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The National Strategy for Pandemic Influenza outlines a plan for community response to

a potential pandemic. In this outline, state and local communities are charged with

enhancing their preparedness. In order to help public health officials better understand

these charges, we have developed a visual analytics toolkit (PanViz) for analyzing the

effect of decision measures implemented during a simulated pandemic influenza

scenario. Spread vectors based on the point of origin and distance traveled over time

are calculated and the factors of age distribution and population density are taken into

effect. Healthcare officials are able to explore the effects of the pandemic on the

population through a geographical spatiotemporal view, moving forward and backward

through time and inserting decision points at various days to determine the impact.

Linked statistical displays are also shown, providing county level summaries of data in

terms of the number of sick, hospitalized and dead as a result of the outbreak. Currently,

this tool has been deployed in Indiana State Department of Health planning and

preparedness exercises, and as an educational tool for demonstrating the impact of

social distancing strategies during the recent H1N1 (swine flu) outbreak.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Federal, state, and local community public health officials
must prepare and exercise complex plans to deal with a
variety of potential mass casualty events [13,16,22]. In
recent years, one of the most notable potential mass casualty
events that require appropriate planning is pandemic
influenza. However, officials responsible for developing
such plans must often rely on information and trends
provided via very complex modeling (requiring supercom-
puters so that only a few cases can be considered due to
resource constraints) or, at the opposite extreme, modeling
that has incorporated very drastic simplifying assumptions
All rights reserved.
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so as to be computationally practical. Moreover, such plans
are developed with only a few specific scenarios or pre-
event concepts in mind and often ignore the fact that the
solutions dealing with a pandemic are very dependent on its
underlying traits and actual characteristics, which cannot be
known with any certainty a priori. Thus, there is a critical
need to better equip public health officials responsible for
pandemic influenza planning, or planning for other mass
casualty events, with sophisticated yet easy to use tools that
capture the complex elements, especially individual social
behaviors, of traumatic events and that can also adjust as
additional information is obtained and conditions evolve
over time.

While desktop pandemic influenza modeling tools do
exist (e.g., FluAid [1], FluSurge [12]), these tools are often
restrictive in their scope and provide little to no spatio-
temporal support to allow users to observe conditions
evolving over time and space. To address this gap, visual
analytics has emerged as a relatively new field formed at
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the intersection of analytical reasoning and interactive
visual interfaces [38]. It is primarily concerned with
presenting large amounts of information in a comprehen-
sive and interactive manner. By doing so, the end user is
able to quickly assess important data and, if required,
investigate points of interest in detail. As such, we have
developed a visual analytics toolkit (PanViz – Fig. 1) to aid
in the modeling, analysis and exploration of pandemic
influenza. Our interface utilizes linked views for display-
ing statistical information about populations under study,
filtering controls for age and demographic data, and
detailed bed capacity information at the county level.
We provide end users with the means to interactively
explore the model, make parameter changes, and engage
in a variety of user created scenarios. As such, PanViz is
able to provide healthcare officials with training and
education scenarios for a variety of pandemic situations.
Model parameters such as spread origin, mortality rate,
etc. are all modifiable through a graphical user interface
designed to support and enhance training exercises. Our
toolkit was most recently deployed as a portion of the
Indiana State Department of Health pandemic readiness
training exercises, and was utilized as an educational tool
for illustrating the potential impact of social distancing
measures during the recent H1N1 outbreak [39].

Furthermore, the U.S. National Strategy for Pandemic
Influenza [22] outlines three pillars of strategic intent: (1)
preparedness and communication; (2) surveillance and
detection; and (3) response and containment. PanViz is an
effective method of communicating information between
healthcare officials, first responders and the media, as
well as providing insight into the impact of various
responses and containment. The rationale for such a
system is that mass casualty event response planning
can be done with higher accuracy and more realism so
that if an event happens, mitigation strategies can be
invoked to minimize casualties as the event evolves. The
Fig. 1. PanViz – a visual analytics environment for the modeling and explora

Chicago, IL has quickly spread as a result of heavy air travel across major US a
potential impact of such a system is a reduction in the
number of casualties associated with a mass casualty
event and the overall health of U.S. citizens. This can be
achieved via a mechanism to delineate decisions on
mitigative measures, especially as additional information
is gathered during the course of a pandemic or other mass
casualty event. Thus, public health officials can use our
tool as an operational research to both plan and rapidly
assess health impacts, required community level
resources, and the effect of potential decision strategies
associated with a pandemic. The main thrust of our work
is not creating an advanced model of influenza; instead,
we provide a visual analytics environment in which users
may effectively explore decision points and potential
scenarios.

