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Abstract: Lysyl oxidases are multifunctional proteins derived from five lysyl oxidase paralogues
(LOX) and lysyl oxidase-like 1 through lysyl oxidase-like 4 (LOXL1–LOXL4). All participate in
the biosynthesis of and maturation of connective tissues by catalyzing the oxidative deamination
of lysine residues in collagens and elastin, which ultimately results in the development of cross-
links required to function. In addition, the five LOX genes have been linked to fibrosis and cancer
when overexpressed, while tumor suppression by the propeptide derived from pro-LOX has been
documented. Similarly, in diabetic retinopathy, LOX overexpression, activity, and elevated LOX
propeptide have been documented. The proteolytic processing of pro-forms of the respective proteins
is beginning to draw attention as the resultant peptides appear to exhibit their own biological
activities. In this review we focus on the LOX paralogue, and what is known regarding its extracellular
biosynthetic processing and the still incomplete knowledge regarding the activities and mechanisms
of the released lysyl oxidase propeptide (LOX-PP). In addition, a summary of the roles of both LOX
and LOX-PP in diabetic retinopathy, and brief mentions of the roles for LOX and closely related
LOXL1 in glaucoma, and keratoconus, respectively, are included.

Keywords: lysyl oxidase; lysyl oxidase propeptide; structure–function; diabetes; eye pathologies

1. Introduction

Lysyl oxidases are encoded by a family of five paralogue genes known as lysyl oxidase
(LOX) and lysyl oxidase like-1, -2, -3, and -4 (LOXL1–LOXL4). All are synthesized as
pro-proteins which are structurally conserved in vertebrates [1], with LOX and LOXL1
being more closely related to each other [2] than to LOXL2–LOXL4 [3]. These pro-proteins
contain a conserved C-terminal enzyme domain, while the propeptide regions of LOX and
LOXL1 are each largely unique in sequence [4]. By contrast, LOXL2–LOXL4 propeptides
are more similar to each other and all three contain four conserved Scavenger Receptor
Cysteine-Rich (SRCR) domains, which typically serve as protein–protein binding domains
in other proteins [5,6]. LOX is processed and activated by cleavage of its N-terminal pro-
peptide catalyzed principally by Bone Morphogenetic Protein-1 (BMP-1) or BMP-1-related
procollagen C-proteinases Tolloid Like-1 and -2 following secretion into the extracellular
environment [7]. LOXL1 is similarly processed by BMP1 [8], while LOXL2 undergoes
processing by furin enzymes required for type IV collagen crosslinking [9,10].

The lysyl oxidase family proteins all participate in the biosynthetic maturation of
collagens and elastin by catalyzing the extracellular oxidation of the ε-amino group of
peptidyl lysine or peptidyl hydroxy lysine residues in procollagens and tropoelastin to
form the corresponding aldehydes, which are required for the subsequent formation of the
biosynthetic cross-links and the function of the extracellular matrix [4]. In tumor biology,
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in general, abnormal high levels of lysyl oxidase paralogues expressed by tumor cells
and/or associated stromal cells correlate well with poor outcomes in cancer. By contrast,
the unique propeptide derived from pro-LOX (LOX-PP) has tumor growth inhibitory
properties consistent with being a tumor suppressor [11]. In this review we will focus
on findings specifically regarding the properties and mechanisms of pro-LOX processing
and LOX-PP in the context of ECM modulation, cancers, and diabetic retinopathy. Brief
mentions of LOX and LOXL1 relevance to some additional eye pathologies are made here
that will be more extensively discussed in other articles in this special issue of IJMS.

