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A B S T R A C T

Alzheimer's disease (AD) is associated with a loss of semantic knowledge reflecting brain pathophysiology that begins years before dementia. Identifying early signs
of pathophysiology induced dysfunction in the neural systems that access and process words' meaning could therefore help forecast dementia. This article reviews
pioneering studies demonstrating that abnormal functional Magnetic Resonance Imaging (fMRI) response patterns elicited in semantic tasks reflect both AD-pa-
thophysiology and the hereditary risk of AD, and also can help forecast cognitive decline. However, to bring current semantic task-based fMRI research up to date
with new AD research guidelines the relationship with different types of AD-pathophysiology needs to be more thoroughly examined. We shall argue that new
analytic techniques and experimental paradigms will be critical for this. Previous work has relied on specialized tests of specific components of semantic knowledge/
processing (e.g. famous name recognition) to reveal coarse AD-related changes in activation across broad brain regions. Recent computational advances now enable
more detailed tests of the semantic information that is represented within brain regions during more natural language comprehension. These new methods stand to
more directly index how pathophysiology alters neural information processing, whilst using language comprehension as the basis for a more comprehensive examination
of semantic brain function. We here connect the semantic pattern information analysis literature up with AD research to raise awareness to potential cross-dis-
ciplinary research opportunities.

1. Introduction

Alzheimer's disease (AD) is the most common type of dementia, and
a major worldwide health concern. At the time of writing, in the USA
alone 5.5 million individuals are affected, and this is forecast to cost
200 billion USD over 2017 (http://www.alz.org/facts/overview.asp).
Both figures are only expected to rise as average lifespans increase.
Medical health priorities are (1) early identification – there is currently
no precise way of forecasting who will succumb to AD-dementia even
though neuropathologic warning signs first arise years before cognitive
decline; (2) intervention – in order to delay or decelerate irreversible
neuropathology and the onset of clinical symptoms.

2. Goals and intended readership of this article

This article focusses principally on the early identification of AD
pathophysiology or AD-dementia. More specifically on research using
fMRI to test for early appearing abnormalities in the way that semantic
memory is represented and processed in the brain. The first purpose of

the current article is to review related literature to evaluate the con-
tribution made by semantic task-related fMRI measures to predicting
AD pathophysiology or dementia. This is undertaken in the context of
new research framework guidelines (Jack Jr. et al., 2018). The second
purpose is to identify how new computational methods that have re-
cently provided ways to decipher semantic information present in
young healthy adults' brain activity might be reoriented to attack
clinically relevant questions in AD research. The article has been
written by authors with different expertise in respective disciplines and
is intended to raise awareness to cross-disciplinary opportunities for
both audiences. The discussion may be relevant to other neurodeve-
lopmental and neurodegenerative problems, but these are beyond the
scope of this article.

3. Existing clinical, genetic, and pathophysiological factors for
early detection of clinical AD

The progression of AD is marked by a cascade of neuropathologic
processes that develop over decades and often lead to AD-dementia
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(Sperling et al., 2011). Memory-based cognitive tests have historically
played a major role in clinically categorizing a developmental stage of
“amnestic mild cognitive impairment” (MCI, Albert et al., 2011;
Petersen, 2004) prior to AD-dementia (McKhann et al., 1984; McKhann
et al., 2011). However, a recent National Institute on Aging – Alzhei-
mer's Association (USA) research framework now emphasizes biological
factors rather than cognitive symptoms in defining stages of AD pro-
gression for intervention and observational research studies (Jack Jr.
et al., 2018). The framework is grounded on the presence/absence of
three neuropathologic factors: beta-amyloid plaques in the brain, neu-
rofibrillary tau deposits, and neurodegeneration. Critically, amyloidosis
and tau are first to appear (Sperling et al., 2011) and distinguish AD
from other neurodegenerative diseases that also lead to dementia (Jack
Jr. et al., 2018). Though of the two, cerebral amyloidosis is probably
the most specific trait of AD, because tau appears in other dementias.
Whilst under the new framework amyloidosis and tau positivity are
essential for diagnosis of AD-dementia, they do not guarantee dementia.
Indeed, some people with high levels of AD-pathophysiology live full
lives without cognitive deficits (Sperling et al., 2011). More specifically
amyloidosis positivity predicts conversion to AD-dementia at a sensi-
tivity of 95% with a specificity below 60% (Ma et al., 2014) whilst tau
positivity predicts conversion at a sensitivity of 75% and specificity of
72% (Ritchie et al., 2017).

Hereditary risk factors such as the genetic presence of allele ε4 of
apolipoprotein E4 (APOE ε4) and a family history of AD-dementia are
not key components of the new NIA-AA research framework. This is
because they indicate risk of pathophysiology rather than presence of
pathophysiology, (Jack Jr. et al., 2018). However, they have been ex-
tensively researched (Michaelson, 2014) and form the basis of many of
the (pre-framework) studies reviewed in this article. APOEε4 together
with MCI predict conversion to AD-dementia with a sensitivity of 53%
and specificity of 67% (Elias-Sonnenschein et al., 2011).

Because a firm causal relationship between AD-pathophysiological/
genetic biomarkers and AD-dementia has yet to be established there is
substantial motivation to discover new predictors of AD-dementia.
Emphasis is on biomarkers that are detectable early enough to enable a
timely deployment of intervention. In addition, there is motivation to
develop biomarkers that are less invasive/expensive than the current
methods used to measure amyloidosis or tau (Jack Jr. et al., 2018).
These require Positron Emission Tomography scans and the injection of
a radiotracer or alternatively extracting cerebrospinal fluid.

4. Challenges in identifying early warning signs of AD in fMRI
data

fMRI may uniquely be able to reveal early signs of pathophysiology
induced neural dysfunction and/or functional alterations to brain cir-
cuitry made to compensate for pathophysiological damage (Wierenga
and Bondi, 2007). Alternatively, fMRI could provide a non-invasive
route to estimating the presence of AD-pathophysiology indirectly
through measures of abnormal brain activity. Despite this potential,
progress using fMRI has been slow. A US National Institute on Aging
and Alzheimer's Association commissioned team identified fMRI as a
“less well validated biomarker of neuronal injury” (Albert et al., 2011).
Different to measures of pathophysiology, fMRI firstly requires the
identification of cognitive task(s) for participants to undertake during
scanning that induce AD-related warning signals. Secondly, fMRI re-
quires the development of quantitative methods to identify what these
warning signals look like.

Identifying neural correlates of AD-dementia (as opposed to pre-
clinical AD) is relatively straightforward to accomplish by contrasting
fMRI scans of clinical patients with healthy seniors. Even prior to the
first semantic task-based fMRI study on AD-dementia patients (Saykin
et al., 1999) it was established that functional differences are complex
and widespread across the cortex. These include: the absence of normal
activation, which is often interpreted as dysfunction; increased peak

activation or expanded regions of activation which may reflect com-
pensatory processes (Elman et al., 2014; Reuter-Lorenz and Park, 2014);
and, anomalous activation in the form of spatially shifted peak foci
and/or the recruitment of remote regions, which could reflect the en-
gagement of alternate brain networks to cope with pathology (Sperling
et al., 2011).

