brigham and Women’s Hospital, Harvard Medical
School (2016N00146). After wild-type Sprague-Dawley rats were
acclimated for a week in the BWH CCM animal facility. A single
dose of puromycin aminonucleoside (50 mg/kg, PAN group)
was given i.p. to rats to induce nephrosis, and PBS was given
as control. Following the PAN injection, vehicle or AC1903 (50
mg/kg) was administered twice daily (at 9 am and 9 pm) for seven
days. Twenty-four-hour urine albumin levels were measured
on day 0, 3, and 7. Rats were euthanized after the metabolic
collection on day 8. Both kidneys were collected for downstream
experiments. In most cases, one kidney was used for acute
glomeruli isolation and glomerular single-channel recording. For
immunostaining, another kidney was quickly removed and cut
into half. One half was flash frozen in liquid nitrogen, and
the other was fixed in 4% PFA overnight and stored in PBS
for follow-up experiments. In combination, we have studied 34
rats (PBS group n = 6, PAN group n = 15, PAN + AC1903
group n= 13).

Chemical Preparation and IP
Administration
All chemicals were purchased from Sigma-Aldrich unless
described otherwise. AC1903 was synthesized, purified and
prepared by C.H. as previously published (16). (-) Englerin
A was purchased from Phytolab (#82530). Immediately prior

to injections, AC1903 solution was placed on a heated shaker
at 48◦C and 800 rpm. Vehicle was prepared in the same
fashion. Injection amount was determined by body weight
(2mL vehicle/compound per kg body weight). Body weight was
measured at the time of injection.

Metabolic Collection and Urine Albumin
Assay
Rats were housed individually in a metabolic cage supplied with
adequate amounts of food and water. Urine was collected into
a 50mL Falcon tube for 24 h. Total urine volume was measured
and then centrifuged at 3,200 × g for 10min at 4◦C. Albumin
quantification was done according to our previously published
protocol (16). Coomassie Brilliant Blue stained gels of urine
samples were quantified by densitometry with albumin standards
using Image J software.

Human iPSC Culture
Human Episomal iPSC Line (ThF) (ThermoFisher, #A18945)
was maintained in mTeSR1 medium (Stem Cell Technologies,
#85870) in T25 flasks pre-coated with Matrigel (Stem Cell
Technologies, #354277). Cells were passaged using Gentle Cell
Dissociation Reagent (Stem Cell Technologies, #7174). iPSCs
were confirmed to be karyotype normal and maintained below
passage 10 and all the cell lines were routinely checked and were
negative for mycoplasma.

Differentiation Into Human iPSC-Derived
Podocytes
Human iPSC-derived podocytes (iPodos) were generated using
the cited protocol with a few modifications (32). A total number
of 3.75× 105 ThF human iPSCs were seeded in aMatrigel-coated
T25 flask in mTeSR1 medium (Stem Cell Technologies, #85870)
with ROCK inhibitor, Y-27632 (10µM, Stem cell Technologies,
#72304). After 24 h cells were treated with a 1:1 mixture
of DMEM/F12 + GlutaMAX (Life Technologies, #10565-018)
and Neurobasal media, supplemented with N2 and B27 (Life
Technologies, #21103049), CP21R7 (1µM, Cayman Chemical,
#20573), and BMP4 (25 ng/mL, Peprotech, #AF-120-05ET), for
3 days. On day four, the medium was replaced with STEMdiff
APEL2 medium (Stem Cell Technologies, #05270) supplemented
with FGF9 (200 ng/mL, Peprotech, #100-23), BMP7 (50 ng/mL,
Peprotech, #120-03), and Retinoic Acid (100 nM, Sigma-Aldrich,
#R2625) for 2 days. On day six, cells were dissociated with
Accutase (Stem Cell Technologies, #07920) and 2 × 105 cells
were seeded on Type I Collagen-coated 6-well dishes and
cultured until day fourteen in DMEM/F12+GlutaMAX medium
supplemented with 10% FBS (Life Technologies, #16140071).
Vitamin D3 (100 nM, Tocris Bioscience, #4156), and Retinoic
Acid (100µM, Sigma-Aldrich, #R2625) were added every other
day. Cells were fully differentiated and ready to use from Day 12
to Day 14.