2. LOX-PP Is Not Trash: Its Role in Tumor Suppression

The notion that LOX-PP, released extracellularly during the biosynthesis of the active
LOX enzyme (Figure 1), could have its own function came from the observation that
the tumor suppressor function linked to the phenotypic reversion of c-H-ras transformed
fibroblasts depended in some way on the restoration of LOX expression [12,13]. At the time
it was assumed that LOX enzyme activity fulfilled this function. However, treatment of
phenotypically reverted c-H-ras transformed fibroblasts with the selective suicide substrate
inhibitor of LOX, β-aminopripiontrile (BAPN), failed to re-transform these cells, and failed
to induce a transformed phenotype [14]. This finding led to the hypothesis that LOX-PP,
produced stoichiometrically with the LOX enzyme, could promote phenotypic reversion,
which was ultimately demonstrated [14]. Subsequent follow-up studies identified several
signaling pathways and binding partners inhibited by LOX-PP which mediated ras-effectors
signaling, and inhibited xenograft growth in mice. Subsequent studies demonstrated
that the anti-tumor activity of LOX-PP is through the direct or indirect inhibition of the
Hsp70 and the suppresion of the MAPK/ERK pathway [13,15], Akt, FGFRs, [16,17] RPTPk
signaling [18], FAK [19], and others [20] depending on the cellular or cancer context [4,21].
LOX-PP can inhibit tumorigenesis by reducing the vascular endothelial growth factor
(VEGF) in human umbilical vein endothelial cells and the suppression of vascular tube
formation in chick chorioallantoic membranes [22,23]. Induction of LOX-PP expression
by the adenoviral vector reduced cancer cell migration and hampered the expression of
angiogenic factors MMP2 and MMP9 [24]. LOX-PP was shown to have an interaction with
EGF and the tumor endothelial marker-8 (TEM-8) on the surface of activated endothelial
cells and to possibly control angiogenesis [21].

LOX-PP is generated extracellularly by the proteolytic processing of pro-lysyl oxidase
at Gly168/Asp169 by procollagen C-proteinases and is likely to target FGFRs and other
cell surface receptors [17,21] (Figure 1). However, LOX-PP also can re-enter cells in order
to interact with its intracellular targets. A major mechanism of LOX-PP uptake is by
macropinocytosis that in most cases is a receptor-independent mode of endocytosis [25].
LOX-PP has a very high pI in part due to its high content (12%) of arginine residues, and
evidence indicates that LOX-PP in endosomes increases the internal pH of endosomes,
which may lead to cytoplasmic release permitting the LOX-PP targeting of intracellular
cytoplasmic signaling molecules, rather than the simple trafficking of LOX-PP to lysozomes
for degradation [25].

A new question then becomes how can LOX-PP inhibit so many targets, and which
target(s) is (are) most important for its tumor inhibitory function? Structure prediction
tools have revealed that LOX-PP has a mostly intrinsically disordered structure, which is
consistent with its ability to target multiple proteins [26]. Intrinsically disordered proteins
adopt biologically active conformations when interacting with targets. Some disordered
proteins have multiple functional binding partners [27], which is also the case for LOX-PP.
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Figure 1. Diagram illustrating LOX and LOX-PP biogenesis. LOX is synthesized as a 50 kD inactive
Pro-LOX and processed extracellularly by proteolytic cleavage into a functional 32 kD LOX enzyme
and an 18 kD propeptide (LOX-PP). Additional proteolytic processing sites of Pro-LOX have recently
been identified. LOX-PP has both intracellular and extracellular targets.

2.1. LOX-PP Regions That Mediate Its Function

Detailed structure/function studies employing site-directed mutagenesis or deletion
mutants and a naturally occurring polymorphism have revealed different direct targets
involving different LOX-PP subregions or functional amino acid sequences, as can be
expected for an intrinsically disordered protein. Relevant sequences for most LOX-PP
targets have not yet been mapped to specific LOX-PP amino acid sequences but are not
assumed to be less important than those that have been mapped. The mapped LOX-PP
sequences that interact with other proteins are summarized below and are also illustrated
in Figure 2.
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Figure 2. Aligned amino sequences of human and mouse pro-LOX, processing sites, active domains,
and binding sequences. Symbols and colors are defined at the bottom of the figure and identify the
sequences described in the text.