Based on the conspicuous differences between healthy seniors and
AD patients in fMRI scans, a rational starting point in building an early-
stage AD biomarker would seem to be to test for small scale variants of
the abnormal brain activity patterns observed in AD-dementia patients.
Unfortunately, the complex patterns of abnormal activity observed in
AD-dementia patients also appear to develop in complex ways (as fur-
ther discussed throughout this article) and there is currently no good
way of mapping abnormal response patterns backwards in time to es-
timate what they originally looked like. Longitudinal studies measuring
disease development over many years can address this problem.
However, they are disadvantaged by being difficult to administrate and
ultimately do not address the urgency of the situation.

Because of the difficulties associated with longitudinal studies,
preclinical studies have tended to test for anomalies in task-related
fMRI activation that coincide with pathophysiological and/or genetic
risk factors (by contrasting individuals with high/low amyloidosis or
between APOE ε4 carriers and non-carriers). Episodic memory tasks
have proved popular in this respect because episodic memory loss is a
hallmark of AD-dementia. Episodic memory-related fMRI measures
reflect amyloidosis (Elman et al., 2014; Huijbers et al., 2015; Mormino
et al., 2012). They also reflect the number and/or composition of
APOEε4 alleles at various life stages (Trivedi et al., 2008) including in
young adults (Dennis et al., 2010; Filippini et al., 2009; Mondadori
et al., 2007), the middle aged (Johnson et al., 2006; Trivedi et al., 2006;
Xu et al., 2009), and the elderly (Bondi et al., 2005; Bookheimer et al.,
2000; Han et al., 2007). However, whereas meta-analyses of episodic
memory studies of clinical-AD patients have identified systematic pat-
terns (Schwindt and Black, 2009), preclinical studies have been less
consistent. Activation differences between preclinical APOE ε4 carriers
and non-carriers have varied in both direction and location
(Trachtenberg et al., 2012). Episodic memory tasks also have the dis-
advantage of being tiring and frustrating for elderly adults to perform
(Sugarman et al., 2012). This may affect their reliability in revealing
cognitive deficits in this age group.

Other less studied tasks include tests of auditory verbal working
memory (Wishart et al., 2006), visual working memory (Filbey et al.,
2010; Filbey et al., 2006) and attention (Gordon et al., 2015). Alter-
natively, resting state functional connectivity has been put to wide use
(see Badhwar et al., 2017 for a meta-analysis). Resting state is ad-
vantaged because it requires minimal participant effort, but has been
limited by factors such as inter-participant variability (Damoiseaux,
2012). The focus of the current article is however on “semantic-tasks”
which employ standardized stimuli, but are relatively effortless for el-
derly participants to undertake. Whilst not being as popular as episodic
memory and resting state studies in the AD literature, semantic task-
based fMRI has received sustained attention. The current focus on se-
mantic tasks stems from an interest in pinpointing what new semantic
model-based computational methods might have to offer for AD re-
search.

5. Semantic task-based fMRI experiments

Semantic memory in broad terms refers to the brain's long-term
store of learned general knowledge (see Tulving, 1972, and for more
recent neurobiological reviews: Binder and Desai, 2011; Binder et al.,
2009). The primary focus of the current article is narrowed to the
branch of semantics associated with accessing and processing the
meaning of words. This is in part because reading or listening to words
is a versatile way to stimulate semantic brain systems in a controlled
way. Also, because the new computational methods we discuss later in
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this article are particularly suited to interrogating neural representa-
tions of linguistic meaning. However, this is not to say that semantic
brain activity cannot be stimulated by non-linguistic stimuli including,
but not limited to, pictures or video (Carlson et al., 2014; Huth et al.,
2012; Mitchell et al., 2008). Or alternatively that linguistic stimuli cue
only semantic memories. For instance autobiographical memories and
fictitious experiences can be triggered through verbal stimuli (Hassabis
et al., 2007).

Studies of semantics have been an attractive basis for the early
detection of AD for several reasons. Physiologically, semantic tasks ac-
tivate a distributed cortical network (Binder and Desai, 2011; Binder
et al., 2009) that encompasses brain regions that are vulnerable to early
AD pathophysiology (illustrated later in Fig. 5). Behaviorally, similar to
other dementias, AD disrupts semantic memory/processing (e.g.
Chertkow et al., 2008; Corbett et al., 2012; Hodges et al., 1990, 1992;
Nebes, 1989; Salmon et al., 1999; Chan et al., 1993; Verma and Howard
2012). This makes semantic decline a relatively sensitive measure of
dementia (whether AD-related or otherwise), because semantic
memory, unlike episodic memory, remains relatively intact in healthy
agers (Craik, 1992; Glisky, 2007; Nilsson, 2003; St-Laurent et al., 2011;
Thornton and Light, 2006); Experimentally, semantic tasks are relatively
effortless for elderly individuals to perform (Sugarman et al., 2012)
because words' meaning is processed automatically in response to sti-
muli.

A typical semantic task-based fMRI study could involve repeatedly
stimulating participants with written or spoken words and scanning
their brain activity as they perform a judgement task on the word(s) at
hand (e.g. “is it living?”). An important analytic consideration then
concerns how to separate fMRI activation associated with meaning from
other neural processes associated with processing surface features of
words (visual appearance of written words or their sounds), lexical
access, and other non-semantic task-related activity. Traditionally this
has been accomplished by differencing fMRI scans of words drawn from
different semantic categories, or differencing fMRI scans elicited by
meaningful words with non-meaningful (nonsense) words. If ortho-
graphic/phonetic/linguistic properties of stimuli are appropriately
controlled across categories, this contrast leaves behind semantic acti-
vation. If stimuli are not well controlled, it becomes ambiguous whe-
ther the resultant activation is associated with semantics or something
else. Criteria that are essential to control to confidently reveal semantic
brain activation are detailed in Binder et al. (2009). For the purposes of
a study applying a semantic task purely as a vehicle to elicit fMRI ac-
tivation distinguishing AD, it may not be essential to pin abnormal
activation down to semantics. However, in the current review we shall
place emphasis on this. A driving reason for this is evidence (discussed
later) that healthy brain systems may adopt the role of failing diseased
systems. In order to characterize this process, it is necessary to identify
what information is represented in healthy activation to identify where
it has been re-mapped to in the face of disease.

5.1. AD is associated with developmental transitions from hyper to hypo
activation observed in different brain regions when using different semantic
tasks

The results of semantic task-based fMRI studies conducted on both
preclinical and clinical AD-dementia patients are collated in Table 1.
These make the general point that AD pathophysiology, hereditary risk
of AD and probable AD-dementia are related to complex changes in
semantic task-based activation in widely distributed cortical regions.
Here we shall selectively home in on studies shedding light on how
semantic task-based activation changes prior to AD-dementia because
these are most relevant to biomarker design.