2. Related work

Previous work in pandemic influenza modeling has
focused on understanding the spread of the disease at the
micro-level (person-to-person contact) in order to help
officials evaluate the effectiveness that their mitigation
policies might have. This includes analyzing how viruses
change and adapt [8], modeling the effects of immuniza-
tion on influenza transmission [14], forecasting the eco-
nomic impact of an influenza pandemic [31], and
evaluating the general preparedness of the emergency
response community [18,19]. Other research focuses on
containment and control of possible outbreaks [27–29].
Work by Guo focused down to the level of individual daily
movements, studying pandemic spread as a spatial inter-
action problem [20]. Inglesby et al. [23] present an over-
view of a variety of mitigation measures and discuss their
potential effectiveness. Nuno et al. [35] modeled the
effects of antivirals and community transmission controls
on the spread of influenza, and Simchi-Levi et al. [11]
modeled the transportation of antivirals as a supply chain
tion of pandemic influenza. In this image, an outbreak which began in

irports.
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problem demonstrating how current production risks will
lead to insufficient vaccine supplies. Larson et al. [25]
studied how a population’s heterogeneity affects the
disease progression and analyzed how social distancing
could effectively reduce disease spread. Nigmatulina et al.
[34] utilized a series of spreadsheet models to analyze the
effects of infection spread between several linked hetero-
geneous communities in order to evaluate the use of non-
pharmaceutical intervention strategies. Atkinson and
Wein modeled modes of influenza transmission routes
[3] and studied the efficacy of other forms of control such
as face masks and ventilators [4].

In all of the above modeling work, it is clear that there
are a variety of strategies that can be implemented to
reduce the impact of a pandemic, if the strategies are
implemented early during the decision making process.
However, these models are typically self-contained, una-
vailable to health care officials, or unlinked to any inter-
active visual interfaces. What is needed now are tools to
help health officials prepare for an outbreak and dissemi-
nate information to the public in the event of a possible
pandemic situation. Various modeling tools do exist
which are meant to aid in pandemic preparation. FluAid
is provided by the United States Department of Health
and Human Services in order to assist state and local level
planners in preparing for the next influenza pandemic [1].
This software provides a range of estimates of impact in
terms of deaths, hospitalizations, and outpatients visits.
FluSurge is a spreadsheet-based model which provides
hospital administrators and public health officials esti-
mates of the surge in demand for hospital-based services
during the next influenza pandemic [12]. While these
simulation tools provide excellent statistical support to
planners, they are fairly restrictive in their scope, and do
not provide any spatiotemporal support. Work done by
Germann et al. [19] begins addressing this shortcoming.
They developed a simulation which allows various inter-
vention strategies to be set and simulations to be run.
Results are displayed via a heat map displaying illness
attack rates over the entire nation, and charts of incidence
rates. However, this is a complex, large scale simulation
which requires a supercomputing platform in order to
run. User interaction is largely absent, and investigating
the effect of decision changes requires a re-running of the
entire simulation. In response, our application provides a
desktop pandemic modeling tool with interactive, spatio-
temporal support. This allows users to observe conditions
evolving over time and space. Decision changes can be
made interactively, and results modeled immediately as
users simulate each time step.

In terms of creating complex mathematical models
based on population distributions, highway travel, and
spread vectors, much work is being done by the IBM
Eclipse STEM project [17]. This work focuses on helping
scientist and public health officials create and use models
of emerging infectious diseases. It uses built-in Geogra-
phical Information System (GIS) data for almost every
country in the world, including travel routes for modeling
disease spread. The difficulty of this type of approach is
that these detailed models often require a great deal of
hand-crafting and fine tuning. This work currently
provides an interface to Google Earth in which users can
visualize their data. With respect to our current work, our
tool provides a system in which a pandemic simulation
has been developed and is directly linked to an interactive
visualization tool, allowing for easier use by general
public health officials at all level of government.