Kidney Organoid Differentiation
Kidney organoids were generated using a previously described
protocol (37) with slight modifications. A total number of 3.75×
105 ThF iPSCs were plated in a T25 flask in the mTeSR1 medium
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with ROCK Inhibitor Y-27632 (10µM, Stem cell Technologies,
#72304). After 24 h, cells were treated with CHIR99021 (8µM,
R&D systems, #4423/10) in the STEMdiff APEL2 medium (Stem
Cell Technologies, #05270) for 4 days, followed by recombinant
human FGF-9 (200 ng/mL, Peprotech, #100-23) and heparin
(1µg/mL, Sigma-Aldrich, #H4784) for an additional 3 days.
At day seven, cells were dissociated into single cells using
AccutaseTM (Stem Cell Technologies, #07920). 5 × 105 cells
were pelleted at 350x g for 2min and transferred onto a 6-well
transwell membrane (Stem Cell Technologies, #3450). Pellets
were incubated with CHIR99021 (5µM) in the APEL2 medium
for 1 h at 37◦C. Then the medium was changed to the APEL2
medium with FGF-9 (200 ng/mL) and heparin (1µg/mL) for
an additional 5 days, and an additional 2 days with heparin
(1µg/mL). Medium was changed every other day. The organoids
were maintained in APEL2 medium with no additional factors
until day 25. Then kidney organoids were treated with PBS, PAN
(150µg/mL) with or without AC1903 (30µM) for 72 h before the
downstream experiments.

ROS Assay
Human iPSC-derived podocytes (iPodos) were treated with
either PBS, PAN (150µg/mL), or PAN with 30µM AC1903 for
24 h. Intracellular production of ROS was measured using a
cell-permeable fluorescent ROS indicator (Invitrogen, #C10444)
following the official protocol. Briefly, cells were incubated with
5µM CellRox Green at 37◦C for 30min in Hanks’ balanced salt
solution (ThermoFisher Scientific, #14025092). Cells were then
washed with PBS and fixed with 4% PFA. Fluorescence images
were taken under a confocal microscope Olympus FV-1000. Each
cell was circled and the ROS signal intensities were measured
using ImageJ software. Average ROS intensities were normalized
with their cell number in each group.

Rat Kidney Immunofluorescence
For immunofluorescence, kidney tissues were sectioned
at 6µm thickness and blocked with 3% BSA at room
temperature for 1 h. The rabbit anti podocin, guinea pig
anti synpo, goat anti Nephrin, and rabbit anti WT-1
antibodies were used at a dilution of 1:200. The Alexa
goat anti rabbit and guinea pig IgG 488 and Alexa
donkey anti goat IgG 594 were used at a dilution of 1:200.
Fluorescence images were taken with a confocal microscope
Olympus FV-1000.

Periodic Acid Schiff Staining
Paraffin-embedded rat kidney slides were deparaffinized and
hydrated with distilled water. Then they were oxidized in
0.5% Periodic Acid solution for 5min, and rinsed 3 times
with distilled water. Slides were then placed in Schiff ’s reagent
for 15min and washed with tap water for 5min. Slides were
counterstained in Mayer’s hematoxylin for 1min and washed
with tap water for 5min and then rinsed with distilled water.
Slides were finally dehydrated and mounted using Xylene based
mounting media.

Transmission Electron Microscopy and
Podocyte Foot Process Quantification
Kidney samples were fixed in 3% glutaraldehyde and 2%
paraformaldehyde in 0.1M cacodylate buffer (pH 7.3) at 4◦C
overnight. On the second day, samples were washed in 0.1M
sodium cacodylate buffer and then post-fixed in 1% osmium
tetroxide for 1 h. Samples were dehydrated with alcohol, and then
embedded in Epon resin (ElectronMicroscopy Science). Sections
(60–100 nm) were prepared with an EM UC7 ultramicrotome
(Leica Microsystems, Germany), and stained with uranyl acetate
and lead citrate. The stained samples were examined in a
JEM 2100 transmission electron microscope (JEOL, USA).
The quantification of podocyte foot process was performed
with ImageJ software. First of all, lines were drawn along
the GBM or across each foot process, and then the length
of GBM and the width of each foot process were measured
with ImageJ software. The average number and width of foot
processes per micrometer length of GBM were calculated for the
statistical analysis.