The relationship between associative-semantic fMRI activation and
amyloidosis has been studied in both cognitively healthy individuals
(Adamczuk et al., 2016) and early stage AD-dementia patients (Nelissen
et al., 2007) using the Pyramids and Palm Trees Test (Howard, 1992).

Participants underwent fMRI as they judged which two of three object
names/pictures were most similar in meaning (see Fig. 1 for more de-
tails). Although temporal, parietal and frontal brain regions were ac-
tivated in judgement making, only hyperactivation in posterior left mid
temporal gyrus of cognitively healthy individuals correlated positively
with amyloid load (Adamczuk et al., 2016 and Fig. 1). In contrast, AD-
dementia patients were hypoactivated at a nearby site in left superior
temporal sulcus, with the degree of hypoactivation correlating nega-
tively with amyloid uptake (Nelissen et al., 2007). In addition to this, a
contralateral site in the right superior temporal sulcus of AD-dementia
patients was hyperactivated. Because hyperactivation correlated posi-
tively with good performance on a behavioral test of anomia (Boston
Naming Task, Kaplan et al., 1983) it was hypothesized to be compen-
satory. Taken together, the two studies suggest that amyloidosis in left
posterior lateral temporal lobes is associated with a transition from
hyper to hypoactivation as cognitive symptoms develop. As hypoacti-
vation has also been detected in MCI patients using the same task
(Vandenbulcke et al., 2007) this transition may occur prior to the onset
of cognitive symptoms.

Hereditary risk of AD in cognitively intact individuals has been
studied using two semantic fMRI tasks. The first contrasted cognitively
healthy APOE ε4 carriers and non-carriers as they categorized words as
concrete or abstract (Lind et al., 2006a; Lind et al., 2006b). APOE ε4
carriers had reduced activation in the left parietal cortex and left/right
anterior cingulate. However, because the analysis was based on sub-
tracting fMRI activation elicited in viewing a fixation cross away from
activation elicited during the categorization task it is unclear to what
extent the resultant activation is associated with decision making and/
or orthographic processing and/or semantics.

The second task used to study hereditary risk is the Famous Name
task (Douville et al., 2005; Woodard et al., 2007; Nielson et al., 2006).
This scans participants as they identify whether or not peoples' names
are famous. In analysis an fMRI contrast map is computed of brain re-
gions that are more activated by famous names than unfamiliar names
and vice versa. AD risk was associated with an abnormally broad spread
of famous name activation by both Woodard et al. (2009) and
Seidenberg et al. (2009). Woodard et al. (2009) detected famous name
activation in the frontal, temporal and parietal lobes of a high-risk MCI
group (Fig. 2). They then demonstrated that this activation tended to be
regionally reduced in asymptomatic APOE ε4 carriers with a family
history of dementia, and disappeared altogether in low-risk controls. In
a similar vein, Seidenberg et al. (2009) revealed that famous name
activation in cognitively intact APOE ε4 carriers with a family history of
AD had a similar cortical distribution to Woodard et al. (2009). They
too then found that regional activation tended to be reduced in APOE ε4
carriers without a family history of AD and was reduced further still in
low risk controls (Fig. 3).

A subsequent longitudinal study (Rao et al., 2015) scanned APOE ε4
carriers with a family history of AD, and controls (lacking either risk
factor) three times over five years. At study onset all individuals were
cognitively intact. However, by 57months 8/24 APOE ε4 carriers and
1/21 controls had been diagnosed with MCI. Rao et al.'s (2015) key
discovery was that the broader cortical spread of famous name acti-
vation observed in APOE ε4 carriers at study onset gradually faded out
over time (Fig. 4). By five years, zero famous name activation was
detected in the APOE ε4 group. Differently for the control group, fa-
mous name activation either remained constant over the five-year
period or increased in the left and right fusiform/lingual gyri. The
transition to hypoactivation was argued to stem from a phase of neural
compensation reverting to burn out (Rao et al., 2015) consistent with
the STAC-r theory (Reuter-Lorenz and Park, 2014).

Collating results across studies, both the Pyramids and Palm Trees
and Famous Name tasks have linked AD-related factors to a develop-
mental change between hyperactivation and hypoactivation. The clin-
ical phase at which the conversion to hypoactivation occurs remains
ambiguous given that Woodard et al.'s (2009) MCI group (Fig. 2) were
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hyperactivated, and Rao et al.'s (2015) 57month group (8/24 of who
had MCI) were not. However, it appears that hypoactivation can occur
prior to the emergence of cognitive deficits, at least in some individuals.
This is statistically supported by two separate studies that aimed to
retrospectively forecast which of Rao et al.'s (2015) baseline Famous
Name study participants would cognitively decline by 18months
(Woodard et al., 2010 and Hantke et al., 2013). In these studies cog-
nitive decline was measured using neuropsychological tests of verbal
learning/memory, as well as a dementia rating scale capturing multiple
cognitive domains (rather than explicit tests of semantic memory).
Woodard et al. (2010) and Hantke et al. (2013) found that both low
cortical and low hippocampal fMRI activation were predictive of sub-
sequent cognitive decline. Also, lending weight to the case for using
semantic task-based fMRI as a biomarker, Famous Name fMRI-based
measures contributed predictive information that was not available
from APOE ε4 allele status, hippocampal atrophy and other demo-
graphic variables (Woodard et al., 2010). They also predicted cognitive
decline more accurately than other fMRI-based measures derived from
an episodic memory task (Hantke et al., 2013).

A second noteworthy observation is the dramatic difference in the
cortical distribution of brain regions that tests of associative-semantic
object knowledge and famous names link to amyloidosis/MCI (Fig. 1)
and hereditary risk/MCI respectively (Figs. 2–4). In interpreting these
differences, it is necessary to bear in mind that hereditary risk-based
and amyloidosis-based contrasts are not equivalent (because APOE ε4
carriers could have been amyloid negative and vice versa) and also the
MCI groups tested in the different studies could have differed in their
pathophysiology profile. Nevertheless, this raises the possibility that
tests of famous names and associative-semantic knowledge might offer
different windows on neuropathology because they tap into different
neural processes/networks. This prompts further consideration of how
AD pathophysiology could affect the cortical organization of the se-
mantic network and why different semantic tasks could be useful in
estimating the state of AD pathophysiology at different disease stages.

5.2. How the progressive spread of AD-pathophysiology could be reflected
by semantic network reconfiguration and charted using different semantic
tasks

Post mortem studies (Braak and Braak, 1991; Braak et al., 2006,
2011) and more recently in vivo PET imaging (Cho et al., 2016;
Sepulcre et al., 2016; Grothe et al., 2017; Iaccarino et al., 2018;) have
charted how amyloidosis and Tau spread throughout the brain as AD
progresses. Amyloid accumulation is initially diffuse, observed in
middle and inferior temporal, middle frontal, orbitofrontal, inferior
frontal, and superior frontal cortices. Subsequently, amyloidosis
spreads throughout the entire neocortex starting with the precuneus.
Conversely tau accumulates in a more stepwise fashion. Tau arises in
entorhinal/pararahippocampal cortex, spreads though the medial
temporal lobe to posterior parietal cortex and in later stages reaches the
anterior cingulate and prefrontal and motor cortices.