3. PanViz

Our pandemic influenza modeling and visualization
system (PanViz) adopts the common method of display-
ing geo-referenced data on a map and allowing users to
temporally scroll through their data. However, such
exploration only provides slices of spatial data at a given
time or an aggregate thereof. In order to understand these
slices, users need to know the trends of previous data
(and, if possible, model future data trends). Fig. 1 shows
our visual analytics system. Population, demographic
[40], and hospital bed [2] data are provided as input to
the back-end modeling functions. The modeling functions
output information on the number of sick, dead and
hospitalized individuals by county and PanViz provides
color coded geographical representations of the data.
Users may interact with the system through a variety of
viewing and modeling modalities. As shown in Fig. 1, the
main viewing area is the spatiotemporal view, and the
three windows on the right provide a time series view of
the population statistics (number of people sick, hospita-
lized or dead due to the modeled pandemic) of any county
selected (county selections are indicated by a darker
border) in the main viewing area. These linked views
allow for a quick comparison of trends across various
spatial regions. Both the geospatial and time series view-
ing windows are linked to the time control at the upper
left portion of the screen. This allows users to view the
spatial changes in the data as they scroll across time.

3.1. Epidemic model

The PanViz visualization framework uses a mathema-
tical epidemic model to calculate population dynamics
and infection rate data. Specifically, disease dynamics are
calculated per county (z¼92 counties in Indiana) by a
system of non-linear difference equations derived from
traditional compartment epidemic models with homoge-
neous population mixing. Model parameters are defined
and equations for disease dynamics are presented in
Tables 1 and 2. Individuals in the population are assigned
to a compartment by disease state (susceptible (S), infec-
tious/sick (I), recovered(R)). The population is demogra-
phically stratified by age into three groups: infant to 18,
18–64 and over 64 years old. Population numbers for each
age group are taken from the 2000 U.S. census.

We also track infection severity by tabulating those
hospitalized (H) and mortality as deceased (D) because of
infection by pandemic influenza. The mortality rate (km)
is the percentage infected that will ultimately die due to
complications from pandemic influenza with average
time to death of dm. Conversely, the recovery rate
(1�km) is the percentage of those infected with pandemic
influenza that will ultimately recover, with average time



Table 1
Pandemic influenza model.

Model parameters

Zy Population of county y¼1 to z counties. Indiana: z¼92

t time index from the first day of a disease outbreak (integer value)

km mortality rate: percentage of those infected with pandemic influenza that will ultimately die

1�km recovery rate: percentage of those infected with pandemic influenza that will ultimately recover

kh hospitalization rate: percentage of those infected with pandemic influenza that will ultimately require hospitalization

dr time, in days, to recover once infectious, at rate 1�km (integer value)

dm time, in days, until death once infectious, at rate km (integer value)

dh time, in days, of hospitalization duration due to disease, at rate kh (integer value)

ry,c disease spread rate modifier in county y, by county density c of l

c¼1
Rural: densityo100

people

mi2

c¼2
Small towns: 100rdensityr250

people

mi2

c¼3
Urban: density4250

people

mi2

oj Proportion of county population in the age group, j, of m age groups (m¼3 in initial model setup)

fj disease prevalence modifier for age group j

j¼1 0oageo18

j¼2 18rager64

j¼3 64oage

ck Preventative measure reduction (%) in baseline prevalence due to decision measure, k, of n measures

kmod Decision measure, k, prevalence modifier (in %)

dkstart
Time between the beginning of the outbreak until decision measure, k, is initiated, measured in days

dkfull
Time until decision measure, k, reaches full efficacy, measured in days

k¼1 Decision measure: school closures

k¼2 Decision measure: media alerts

k¼3 Decision measure: strategic national stockpile deployment

y0 Baseline prevalence (y0) derived from polynomial fitting of epidemic data reported in [7]

yc Prevalence (yc) after decision measures are implemented

iy,j,t incidence of infectious in county y, age group j, at time t

dy,j,t incidence of deceased in county y, age group j, at time t

ry,j,t incidence of recovered in county y, age group j, at time t

hy,j,t incidence of hospitalized y, age group j, at time t

Iy,j,t Number of individuals who were infectious or are currently infectious in county y, age group j, at time t

Dy,j,t Number of deceased individuals in county y, age group j, at time t

Hy,j,t Number of individuals who have been hospitalized or are currently hospitalized in county y, age group j, at time t

Iy,t Number of individuals who were infectious or are currently infectious in county y, at time t

Dy,t Number of deceased individuals in county y, at time t

Hy,t Number of individuals who have been hospitalized or are currently hospitalized in county y, at time t