2.1.1. Intracellular Functional Binding Partners of LOX-PP

The signaling adapter CIN85 protein and its binding partner c-CBL function to pro-
mote cancer cell invasiveness. Their additional binding partners have roles in regulating
cytoskeletal and membrane structures [28,29]. CIN85 has been implicated in the control
of levels of NADPH oxidases and reactive oxygen species in cancer cell lines [30]. CIN85
has three SH3 domains: A, B, and C, respectively. LOX-PP was shown to bind only to the
SH3 B domain and not to A or C in breast cancer cell lines [28]. This binding occurs via
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conserved human LOX-PP amino acids 117–123 (mouse and rat 111–117) via its PxPxxR
sequence instead of the more typical PxxPxR SH3 binding consensus sequence (Figure 2).
The LOX-PP binding interaction with CIN85 at this site inhibits the invasive phenotype of
breast cancer cells on Matrigel and the collagenolytic activity of transfected cells plated on
a collagen substrate [28]. These findings point to one mechanism by which LOX-PP can
inhibit the invasiveness of cancer cells in its anti-metastatic activity.

Hsp70 and c-Raf. Pull-down studies in HEK293T cells revealed that LOX-PP interacts
with Hsp70, and c-Raf. Binding to α,β-tubulin was also confirmed [28,31]. The direct
binding sequences of LOX-PP to these proteins were determined by coprecipitation studies
of bacterially expressed wild type LOX-PP subregions and the residues 26–110 of rat LOX-
PP (human 32–116) were identified as the peptide regions that bind to Hsp70, c-Raf, and
α-tubulin. These regions are distinct from the CIN85 binding site. The precise respective
binding site amino acid residues in this peptide region to Hsp70, cRaf, α,β-tubulin were,
however, not identified. Thus, this rat peptide 26–110 (human 32–116) may contain different
regions for the three different proteins. It may be of interest that human residues 39–66
of LOX-PP are conserved between LOX and LOXL1 [32], and that this sequence has been
predicted to be structured, unlike most of LOX-PP that is intrinsically disordered [21]
(Figure 2). LOX-PP–Hsp70–cRaf interactions resulted in reduced Erk1/2 signaling, which is
Ras/c-Raf pathway-dependent, and consistent with the tumor growth inhibitory properties
of LOX-PP. The attenuated chaperone function of Hsp70 by LOX-PP was also identified [28].
The biological consequences of LOX-PP binding to tubulin have not been determined to
our knowledge.

2.1.2. LOX-PP Polymorphism

A polymorphism resulting in a human point mutation of amino acid residue 158 from
Arg to Gln (rs1800449), equivalent to residues R152 in rat and mouse LOX-PP, results in
increased cancer susceptibility in a variety of cancers. This residue is not contained in the
binding sites summarized above. A knockin mouse mimicking the human polymorphic
variant has been made and was shown to be more susceptible to chemically induced
breast cancer [33]. Ongoing unpublished studies have indicated that this was also true
in a model of chemically induced oral cancer in knockin mice harboring this mutation.
The clinical importance of rs1800449 to increase the incidence or severity of cancers is
supported by several independently published human epidemiology studies [34–40]. The
identification of this polymorphic variant with reduced anti-tumor activity may offer
the opportunity to further understand what the “normal” Arg158 polymorphic variant
targets that the “mutant” Gln158 variant does not. Alternatively, the Gln158 variant may
function by a dominant negative mechanism. In this regard it is of interest that MMP2
can cleave to pro-LOX at residue 156N/157L, immediately adjacent to Arg158 in the
predominant form of Pro-LOX, or potentially Gln in the less common form [22,41,42]
(Figure 2). “Normal” BMP1/procollagen C-proteinase cleavage occurs at human LOX
residue 168/169 (mouse residue 162, Figure 2). It seems possible that the polymorphic Gln
variant could be resistant to MMP2 proteolytic cleavage at residue 158, favors the “normal”
processing only by procollagen C-proteinases at 168, resulting in active lysyl oxidase that is
well-described, while the MMP2 cleavage product at 158 could have an altered activity or
substrate specificity. In this regard, MMP2 is well-known to be upregulated in a variety of
cancers, suggesting a possible post-translational control of altered LOX enzyme activity
or specificity in a cancerous microenvironment. It is similarly unclear if the shorter or
longer produced LOX-PPs or short peptide fragment 159–167 would have different tumor
modulating properties as might be expected from the apparent loss of tumor inhibitory
properties of the Gln variant.