The progression of AD-pathophysiology is at least partially mirrored
in fMRI by select changes in the functional connectivity of resting state
subnetworks (Jones et al., 2011). These changes affect different sub-
networks (posterior/ventral/anterior) at different stages of the disease
process (Damoiseaux et al., 2012). In a similar vein it is reasonable to
hypothesize that particular subsystems of the semantic network that are
vulnerable to AD-pathophysiology will also be disrupted once diseased.
Consistent with this, behavioral experiments have detected deficiencies
in the storage and/or retrieval (e.g. Chertkow and Bub, 1990; Hodges
et al., 1992; Giffard et al., 2002; Laisney et al., 2011) of many knowl-
edge domains including knowledge of people (e.g. Greene and Hodges,
1996; Thompson et al., 2002; Ahmed et al., 2008; Joubert et al., 2010;
Clague et al., 2011; Barbeau et al., 2012), objects (e.g. Hart, 1988;
Hodges et al., 1992; Ahmed et al., 2008; Joubert et al., 2010), buildings
(e.g. Ahmed et al., 2008; Sheardova et al., 2014), living/non-livingTa
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things (e.g. Silveri et al., 1991; Grossman et al., 1998) and events (e.g.
Leyhe et al., 2010; Barbeau et al., 2012). The nature and severity of
these deficits varies with disease stage (e.g. Giffard et al., 2002; Joubert
et al., 2010; Corbett et al., 2012) which presumably reflects the spread
of pathophysiology across select neural substrates. It naturally follows
that tests designed specifically to activate vulnerable regions could help
to estimate the current state of pathophysiology.

To illustrate this point, Fig. 5 shows the accumulation of AD-pa-
thophysiology in probable AD (Iaccarino et al., 2018) side by side with
a rendition of the semantic network (Binder and Desai, 2011). For the
particular (group-level) state of AD pathophysiology illustrated, we
cautiously surmise that a task that would usually activate the precuneus
(green) would be a suitable probe for amyloidosis, which is high in the
precuneus. Likewise, that a task activating tau-afflicted posterior ven-
tral temporal cortex somewhere around the “motion” zone (yellow)
would be a more suitable probe for tau. A considerable body of research
exists to inform which tests could be relevant for testing different re-
gions/disease stages. This research has documented differences in the

brain regions activated by different semantic categories/features such
as animals or tools (Martin et al., 1996), shapes or colors (Martin,
2016), body parts (Hauk et al., 2004), actions (Desai et al., 2010),
sounds (Kiefer et al., 2008), and emotional valences (Vigliocco et al.,
2014).

To the authors' knowledge, how different stages of AD-pathophy-
siology affect the neural representation of different semantic categories
has yet to be studied systematically. Nevertheless, proof of principle
that different semantic categories elicit different kinds of altered brain
activity has come from two studies undertaken on patients with prob-
able AD-dementia (identified clinically). In one study participants
judged the pleasantness of different nouns that were either animals or
implements (Grossman et al., 2003a). In the other, participants judged
the pleasantness of motion/cognition verbs (Grossman et al., 2003b).
Both studies detected AD-related differences in activation for each ca-
tegory. The details of these differences were complex and thus beyond
the scope of this review. However, to give an impression Grossman
et al., 2003a found that in AD-dementia patients a cluster of animal

Fig. 1. Pyramids and Palm Trees example stimuli and results from Adamczuk et al. (2016). (Top) “Stimuli and tasks in fMRI experiment. Associative-semantic task
with words (blue) and with pictures (purple). Visuoperceptual task with words (cyan) or pictures (yellow). Resting baseline with fixation point (red). Subjects were
asked to press a left- or right-hand key depending on which of the 2 lower stimuli matched the upper stimulus more closely in meaning (blue, purple) or in size on the
screen (cyan, yellow). A given concept triplet was presented in either the word or the picture format, and this was counterbalanced across subjects. Arrow in the top
of the figure shows a timeline of 1 fMRI run, with each condition indicated in its respective color. The order of conditions was randomized for each run and subject.
Translation: deur= door, hek= fence, raam=window.” (Bottom) “Area in the left posterior MTG of significant correlation between amyloidosis (SUVRcomp) and
fMRI response during associative-semantic minus visuoperceptual condition (Contrast 1) (cluster peak −57, −45, 9, ext= 64 voxels, cluster-level Pcor-
rected= 0.006). The color scale indicates the T-values. MNI coordinates are indicated in the left upper corner and orientation of the brain in the right upper corner.”
Figures reproduced with permission. We note here that whilst the visuoperceptual condition controls for the visual appearance of word/picture stimuli, it is likely to
have placed lower demands on working memory. This is because unlike the associative-semantic condition it did not require the meaning of three words to be stored
in working memory and compared). Consequently, the contrast map (bottom) may partially reflect this.
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activation in left ventral temporal cortex was displaced posteriorally,
whereas for implements remote frontal regions were hyperactivated.
Hypoactivation was also observed across broad expanses of frontal,
temporal and parietal cortex (though neurodegeneration was not
measured).

An additional source of inspiration coming from recent resting state
studies is evidence that the emergence and spread of AD-pathophy-
siology may be tightly related to activity in highly interconnected brain
“hubs”. The “cascading network failure model” (Jones et al., 2016)
likens neurobiological decline to “cascading failures seen in power grids
triggered by local overloads proliferating to downstream nodes even-
tually leading to widespread power outages”. More specifically they
suggest that functional brain failure originates with a drop in the
within-region connectivity of a hub in the posterior cingulate/pre-
cuneus. Other hubs in retrosplenial/inferior parietal cortex and dor-
somedial prefrontal cortex appear to transiently take on the role of the
failing posterior hub, before possibly all failing themselves
(Damoiseaux et al., 2012). The transferal of roles across hubs was
evidenced by increases in between hub connectivity with the failing
posterior region. These increases in turn were found to accompany
amyloid accumulation. Other studies have revealed that increases in
functional connectivity may critically be associated with tau. Amyloid-
positive individuals show increased connectivity when Tau levels are
low but decreased connectivity when Tau is elevated (Schultz et al.,
2017). This could be because densely interconnected hubs accrue more
tau pathology, which appears to progressively weaken their con-
nectivity (Cope et al., 2018).