Influenza dynamics

delay distance ðmilesÞ between outbreak origin & county centroid

outbreak spread speed measured in miles per hour
p �ðt�outbreak peak day�delayÞ=epidemic curve spread [7]

y0 4� peak amplitude�
1

1þ10p2

� 10p
[7]

ck kmody0min 1,
tþdkstart

dkfull

� �

yc y0�
P

k2nck

Table 2
Population dynamics.

iy,j,t Zyry,cojfjyc
dy,j,t iy,j,ðt�dm Þ

km

ry,j,t iy,j,ðt�dr Þ
ð1�kmÞ

hy,j,t iy,j,tkh

Iy,j,t
Pt

v ¼ 0 iy,j,v�ðry,j,vþdy,j,vÞ

Dy,j,t
Pt

v ¼ 0 dy,j,v

Hy,j,t
Pt

v ¼ ðt�dh Þ
hy,j,v

Iy,t
P

j2m

Pt
v ¼ 0 sy,j,v

Dy,t
P

j2m

Pt
v ¼ 0 dy,j,v

Hy,t
P

j2m

Pt
v ¼ 0 hy,j,v
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to recover of dr . Individuals are hospitalized at rate kh for
an average of dh days. In the model, the user is asked to
specify typical hospital capacity which is set to a default
value of 70% (research indicates that typical hospital
capacities may be as large as 80–90%). Hospital capacity
is the percentage of total beds in use out of the total beds
available.

We use the following terminology and definitions
throughout our models. The functional form used to
assign an individual’s probability of being infected with
pandemic influenza is listed in Table 1. This function is
parameterized with user entered approximations for the
center of the epidemic curve (default 70), the measure of
the spread of the epidemic curve (default 11) and the
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peak amplitude of the epidemic curve (default 2.0%), see
[30] for details. The form of this curve is based on
epidemic curves experienced during the 1918 influenza
pandemic and presented by (though not necessarily
endorsed by) M. Cetron (DGMQ, CDC) which originated
with S. Barrett and MIDAS.

The baseline prevalence (y0) of an individual being
infected with pandemic influenza, no decision measures
yet implemented, can be approximated from the gross
attack rate (GAR). The percent gross attack rate (GAR) is the
percentage of the entire U.S. population that will have a
clinical case of influenza. GAR is closely related to the mean
number of secondary cases a typical single infected case
will cause in a population with no immunity to the disease
in the absence of interventions to control the infection
[37], called the basic reproduction number (R0). In the
initial setup and default values for the model, we did
assume a GAR of � 30% and R0 � 2:0 as indicated. This
leads us to an analytic expression for a prevalence curve
(or the baseline probability mentioned above) that is used
to drive the model and compute the daily number of new
infected individuals as provided in Table 1. The specific
parameter values for this expression are defined by
Brigantic et al. [7]. A rough way to calculate R0 for a simple
single population is to take the product of the attack rate
and the duration of infection (in this case the sum of the
incubation and shedding periods). The incubation period is
the time elapsed between exposure to a pathogenic organ-
ism and when symptoms and signs are first apparent [37]
and the shedding period is the time that infected person
can expel virus particles from the body, important routes
include respiratory tract. These parameter values are based
on a literature review that was further vetted by subject
matter experts to arrive at appropriate values representa-
tive of pandemic influenza. These values are not necessa-
rily specific to only air travel/airports, but are completely
appropriate for cities or small towns. Moreover, these
parameter values can be modified by the user of the PanViz
tool, either to mimic alternate assumptions for pandemic
influenza as desired and/or to model other potential
infectious disease (e.g., smallpox) as well.

The user specifies coordinates and time of the first
clinical pandemic influenza case in the state. These
coordinates might correspond to a major city center or
an airport, such as Indianapolis International Airport
(IND). The time (day) at which pandemic influenza enters
in a county (delay) is determined by the distance between
the index case and target county centroid, and the
approximate outbreak spread speed. Population density
effects contact rates and thus disease spread rate. Coun-
ties are labeled as one of three categories: rural (less than
100 people per square mile), small (100–250 people per
square mile), and urban (over 250 people per square
mile). The disease spread rate modifier for population
density (c of three categories in county y) is ry,c . More-
over, the model allows for variability in prevalence in the
age groups, to account for population specific suscept-
ibility or lack of immunity. The disease prevalence modi-
fier due to age stratification (age group j) is given by the
parameter fj. A future version of the tool will include
additional options to establish associated impact
parameters (e.g., hospitalization rates) by demographic
group as found in the literature, such as provided by
Meltzer et al. [31].