2.1.3. LOX-PP Gln Variant Fails to Inhibit FGFR1

LOX-PP has been shown to inhibit FGF signaling in prostate cancer cell lines with a
strong inhibition of proliferation and primarily targeted Akt signaling, and Erk1/2 to a
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smaller degree. These effects were shown to be mediated by FGFR1 using neutralizing
FRFR1 antibodies [16]. In the phenotypically normal MC3T3-E1 cell line, LOX-PP similarly
inhibited cell proliferation, by targeting primarily Erk1/2 and not Akt. Binding kinetics
of LOX-PP to FGFR1 suggested that LOX-PP binds directly to FGFR1, but to a site other
than the FGF2 binding site [17]. In murine breast cancer cells, LOX-PP similarly inhibited
FGF2 stimulated proliferation and signaling in vitro and xenograft growth in mice, while
the Arg152Gln rat variant did not inhibit signaling and inhibited xenograft growth to a
lesser degree than Arg152 LOX-PP [43]. More recently, an interesting study in 3T3-L1 cells
found that LOX-PP increased expression of PPARγ and C/EBP and therefore adipogenesis,
inhibited both Akt and Erk1/2 signaling, all mimicked by an unrelated FGFR inhibitor.
The mouse Arg152Gln variant of LOX-PP failed to both stimulate adipogenesis, PPARγ
and C/EBP expression [42]. These independent findings all point to FGFR-mediated
signaling as relevant to both the biological activity of LOX-PP in different contexts, and to
the importance of understanding more about the mechanistic and biological consequences
of the Arg/Gln polymorphism in a variety of physiological contexts [43–45].

2.2. ADAMTS2/14 Processing of Pro-LOX

An additional proteolytic processing site in human pro-LOX with functional conse-
quences was recently identified by Rosell-Garcia and colleagues [46]. A site downstream
of the procollagen processing site (human residue 167/168) found at 218/219 results in a
longer propeptide and shorter (25 kDa vs. ~30 kDa) active enzyme. The resulting 25 kDa
enzyme was found to retain its activity against low molecular weight amines. By contrast,
on a solid phase binding assay the 25 kDa isoform exhibited a reduced ability to bind
collagen that contained telopeptides. The telopeptides contain the lysine residues oxidized
by LOX, so reduced binding to this entity strongly implies a reduced ability of the shorter
LOX enzyme to function as a collagen cross-linking catalyst. The sequence between 168 and
218 is rich in tyrosine and the data indicated that some of these tyrosine residues are
sulfated in the longer BMP1/procollagen C-proteinase processed LOX-PP, possibly facili-
tating collagen binding of the resulting mature 30 kDa enzyme [46]. Since the metastatic
activity of LOX is strongly linked to its enzyme activity and fibrosis, one could propose
that high levels of ADAMTS2 or 14 would act as fibrosis inhibitors or tumor suppressors.
However, ADAMTS 2 and 14 are procollagen N-proteinases required for the N-terminal
biosynthetic processing of types I, II, III and V procollagens, and several additional ECM
molecules [47,48]. Interestingly, loss of ADAMTS2 results in poor skin collagen structure
in the condition known as dermatosparaxis in animals and humans [49], consistent with
low levels of N-terminal pro-collagen N-terminal propeptide processing, and low collagen
cross-linking, as would be expected. By contrast, ADAMTS2 overexpression has been
linked to an increased incidence of some forms of gastric [50] and oral cancers [51,52],
possibly suggesting that longer LOX-PP isoforms containing sulfated tyrosine residues
resulting from ADAMTS 2 or 14 cleavage only, should they accumulate, may reduce the
tumor suppressor functions of LOX-PP and/or increase LOX enzyme tumor promoting
effects. One possibility is that the 25 kDa enzyme generated after ADAMTS2/14 cleav-
age would have increased substrate specificity for a tumor promoting target rather than
collagen, such as PDGFRβ, increasing PDGF signaling and cancer progression [53].