Hub failure is relevant because supramodal “hubs” that integrate
semantic information across sensory, motor, and emotional processing

systems are a central feature of most contemporary theories of semantic
processing (Binder et al., 2009; Binder and Desai, 2011; Pulvermüller
2013; Lambon Ralph et al., 2017). Such cross-modal integration is ne-
cessary for us to understand, for instance, that someone saying “I've lit
the firework” is likely to prempt a fast moving, noisy, bright and col-
orful outcome that is both spectacular and dangerous. Posterior tem-
poral, anterior temporal, inferior temporal, inferior frontal, inferior
parietal cortex and the precuneus have all been considered in the role of
semantic hubs (although different authors emphasize the importance of
different regions, including the anterior temporal lobes, Patterson et al.,
2007; Lambon Ralph et al., 2017). This hub distribution both overlaps
with “cascading network failure” hubs, and more generally with regions
that are vulnerable to AD-pathophysiology (Fig. 5). This prompts the
hypothesis that cascading network failure may also be visible within the
semantic network, with network hubs transiently taking on the role of
failing regions. It follows that the migration of semantic function across
hubs could be a helpful way to characterize disease progression. Se-
mantic tasks that emphasize “hub-like” integration of information
across multiple modalities/categories could play a key role here.

Whilst “cascading semantic network failure” remains as a hypoth-
esis for the future, evidence suggestive of compensatory network re-
organization comes from Pyramids and Palm Trees-based tests of as-
sociative-semantic object knowledge (see also Fig. 1). Nelissen et al.
(2007) suggested the posterior right temporal sulcus may adapt to
support compromised left hemispheric function in amyloidosis positive
AD-dementia patients. In a reanalysis of the same data, Nelissen et al.
(2011) found that increased functional connectivity between the hy-
peractive right temporal sulcus site and the right anterior temporal pole
was correlated with offline performance scores in the Boston Naming
Test. These changes were hypothesized to reflect functional re-
organization to cope with left temporal amyloid-related damage. An
additional study of probable AD-dementia patients (clinically diag-
nosed) provides evidence of compensatory network recruitment in a
semantic/episodic memory task. Using functional connectivity mea-
sures, Grady et al. (2003) demonstrated that when control participants
categorized words as living/non-living they recruited a left hemisphere
network that included prefrontal and temporal cortices. Differently,
patients recruited bilateral dorsolateral prefrontal cortex, and temporo-
parietal cortex, and the degree of recruitment correlated with improved
task performance.

Results of other studies on clinically diagnosed AD-dementia pa-
tients are broadly consistent with the above two hypotheses (and
summarized in Table 1). This is in the respect that different tasks have
revealed different AD-related differences in different cortical regions.
Also, that these differences have often included both patterns of hypo
and hyper activation, consistent with network reorganization. Tasks
applied have included judging category-exemplar and category-func-
tion congruence (Saykin et al., 1999), digit recognition/addition (Starr
et al., 2005), another implementation of the Pyramids and Palm Trees
Test (McGeown et al., 2009), evaluating statement-property con-
gruence (Olichney et al., 2010), and judging shape/color similarities
between word pairs Peelle et al. (2014).

In summary, this section has raised two (inter-related) hypotheses.
First that tests using different semantic categories to activate different
subsystems of the semantic network can help estimate the state of AD-
pathophysiology. Second that tasks placing demands on semantic hubs
could be particularly revealing of network re-organization, because
hubs appear to be hot spots for tau accumulation.

Future work is necessary to firstly characterize how semantic task-
based fMRI activation patterns are altered by amyloidosis and tau (the
latter has yet to be studied in semantic tasks), and secondly to evaluate
whether preclinical activation differences complement amyloidosis and
tau in forecasting cognitive decline. Based on the successes of the stu-
dies reviewed in this article (Table 1) we believe this work is clinically
warranted. However, we contend that new pattern information-based
analytic methods and experimental paradigms testing natural language

Fig. 2. a. From Woodard et al. (2009). “Regions (shown in blue) demonstrating
significant differences between the Famous and Unfamiliar Name conditions,
conducted separately for each of the three groups. Brain activation projected on
the lateral and medial surfaces of the left and right hemispheres.” Figure re-
produced with permission. The b annotation is newly inserted in the current
article to facilitate comparison with Figs. 3 and 4.
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comprehension may be better suited for moving forward.

6. Limitations of existing analytic metrics and semantic tasks for
early identification of AD

6.1. Current metrics of regional hyper/hypoactivation have a complex
developmental relationship with AD

Current analyses have been successful in identifying how semantic
activation in broad brain regions globally differs between high/low AD
risk/pathophysiology groups. However, because both abnormally high
and low regional activation have been linked to AD, use of this type of
metric as the basis of a biomarker is complicated. Whilst the dis-
crepancy is thought to originate from a systematic transition in disease
development from a neural compensation phase (high activation) to
one of neural exhaustion (Rao et al., 2015), the unfortunate con-
sequence is that at some point high/low risk groups are confusable. As a
specific example the APOE ε4 group at 57months in Rao et al.'s (2015)
study (Fig. 4) are indiscriminable from low risk controls of Woodard

et al. (2009) (Fig. 2). This is also not a problem specific to semantic
tasks because similar hyper to hypo transitions have been observed in
longitudinal tests of episodic memory that required memorization of
unfamiliar name/face pairs (O'Brien et al., 2010), and see also
(Sperling, 2007; Sperling et al., 2003).

6.2. Current tasks are specialized but consequently conduct a limited
analysis of semantic brain function

Whilst it remains unclear whether the Famous Name and Pyramids
and Palm Trees Tests differentially identify different AD risk factors/
pathophysiology (APOEe4 was revealed only by Famous Names, and
amyloidosis was revealed only by the Pyramids and Palm Trees Test but
has not been tested using Famous Names), the studies reviewed in this
article suggest that different tasks offer a complementary picture on
neural (dys)function associated with AD. On the flipside, this implies
that each individual task is limited in its scope to spot dysfunction. For
instance, the Famous Name task can be considered as a neurological
examination of only the small subspace of semantic activation

Fig. 3. From Seidenberg et al. (2009). “Results of voxel-wise analysis demonstrating significant differences between the famous and unfamiliar name conditions,
conducted separately for each group: control (CON), family history (FH), and family history and APOEε4 (FH+ ε4) groups. Yellow= regions showing greater
activation to famous than unfamiliar names; blue= regions showing greater activation to unfamiliar than famous names. Brain activation projected on the lateral
and medial surfaces of the left and right hemispheres.” Figure reproduced with permission.
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associated with famous names (and not animals, objects, actions,
places, events and so on). Specialized tasks may thus overlook symp-
toms that would only show up by stimulating different semantic cate-
gories/types of processing and miss the opportunity to test for deficits

in one category/process relative to others.

Fig. 4. From Rao et al. (2015). “Voxelwise subtraction of the Famous and Non-Famous Name hemodynamic response functions for the Low Risk and APOE ε4 groups
at baseline (0months), 18months, and 57months.” Figure reproduced with permission.