In the model, the user can evaluate diverse what-if
scenarios for a 60-day period by varying decision measure
k’s efficacy (kmod), where the decision measures are school
closures, media alerts, and strategic national stockpile
deployment. Specifically, the modification to pandemic influ-
enza prevalence due to a decision measure (ck) is dependent
on the baseline prevalence (y0), decision measure efficacy
(kmod), time the measure is implemented (dkstart

) and the time
at which the decision measure is fully effective (dkfull

). The
resulting pandemic influenza prevalence (yc) is the baseline
prevalence (y0) minus the sum of all prevalence modifica-
tions due to decision measures (�

P
k2nck).

Disease dynamics are evaluated by combining the user
supplied values for county demographics, population den-
sity, mortality and recovery rate, hospitalization rate, base-
line and modified pandemic influenza prevalence. The
number of infectious/sick in county y, age group j and at
time t (iy,j,t) is the product of the total county population
(Zy), county density modifier (ry,c), proportion of popula-
tion in target age group (oj), age group disease modifier
(fj) and the decision measure modified pandemic influ-
enza prevalence (yc). The number of deaths due to pan-
demic influenza in county y, age group j, at time t (dy,j,t) is
the product of the mortality rate (km) and the number of
sick at time t �dm. The number of individuals recovered
from pandemic influenza in county y, age group y, at time t

(ry,j,t) is the product of the recovery rate (1�km) and the
number of sick at time t�dr . The number of hospitaliza-
tions due to pandemic influenza in county y, age group j, at
time t (hy,j,t) is the product of the hospitalization rate (kh)
and the number of sick at time t. The total number of
individuals who have become sick due to pandemic influ-
enza in county y, age group j, and at time t (Iy,j,t) is the
sum of the sick minus the recovered and deceased
each day, from the start of the pandemic to time t

(
Pt

v ¼ 0 iy,j,v�ðry,j,vþdy,j,vÞ). The total sick population in
county y at time t (Iy,t) is the sum of the sick per age
group in the county (

P
j2m

Pt
v ¼ 0 iy,j,v). The total number of

deceased, recovered, and hospitalized are calculated simi-
larly, the exact equations are listed in Table 1.

Default parameters to our model are based on infor-
mation from the U.S. National Strategic Plan [22]. In this
plan, states are charged with the task of preparing for a
pandemic influenza wave under the prediction that up to
35% of the population could be infected, 50% of the
infected population will seek medical care, 20% of those
seeking care will require hospitalization, and up to 2% of
the infected population will die. These numbers are based
on rates from the 1918 influenza pandemic [5,14]. Unless
otherwise specified, all images generated in this docu-
ment use the default parameters found in Table 3.

3.2. Pandemic influenza visualization

The PanViz toolkit makes use of a person-to-person
contact model spread with a constant rate of diffusion in
order to simulate a spatiotemporal outbreak. The model
employed by PanViz was designed to determine the
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number of influenza outbreak infections, hospitalizations,
and deaths on a daily basis. As input, it requires the
pandemic influenza characteristics, county data such as
population, demographics [40], and hospital beds [2], and
potential decision measures like closing schools. Spread
vectors based on the point of origin and distance traveled
per day are calculated, and effects on different age groups
and population densities are taken into account.

Fig. 2 (Left) illustrates the infection probability model
utilized by PanViz. In this case, users may vary the
magnitude of the pandemic through a simple graphical
user interface, Fig. 2 (Right). Users can directly control the
Table 3
Default parameter settings.

km ¼ 0:02 kh ¼ 0:30 dr ¼ 10 dm ¼ 6 dh ¼ 6

ry,1 ¼ 0:8 f1 ¼ 1:1 c1 ¼ 0:1 c2 ¼ 0:15 c3 ¼ 0:25

ry,2 ¼ 1:0 f2 ¼ 1:0 d1start
¼ 2 d2start

¼ 4 d3start
¼ 6

ry,3 ¼ 1:2 f3 ¼ 0:8 d1full
¼ 2 d2full

¼ 5 d3full
¼ 7

Outbreak origin¼ ð41:879536,�87:624333Þ

Outbreak speed¼25.00

Fig. 2. This figure (Left) illustrates the probability of infection for a variety o

population density (which is controllable in the user interface) has on the tim

between the two curves and the difference in magnitude. The smaller magnitud

for modifying the infection curve magnitude and duration parameters.