Electrophysiology
iPodo whole-cell patch clamp was performed using an Axopatch
700B and Digidata 1550A (Molecular Devices). Bath solution
contained (in mM) 135 CH3SO3Na, 5 CsCl, 2 CaCl2, 1 MgCl2, 10
HEPES, and 10 glucose adjusted with NaOH to pH 7.4. Pipette
solution contained (in mM) 135 CH3SO3Cs, 10 CsCl, 3 MgATP,
0.2 EGTA, 0.13 CaCl2, and 10 HEPES adjusted with CsOH to
pH 7.4. For glomerular single-channel recording, acutely isolated
glomeruli were prepared as previously published (16). Single-
channel recordings were carried out using an Axopatch 200B and
Digidata 1550A (Molecular Devices). Bath and pipette solutions
for glomerular single-channel recording contained (in mM) 135
CH3SO3Na, 5 CsCl, 2 CaCl2, 1 MgCl2, 10 HEPES, and 10
glucose adjusted with NaOH to pH 7.4. Once the inside-out
configuration was achieved, the bath solution was replaced by
an intracellular solution, containing (in mM) 135 CH3SO3Cs,
10 CsCl, 3 MgATP, 0.2 EGTA, 0.13 CaCl2, and 10 HEPES
adjusted with CsOH to pH 7.4. Patch pipettes, with a resistance
of 4–6 MΩ , were prepared using a two step-protocol (Sutter
Instrument, P-97). Pipettes were fire-polished before use with
a microforge (Narishige, MF-9). For glomerular single-channel
recording, data was acquired at 10 kHz sampling frequency,
and filtered with low-pass filtering at 1 kHz. Holding membrane
potential was at −60mV. Single-channel analysis was carried
out using Clampfit 10.4 software (Molecular Devices). NPo were
analyzed for 10 s before and after the application of TRPC5
agonist riluzole (Sigma, R116).

Statistical Analysis
All the data were presented as Mean ± SEM unless described
otherwise. Microsoft Office Excel, Origin 6.0 and Graphpad
Prism 6 were used for statistical analysis and creation of the
graphs. For statistical analysis of differences, an unpaired t-
test and a one-way ANOVA followed by Bonferroni or Tukey
Correction were used. p-value < 0.05 was considered to
be significant.
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Supplementary Methods | Total mRNA was extracted from 5 × 106 hiPSC and

iPodo cells with TRIzol reagent according to the official protocol (ThermoFisher

Scientific, USA). The cDNA was synthesized by ReverTra Ace kit (Toyobo, Japan).

qPCR was then performed using a SYBR Green qPCR Kit (ThermoFisher

Scientific, US) with the CFX Real-Time PCR system (Bio-Rad, USA). GAPDH

(Forward 5′-GTCTCCTCTGACTTCAACAGCG-3′, Reverse 5′-ACCACCCTGTTGC

TGTAGCCAA-3′); SYNPO (Forward 5′-TCCTTCATGTTGCTGCCGAT-3′, Reverse

5′-AGATCCTTCTCCGTGAGGCT-3′); NPHS2 (Forward 5′-ACCAAATCCTCCGGC

TTAGG-3′, Reverse 5′-CAACCTTTACGCAGAACCAGA-3′); NPHS1 (Forward

5′-GTCTGCACTGTCGATGCCAATC-3′, Reverse 5′-CCAGTTTGGCATGGTGAAT

CCG-3′);WT1 (Forward 5′-CGAGAGCGATAACCACACAACG-3′, Reverse 5′-GTC

TCAGATGCCGACCGTACAA-3′).

Supplementary Figure 1 | Inhibition of TRPC5 channel activity protects

podocytes in PAN rats. (A) Representative immunostaining images of podocyte

cytoskeletal and marker proteins podocin, synaptopodin, and WT1 from PBS,

PAN and PAN + AC1903 treated rats on day 7. Scale bar 20µm.

Supplementary Figure 2 | Expression levels of SYNPO, NPHS1, NPHS2, and

WT1 in human iPSC-derived podocytes. (A–D) qPCR results of podocyte markers

SYNPO (A), NPHS1 (B), NPHS2 (C), and WT1 (D) from hiPSC and iPodo. hiPSC

n = 3, iPodo n = 3. ∗∗p < 0.01 vs. hiPSC.

Supplementary Figure 3 | Bright-field images of human iPSCs and kidney

organoids. (A) Bright-field images of human iPSCs (A, scale bar 200µm), kidney

organoid at day 6 (B), day 15 (C), and day 25 (D). Scale bars (B–D) 50µm.

Supplementary Figure 4 | Inhibition of TRPC5 activity protects podocin and

synaptopodin in human kidney organoids treated with PAN. (A,B) Immunostaining

for podocin (A) and synaptopodin (B) in PBS, PAN and PAN + AC1903 treated

kidney organoids. Scale bar 20µm.
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