Fig. 5. Left. Difference in Amyloid and Tau accumulation and neurodegeneration in 30 amyloid PET-positive patients with mild probable AD comparative 12 amyloid
PET-negative healthy controls (Iaccarino et al., 2018). Right. The semantic network as identified and interpreted by Binder and Desai (2011).
.
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7. Future needs to counteract limitations

7.1. Pattern-based metrics of semantic information content within brain
regions

It is now established that neural stimulus responses are not only
reflected by global activation across broad brain regions (as measured
by the studies reviewed in this article), but also by finer grained mul-
tivoxel activity patterns within regions (Haxby et al., 2014; Haxby
et al., 2001). These finer patterns are thought to reflect neural popu-
lation codes (Mur et al., 2009). Given that early AD-pathophysiology
arises in brain regions associated with semantic function, we hy-
pothesize that new pattern-based metrics of within region information
content will more directly index how neural information processing is
compromised in afflicted regions. In so doing, they will complement
existing measures of regional hypo/hyper activation. We illustrate how
this could apply here, in Fig. 6. This Figure simulates three hypothetical
ways that regional brain activation could transition to hyper and then
hypoactivation by differently dilating, scaling and modulating the
signal/noise of the same underlying regional activation pattern. A cross
is used to represent a hypothetical neural population code. Although
differences in the clarity of the cross in the three conditions are visually
obvious, they would go undetected if only whole region activation was
measured.

7.2. Natural language comprehension tests for a more comprehensive
examination of brain function

Because experimental tasks that are based on different semantic
categories/processes differentially activate different brain regions that
are differentially vulnerable to AD pathophysiology at different disease
stages we have argued they are likely to have complementary value for
early identification of AD (section 5.2). However scanning participants
as they undertake a battery of specialized tasks would be both time
consuming and expensive. A more expeditious way to both test over a
broad array of different concepts as well as different semantic/linguistic
subprocesses could be through scanning natural language comprehen-
sion (e.g. reading or listening to a narrative). This has traditionally been
challenging because methods to systematically analyze the different
neural systems underpinning natural language comprehension have
been sparse. However, pattern-information-based fMRI methods have
recently provided a foundation for analyzing the semantic and lin-
guistic systems underpinning language comprehension (Huth et al.,
2016; Wehbe et al., 2014). We hypothesize they may also provide a
basis for testing for AD pathophysiology induced disruption to the
brain's language network.

8. Pattern-based metrics of within region semantic information
content

Pattern information analyses test for differences in multivoxel pat-
terns of activity associated with different stimuli which can occur in
absence of regional average activation changes (e.g. Mur et al., 2009).
Pattern-based analyses of healthy adults have revealed considerable
evidence that fine grained information associated with multiple se-
mantic categories is encoded in neural activity in a similar set of brain
regions to those linked to AD risk by the Famous Name and Pyramids
and Palm Trees studies. Perhaps more importantly many of these re-
gions are vulnerable to early AD-pathophysiology. For instance,
Bruffaerts et al. (2013) detected detailed semantic information asso-
ciated with multiple categories of animals in the left perirhinal cortex
(which anatomically neighbors the entorhinal cortex where tau first
arises). More generally semantic information associated with various
categories of living and non-living things has been detected in multiple
subdivisions of the temporal and parietal lobes, as well as some frontal
and occipital regions (Mitchell et al., 2008; Just et al., 2010; Anderson
et al., 2015; Carota et al., 2017; Connolly et al., 2012; Devereux et al.,
2013; Fairhall and Caramazza, 2013; Fernandino et al., 2015; Xu et al.,
2018; Zinszer et al., 2016). Because AD pathophysiology is thought to
damage connectivity between neurons (in brain regions within the se-
mantic network), and multivoxel fMRI activation patterns are thought
to reflect neural population codes (Mur et al., 2009), we hypothesize
that a rise in AD pathophysiology will be reflected by a selective drop in
the semantic information content of fMRI activity in afflicted brain re-
gions.

Pattern-based analyses typically identify semantic content in fMRI
data by testing how closely multivoxel activity patterns correlate with a
semantic model of stimulus word meaning. This is a departure from the
univariate contrast-based analyses discussed in this article. This dif-
ference could be significant if it turns out that multivoxel measures of
information content provide an objective way to index (dys)function in
neural information processing. In particular, if only low, but not high
neural information content is associated with dysfunction this could
help bypass the ambiguity associated with current analyses, where both
high and low activation are associated with AD risk at different stages
of the disease (compensation/burnout).

Building a semantic model that captures word meaning well enough
to interrogate brain activity is of course a tall order. However, for-
tunately semantic modeling has been a topic of extensive research in
computational linguistics and cognitive science. This has led to a se-
lection of practically effective solutions that have been put to thorough
test in fMRI analyses. The main semantic modeling approaches, their
strengths and weaknesses and application to fMRI data are summarized
in Box 1. A useful review is Jones et al. (2015).

To simplify the current discussion, we shall be concerned with just

Fig. 6. How current metrics of whole region activation could overlook changes in information within brain regions.
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one approach, text-based distributional semantic models. These com-
putational models are highly developed, applicable to a diverse selec-
tion of linguistic stimuli and freely downloadable. As such they provide
a good default starting point for most semantic-model-based neuroi-
maging analyses. Text-based models (Fig. 7) operationalize the intui-
tion that words with similar meaning appear in similar textual contexts
(e.g. cats and dogs but not whales occur in pet-related sentences) by

measuring patterns of word co-occurrences in multi-million word
bodies of text (Landauer and Dumais, 1997; Lund and Burgess, 1996;
Mikolov et al., 2013; Pennington et al., 2014; Turney and Pantel, 2010).
Thus, in Fig. 7 the semantic representation for “bee” is a vector of co-
occurrence counts between “bee” and other words such as “flying”,
“insect”, “honey” and so on. Because “wasp” also co-occurs with
“flying” and “insect” it has a similar semantic vector to “bee”, reflecting

Box 1
Types of semantic models, their strengths and weaknesses, and application in fMRI studies.

Feature norm models are based on human report/ratings of how words and their referents are experienced. Participants either generate
target word associates which are reinterpreted by the investigators as semantic features (e.g., Cree and McRae, 2003; Vinson et al., 2003).
Or, features are fixed in advance and participants rate the importance of those features to concepts (e.g. Binder et al., 2016; Lynott and
Connell, 2013). In the latter case a participant might rate on a scale of 0 to 6 the degree to which “thunder” is associated to “vision”,
“audition”, “action” and “emotion”. Then thunder could be represented as a vector of these four ratings. Feature-norm models have helped
explain fMRI data associated with concrete concepts (e.g. Chang et al., 2011; Bruffaerts et al., 2013; Fernandino et al., 2015; Fernandino
et al., 2016a, 2016b) and sentences describing events (Anderson et al., 2016a; Anderson et al., 2018). Whilst feature-norm models are well
suited to testing modal and supramodal aspects of conceptual representation, they may be disadvantaged for more linguistically oriented
abstract concepts.