Fig. 3. This figure (Left) showsDay 20 of a spread originating in Chicago, IL and

shows the user interface for modifying the spread center and rate.
mortality and infection rates, allowing for the creation of
multiple scenarios and the ability to adapt this model to
various ranges of pandemics. As the pandemic spreads over
time, the peak wave hits various counties at different days
as shown in Fig. 2 (Middle). In this case, the left curve is for
a higher population density county that is also closer to the
origin county than the right curve. Under the person-to-
person contact model, the pandemic spreads diffusely from
a single point source location at a constant rate. Fig. 3
shows the effects of modifying the spread origin. Previous
work in disease modeling has looked at other means of
spread vectors such as generation interval [24] in which a
transmission delay is introduced between the host and
those agents the host infects, and at the transmission of
severe acute respiratory syndrome in household contacts
[36]. In order to more realistically demonstrate the speed
with which influenza can travel, we have also included
travel between the 15 largest airports as part of the model.
For a given location, the amount of time required for it to
be affected is now determined by the minimum of the
distance either from that point to the pandemic origin, or
from that point to the nearest airport plus the distance
f attack scenarios and (Middle) the impact that the spread factor and

e of the peak infection based on distance from the source. Note the lag

e curve is due to a more rural population. (Right) shows the user interface

(Middle) shows Day 20 of a spread originating in Indianapolis, IN. (Right)
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from the pandemic origin to the airport closest to the
pandemic origin. Once the disease reaches the nearest
airport, it will begin spreading to all other cities with
airport hubs on the subsequent day. Fig. 4 illustrates the
difference between a single point source spread and the
utilization of air travel routes for spread. Future work will
focus on better parameterizing the airport spread models
based on typical hub transportation.

Along with modeling the spread from a given point of
origin, our model also allows users to input an estimate of the
number of days a person will remain sick, how many days a
hospitalized person will remain in the hospital, and, if a
person is going to die from the pandemic, how many days it
will take the person to succumb. Fig. 5 provides a quick
overview of the a simulated pandemic in a single county in
Indiana. Here, we can observe the number of sick, hospita-
lized and dead individuals and note the lag between the sick
and dead curves due to the user specified parameter. Again,
many influenza models have been tested, from looking at the
Fig. 4. Modeling a pandemic spread originating in Chicago, IL. (Left) The effect

(Right) The effects of an outbreak after 40 days including air travel between th

Fig. 5. This figure shows our model of patients who have become ill, need hosp

time of infection as specified by the user.

Fig. 6. This figure shows the use of our filtering tools to analyze the population o

Chicago, IL.
transmissibility of swine flu at Fort Dix in 1976 [26], to
simulating pandemic influenza in San Antonio, Texas [32].
Our system enhances these modeling capabilities by allowing
users to interactively adjust parameters and then visualize
the result in an interactive environment.

Our system also allows for interactive filtering based
on population demographics. Fig. 6 shows the number of
people affected by the pandemic as a percentage of their
given age range. Here we can observe which counties are
hit the hardest for a given population. Furthermore, users
may also modify the infection probability model of the
pandemic based on the age ranges and population density
of a county. In our system, we classify ages into three
ranges (under 18, 18–65, and 65 plus) and counties into
three ranges (rural, small town or major metropolitan).

Users may interactively adjust the model parameters to
define a magnification factor which will increase/decrease
the probability of infection for a given age and/or county
type. The impact of this can be seen in Fig. 2 (Middle). Note
s of an outbreak after 40 days using a single source point spread model.

e 15 largest United States airports.

italization, or have died from the pandemic. Note the lag in deaths from

f ill patients for a given age range on Day 25 of a pandemic originating in



Fig. 9. This figure shows the interactive widget for modifying the

decision measure impacts on the probability of infection model.
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that each curve in that image represents a county; however,
the magnitude of the pandemic is less in one county as
compared to the other. This is due to the effects of modeling
counties as different types. A similar result would be
achieved by modifying the age parameters. Note that
studies have been done on the distribution of influenza
vaccine to high-risk groups (e.g., [28]), and future work will
incorporate these factors into a more robust parameter set.

3.3. Decision measures

Within our modeling tool, we also account for various
decision measures. These decision measures were decided
on based on requirements from the Indiana State Depart-
ment of Health in order to best accommodate their
training exercises. In our system, we focus on three
decision measures: (1) school closures; (2) media alerts;
and (2) strategic national stockpile deployment.