Taxonomic category models represent concepts in terms of their category membership. Thus, “cat” could be represented as a binary
vector listing membership to categories such as “mammal” and “animal”. Large-scale taxonomic hierarchies have been manually assembled
and are freely available (e.g. WordNet, Fellbaum, 1998). Taxonomic category models have been applied in similarity-based analyses of
concrete concepts (Devereux et al., 2013; Fairhall and Caramazza, 2013) and in the predictive modeling of object/action related content of
films (Huth et al., 2012). However, they are less well suited to capturing modal components of experience or representing abstract concepts
that do not belong to clear categories (e.g. “morality”).

Text-based distributional semantic models (e.g. Fig. 7) are computational models that approximate words' “linguistic meaning” in terms of
the textual contexts they appear in. Thus, pyramids and camels are related because they co-occur together in similar passages of text, and
camels and donkeys are related because they both occur in “riding” contexts. Therefore “camel” may be semantically represented as a
vector listing the frequencies with which camel co-occurred with each of a set of other words (where “pyramid” and “riding” would score
highly). Typically, text-based models are built from multi-million word text corpora. A number of different approaches had been developed
to do this, and in practice these often represent word co-occurrences indirectly rather than through explicit counts (Landauer and Dumais,
1997; Lund and Burgess, 1996; Blei et al., 2003; Jones and Mewhort, 2007; Turney and Pantel, 2010; Mikolov et al., 2013; Pennington
et al., 2014). Text-based semantic models have been put to widespread use in explaining fMRI data associated with concrete concepts (e.g.
Mitchell et al., 2008, Pereira et al., 2013, Carlson et al., 2014; Anderson et al., 2013; Anderson et al., 2015; Anderson et al., 2016b),
concrete nouns/verbs (Carota et al., 2017); abstract concepts (Anderson et al., 2017), sentences (Pereira et al., 2018) and narratives
(Wehbe et al., 2014; Huth et al., 2016; de Heer et al., 2017). However, they are limited in their ability to capture modal components of
experience that cannot be learned from text.

Image-based semantic models represent words' visual identity (what dogs looks like) in terms of image-based statistics computed across
large databases of manually captioned images (Bruni et al., 2014; Sivic and Zisserman, 2003; Kiela and Bottou, 2014). At a basic level this
can be understood by considering an image to be formed from an arrangement of shape/color fragments (aka “visual words”) in much the
same way that textual words are arranged to form documents. This enables textual words in image-captions to be represented as a vector
listing their co-occurrences with the different visual fragments forming corresponding images. Thus, buildings become associated with hard
edges, and stone textures, whereas mammals become associated with round edges and fur. Image-based models have been applied to
identify fMRI activation associated with the visual appearance of nouns' referents (Anderson et al., 2013; Anderson et al., 2015; Anderson
et al., 2017). Image-based approaches are of course only relevant for modeling imageable concepts.

Connectionist models of semantic knowledge and concept acquisition are inspired by biological neural networks. Models typically
comprise multiple layers of nodes (analogous to neurons) that are interconnected by weights (analogous to synapses). Traditionally models
are “trained” (e.g. Rumelhart et al., 1986) to map between words presented at an input layer and their semantic properties presented at an
output layer (e.g. Rogers et al., 2004; Rogers and McClelland, 2004). Semantic properties can be determined by the experimenter or
behavioral norms. Training is accomplished with an optimization procedure that adapts connection weights. Thus, the training process
models concept acquisition, and the trained weights model knowledge representation. Recurrent connections can be introduced to model
system dynamics. Disruption to neurons and connections has been used to model the consequences of neurological disorders (Rogers et al.,
2004; Chen et al., 2017). Traditional connectionist models have had limited application to conceptual brain activity (though see Devereux
and Clarke, 2018, and also Chen et al., 2017, who applied connectionist models to interpret functional connectivity data in neurological
disorders). However, connectionist methods now form the basis of many state-of-the-art text (Mikolov et al., 2013) and image-based models
that have been applied to fMRI (including deep learning image models, Kiela and Bottou, 2014; Anderson et al., 2017; Devereux et al.,
2018).

Multimodal models seek to capitalize on the complementary strengths of different modalities of information. The benefits of combining
textual and feature-norm data were initially observed in behavioral experiments by Andrews et al. (2009). More recently image and text-
based models been fused to help explain conceptual fMRI data associated with nouns (Anderson et al., 2013; Anderson et al., 2015;
Anderson et al., 2017). Text and feature-norm have been combined to model fMRI elicited in sentence reading (Anderson et al. under
review). Visual data and behavioral property norms have been combined in a connectionist approach that models that transition from
visual to semantic processing in visual object naming (Devereux and Clarke, 2018).
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their similarity in meaning. “Bee” and “bear” also share a relationship
in their co-occurrence with “honey”. Here the semantic features of the
text-based model correspond to words such as “flying” and “insect”
against which co-occurrences are measured. A co-occurrence model
may have many thousands of semantic features, though these would
typically be reduced using a data reduction approach (such as Singular
Value Decomposition).

Text-based models have enjoyed widespread success in explaining
healthy adults' fMRI data associated with nouns (e.g. Anderson et al.,
2016a, 2016b; Carlson et al., 2014; Mitchell et al., 2008; Pereira et al.,
2013), verbs (Carota et al., 2017); abstract nouns (Anderson et al.,
2017), sentences (Pereira et al., 2018) and narratives (de Heer et al.,
2017; Huth et al., 2016; Wehbe et al., 2014). However, they are not
without weaknesses, and may not be ideal for targeting questions of
modal and supramodal conceptual representation (see Box 1 for alter-
native approaches such as feature-norm models).

To index semantic content in fMRI activity using a semantic model
requires relating the semantic model to multivoxel activation patterns.
This is typically achieved using either representational similarity ana-
lysis (RSA, e.g. Kriegeskorte et al., 2008), or multiple regression (e.g.
Mitchell et al., 2008). Whilst RSA and multiple regression differ
methodologically in how they correlate models with brain activity,
from the current standpoint we consider them as different means to a
similar end. Specifically, this is to index the information content in
brain activity associated with the model (where high information
content is revealed by a high model vs brain correlation). In the context
of fMRI-based studies of linguistic meaning, RSA has been applied to
analyze scans of isolated words, whereas multiple regression has been
applied to analyze not only isolated words but also continuous streams
of written/spoken language. In accordance with this, we briefly in-
troduce RSA below in the context of analyzing isolated words. In the
next section when we consider the potential advantages of testing
language comprehension, we outline the regression-based approach.
Similarities and differences between RSA and multiple regression are
considered in detail elsewhere, e.g. Diedrichsen and Kriegeskorte
(2017).