The choice of these decision measures is also influenced
by previous work. Historical records of past pandemics
illustrate the efficacy of social distancing with regards to
lessening the impact of a pandemic [6,21]. Furthermore,
other researchers have noted the expected reduction of
influenza transmission based on school closures [9] or
quarantines [15], and the effects of containing pandemic
influenza through the use of antiviral agents and stockpiles
Fig. 7. Here we illustrate the effects of utilizing decision measures within the

measures. In the right image, the analyst has decided to see what effects dep

pandemic.

Fig. 8. Here we illustrate the potential impact that a pandemic may have on th

have 70% of all beds filled in a hospital on a given day. On Day 1 of the sim

additional hospital beds over its baseline capacity usage to support the pandem

however, the county resources are approximately 144 beds.
have been well documented [27,29]. However, other work
suggests that for multiple outbreak sites, the idea of
quarantines will prove ineffectual [33]. Detailed descrip-
tions of the effects of various decision measure strategies
can also be found in [19,32], along with others.

Fig. 7 shows how an user can simply toggle on and off
decision points within PanViz to see their effects on the
pandemic impact.Fig. 7 (Left) shows the model on Day 40
with no decision measures employed. Using the controls
on the lower left portion of the screen, the analyst chooses
to deploy the strategic national stockpile (SNS) antivirals.
The control widget shown in Fig. 9 allows the user to set
confines of PanViz. In the left image, the analyst has used no decision

loying the strategic national stockpile on Day 3 would have had on the

e available health care facilities. In this case, each county is assumed to

ulated pandemic, it is projected that Hamilton County will required 32

ic. By Day 10, Hamilton County has 762 patients needing hospitalization;
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the day of the simulation on which the decision measure
was enacted, the number of days it will take the decision
measure to reach full effect, and the impact the decision
measure is expected to have in reducing the infection. In
the graphs of Fig. 7 (Right), the user can immediately see
how the use of the (SNS) has helped mitigate the magni-
tude of the pandemic. Through these controls, the user
can interactively toggle decision points on and off and
explore the effects that decisions taking place in the past
would have on the current situation. Interactive toggling
allows the user to understand the magnitude of the
change by watching both the graphs and map display
colors change for a given day as decision measures are
implemented. Future work will include the use of more
advanced decision measures and allow for both local and
national measures. Note that this software is available
online at http://pixel.ecn.purdue.edu:8080/rmacieje/Pan
Viz/ and can be freely downloaded for experimentation.
4. Pandemic preparedness exercises

The main thrust of our work is to provide a means for
enhancing pandemic preparedness exercises and providing
tools for public education through easy to understand
visuals. In 2008, the Indiana State Department of Health
tasked its 10 districts to increase their level of prepared-
ness and response through a series of functional exercises
designed to test their readiness for a pandemic influenza.
Here it was noted that we would not have a vaccine during
the first wave of the pandemic [41] and that antivirals
would be insufficient in supply and potential ineffective
[22]. Hospitals would be overwhelmed and the public
health community would be urging home care. In the
absence of pharmaceutical measures, the general populace
will need to rely on infection control measures (school
closures and enhanced hygiene practices). As part of these
functional exercises, four objectives were identified:
1.
 Participants will determine the ability of their County
Emergency Operations Center to establish and imple-
ment an order of command succession during an
influenza pandemic.
2.
 Participants will utilize their existing plans, policies
and procedures to develop, coordinate, disseminate
and manage public information during an influenza
pandemic.
3.
 Participants will utilize their existing plans, policies and
procedures to manage Strategic National Stockpile (SNS)
Pandemic Countermeasures including receipt, storage,
security, distribution, dispensing and monitoring.
4.
 Participants will determine existing medical surge
capacity within their county and identify alternate
care site needs during an influenza pandemic.

As a portion of these objectives, the PanViz tool kit
was utilized as a means of providing situational aware-
ness during the functional injects. The functional exer-
cise assumed a 30% attack rate with a 2% mortality rate
with the point of origin of the outbreak being Chicago,
Illinois. Participants were able to input decision
measures (such as when to deploy their SNS counter-
measures) and observe the impact of their decisions. All
scenarios utilized the default parameter settings docu-
mented in Table 3.

This tool was utilized as a demonstration of decisions
taken during the tabletop exercise. Participants were able
to provide input to the model as part of a web seminar. A
single controller then modified the input parameters to the
tool, and the resultant changes were visualized and shown
within the webinar. PanViz was able to actively engage
participants in discussions on issues with the medical
surge capacity. Fig. 8 was used as an educational compo-
nent of the functional exercises to illustrate the importance
of advanced surge capacity plans. In Fig. 8 the number of
available hospital beds (as noted in the Emergency Pre-
paredness Atlas: U.S. Nursing Home and Hospital Facilities
[2]) is displayed for each county. In our model, it is
assumed that 70% of all beds are full due to general
medical needs. As an example, on Day 1 of the pandemic,
our model estimates that Hamilton County will need 32 of
its 144 beds for patients as a direct result of the pandemic
influenza. By Day 10, Hamilton County will need 762 of its
144 beds for patients as a direct result of the pandemic.
One can quickly observe (by color) that all counties across
the state have quickly reached their bed capacity. These
striking visuals created wide spread discussion amongst
participants and provided greater gravitas for the exercises.

5. Public awareness and education

More recently, PanViz has been used as a means of
providing educational information about the impact of
implementing social distancing measures during the recent
H1N1 outbreak. Utilizing attack and mortality rates similar
to the 1918 pandemic, we created a series of graphics
illustrating the impact that social distancing could have on
reducing the pandemic’s magnitude. Fig. 10 illustrates the
spread of the pandemic when no decision measures are
employed with that of the spread of the pandemic when
social distancing and vaccinations have been employed
early in the outbreak stages. Note the significant reduction
of the magnitude of the outbreak. These educational
materials were distributed through Purdue University’s
pandemic education website and details were also
reported on by the United Press International [39].

In a situation similar to the recent H1N1 outbreak, PanViz
could be deployed as an operational research tool in which
officials could input the current known attack and mortality
rates of the given pandemic. As data comes in, analysts can
quickly adjust model parameters and settings within the
PanViz framework in order to gain a rough prediction of the
potential magnitude and spread. In this way, PanViz can
provide officials with a means of communicating information
amongst agencies, and providing public service announce-
ments similar to our current press release.

6. Conclusions and future work

The interactive approach and ease of use of our visua-
lization modeling methodology makes complex modeling
and simulation tools available directly to public health

http://pixel.ecn.purdue.edu:8080/rmacieje/PanViz/
http://pixel.ecn.purdue.edu:8080/rmacieje/PanViz/


Fig. 10. Here we illustrate the potential impact that social distancing and early vaccination could have on magnitude of a pandemic influenza. For Days

19 and 37 we present a comparison of the effects of a pandemic when no social distancing or vaccinations have been employed (the left map for each

day) with the effect of an application of social distancing and vaccinations (the right map for each day). One can immediately see that the magnitude of

the pandemic is substantially lessened.
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officials and decision makers for their own use. Moreover,
these tools and techniques have the potential to be
updated in near real-time as actual data and observations
are made during the course of a pandemic or epidemic
such as the current Swine Flu outbreak that first appeared
in April, 2009 [10]. In future work, we intend to refine the
underlying modeling algorithms to be more sophisticated
and accurate via detailed simulations and agent based
modeling driven by basic input parameters from the user.
These simulations can run underneath the top level model
structure via a simple button click and can be transparent
to the user, but returned results will have greater robust-
ness increasing their power and overall effectiveness.

Furthermore, we plan to incorporate more advanced
temporal and spatiotemporal analytics tools into future
versions of the framework. Currently, the model does
allow users to scroll through time as well as adjust the
timing of different mitigation measures and the time it
takes for these to reach full effect. Our plan is to include
side-by-side temporal comparison and/or potentially
include difference map views so that users can better
ascertain temporal differences.

Our partners at the Indiana State Department of Health
have shown immense interest in expanding their use of
this tool, and current steps are underway to deploy this to
all 92 county health officials in Indiana. While our tool’s
use cannot be directly quantified in terms of its impact in
raising Indiana’s preparedness rating, our contribution
was a major component of the training and preparedness
exercise program. Furthermore, the educational value of
easy to understand visuals as a means for conveying
information to the public cannot be overstated. As such,
our PanViz tool provides an easy to use interface for both
the modeling and exploration of pandemics for use in
both training and operational research. We plan to further
pursue our collaborations to port this into a fully func-
tional emergency response tool where more detailed
critical tasks can be solved.
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