RSA (Fig. 8) involves inter-correlating fMRI activity patterns for all
stimulus word pairs, and likewise inter-correlating semantic vectors for
all word pairs. This yields two vectors of correlation coefficients, one
for fMRI the other for the model. The match between model and brain is
computed by correlating these two vectors. This yields a single corre-
lation coefficient that serves as an approximate measure of the semantic
information content in the brain region. Thus, if a brain region re-
presents animal identity, neural activity patterns associated with dif-
ferent types of fish, birds and insects would be expected to cluster ac-
cording to these categories and correlate with a semantic model that

captures this taxonomic structure (e.g. see Bruffaerts et al., 2013). We
propose as a working hypothesis that as AD pathophysiology accrues,
meaningful clustering of neural activity patterns will disappear. This
will be indicated by relatively weak model to brain correlations in af-
flicted brain regions (e.g. in Fig. 7, “bee” and “wasp” cluster tightly for
the model only, but not fMRI).

9. Natural language comprehension tests for a more
comprehensive examination of brain function

Pattern information analysis was previously discussed in the context
of isolated word meaning, which is probably best considered as testing
semantic memory. However, because word-level studies tend to be
based upon relatively slow and repeated stimulation with single words
(e.g. one word every 5 to 10 s resulting in fMRI data for 60 words or so,
Mitchell et al., 2008) this not only constitutes a limited examination of
semantic memory, but also does not address how semantic memory is
manipulated relying on more than just memory lookup. Tasks requiring
cross-modal knowledge manipulation and integration of multiple con-
cepts could be important for spotting dysfunction (Corbett et al., 2012;
Lambon Ralph et al., 2017), because they place demands on inter-
connected brain regions that are susceptible to AD-pathophysiology
(Cope et al., 2018).

To understand natural language the brain must rapidly access se-
mantic memories associated with a diverse array of lexical concepts
(people, objects, events, places, and so on) and integrate them together
to form composite meanings based on syntactic constraints and context.
This engages an array of interacting, but at least partially separable
neural systems supporting orthographic/phonetic, lexical semantic,
syntactic, pragmatic and discourse level processing (e.g. Fedorenko
et al., 2012; Fedorenko and Thompson-Schill, 2014; Lopopolo et al.,
2017; Wehbe et al., 2014). We therefore hypothesize that tests of nat-
ural language comprehension (e.g. reading/listening to a story) stand to
provide a more comprehensive examination of the brain's language
network for pathophysiology induced re-organization or damage than
existing specialized tests. Additionally, they are patient friendly and
comprehension is simple to behaviorally monitor using questions of
story content.

The complexities of natural language comprehension make fMRI
data particularly challenging to analyze. However, model-based pattern
information fMRI analyses have recently begun to introduce ways to
interrogate neural processes underpinning sentence and narrative
comprehension (Anderson et al., 2016a, 2016b; Anderson et al., 2018;
de Heer et al., 2017; Huth et al., 2016; Lopopolo et al., 2017; Pereira
et al., 2018; Wang et al., 2017; Wehbe et al., 2014). These have either
concentrated on just modeling semantic representation (Anderson
et al., 2018; Anderson et al., 2016a, 2016b; Huth et al., 2016; Pereira
et al., 2018) using lexical semantic models similar to those of Fig. 7).
Alternatively, they have modeled multiple processes operating in par-
allel (de Heer et al., 2017; Lopopolo et al., 2017; Wehbe et al., 2014).
For instance, visual word-forms have been modeled in terms of pixel-
wise measures of words appearances (Devereux et al., 2013) and/or
words' lengths (Wehbe et al., 2014). Speech/phonetics has been mod-
eled in terms of articulatory features and/or spectral characteristics of
the audio waveform (e.g. de Heer et al., 2017). Parts of speech (noun,
verb, adjective), and grammatical relations between words (e.g. the
subject or object of a verb) have been automatically estimated from
stimulus text (e.g. Nivre et al., 2007) and applied in fMRI analyses (e.g.
Lopopolo et al., 2017; Wehbe et al., 2014).

Language comprehension fMRI data has typically been related to
models using multiple regression. Language models are first time-
aligned to fMRI data, and then multiple regression is applied to fit a
predictive mapping between the now synchronous model and fMRI
data. Multiple regression can either be implemented forwards, to fit a
many-to-one mapping between many model features and a single
voxel's activity (a separate regression is trained for each voxel, see

Fig. 7. A simple computational text-based semantic model of word meaning.
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Fig. 9, left). Or backwards, where a many-to-one mapping is fit between
many voxels and a single semantic model feature. Here a separate re-
gression is trained for each feature (see Fig. 9, right). The linguistic
content of fMRI data is typically evaluated through cross-validation,
whereby the regression mapping between model and fMRI is fit on a
large chunk of the dataset (e.g. 90% of the narrative) whilst the re-
maining data is held out for testing. For a forward mapping, held-out
model data is mapped to predict held-out fMRI data and the correlation
between predicted and actual fMRI computed to give a metric of pre-
diction accuracy (Fig. 9, left). For a backward mapping, held out fMRI
data is mapped to predict the language model and the correlation taken
between predicted and actual model data (Fig. 9, right). These ap-
proaches have been used to map out how the semantic and linguistic
processing profile varies across the cortex (Wehbe et al., 2014). This
can be quantified in terms of how accurately different model features
can be predicted from regional brain activity (Fig. 9, right).

As working hypotheses, we posit that early stage AD pathophysiology
(in particular amyloidosis and tau) selectively damages linguistic/

semantic information processing in afflicted brain regions, and that this
will be reflected by relatively weaker model-brain prediction accuracies
in those regions. We also hypothesize that model-based approaches may
provide a route to testing whether the brain's language processing
network spatially re-organizes to compensate for encroaching AD-pa-
thophysiology. In either case, quantifying whether regional processing
weaknesses in the brain's language network are spatially related to the
spread of AD-pathophysiology could provide grounds for new AD-spe-
cific biomarkers that help forecast when AD-pathophysiology will result
in dementia.

10. Concluding remarks

This article has collated evidence that semantic tasks induce neural
response patterns that are relevant to the early identification of AD and
complement other risk measures. We have argued that current ap-
proaches could be extended analytically through estimating the in-
formation content contained in multivoxel activity patterns rather than

Fig. 8. Representational similarity analysis (RSA), indexing the semantic information content in a brain region using a semantic model (e.g. Fig. 7).

Fig. 9. Predicting fMRI activation elicited whilst listening to natural speech using acoustic, grammatical and semantic features (left). Predicting acoustic, gram-
matical and semantic features from fMRI activation (right).

A.J. Anderson and F. Lin NeuroImage: Clinical 22 (2019) 101788

13



just measuring regional activation. As such they could provide a new
means to objectively evaluate regional brain function. We have also
argued that language comprehension tasks could support more com-
prehensive neurological examinations for semantic dysfunction than
the more specialized tests on specific categories in current usage. A
caveat is that the analytic approaches we have advocated, which are all
based on matching brain activity to a predictive model, are funda-
mentally limited by the quality of the model. Nevertheless, we believe
that current techniques are sufficiently advanced to make a starting
point and will only improve. We contend that pattern-based indices
quantifying how neural information processing is regionally compro-
mised will provide a foundation for new sensitive and specific AD-
biomarkers.
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