3. LOX, LOX-PP and Eye Pathologies

This section focusses on diabetic retinopathy and two additional prominent ocular
diseases associated with abnormal LOX family and LOX-PP activities. It should be noted
that LOX and LOX-PP have been reported to be involved in other eye diseases which are
not discussed here as it is beyond the scope of this review.

3.1. Diabetic Retinopathy

The rising incidence of diabetes has led to a dramatic increase in diabetic complica-
tions worldwide. Despite the introduction of treatment strategies, diabetic retinopathy
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(DR) remains a major cause of blindness and is one of the most common microvascular
complications of diabetes [54–57] for which no preventive therapy is currently available. A
significant clinical manifestation of DR is retinal vascular cell death and the breakdown of
the blood retinal barrier (BRB) leading to excess vascular leakage and macular edema [58].
The BRB is compromised by the thickening of the retinal capillary BM, a hallmark of DR [59].
The biogenesis and maturation of the vascular BM is dependent on LOX-mediated cross-
linking of ECM components. Aberrant LOX activity results in abnormal post-translational
modification of BM collagens, affects its functionality, and predisposes connective tissues to
certain diseases [60–63]. Several studies have reported elevated LOX activity and increased
collagen cross-linking in diabetic tissues such as the lungs of diabetic rats [64] and the
skin of diabetic patients where elevated LOX activity correlated with duration of diabetes,
glycemic control, and long-term complications [65]. By contrast, abnormally low biosyn-
thetic collagen cross-linking and low lysyl oxidase levels occur in diabetic bone [66,67],
pointing to different functional regulatory pathways in different tissues. To add to this
complexity, a recent study indicated that LOX upregulation may contribute to ECM pro-
duction independent of its crosslinking function [68]. This raises the possibility that LOX
upregulation in diabetes could promote vascular BM thickening and play a pathogenic
role in DR by both enzymatic and non-enzymatic mechanisms. Interestingly, LOX propep-
tide (LOX-PP), which has no LOX enzyme activity, released during LOX processing, was
recently shown to promote apoptosis in various diseased tissues, including diabetic reti-
nas [24,69–71]. These reports raise the possibility that a high glucose condition increases
LOX and LOX-PP levels, which in turn promote apoptosis and increased retinal vascular
permeability [71–75]. By contrast, a study reported decreased LOX activity in the vitreous
of eyes with proliferative diabetic retinopathy [76]. In this study, vitreous samples obtained
from patients were compared for LOX mRNA levels and specific activity of LOX, MMP-2
and -9 with those obtained from autopsy eyes, while a different study reported increased
LOX mRNA levels in human retinal pigmented cells exposed to high glucose. Ongoing
studies are investigating possible links between abnormal LOX and LOX-PP levels and
the development of retinal vascular cell loss and capillary leakage, and whether a strategy
targeting LOX and LOX-PP could be effective in preventing vascular lesions in DR.

3.2. Keratoconus

Keratoconus (KC) is a corneal disease characterized by progressive central cornea
thinning and conical protrusion of the cornea. The cellular mechanisms underlying the
development and progression of the disease remain unclear. Morphological changes in
different structures of KC corneas including epithelium, basement membrane, nerve fibers,
Bowman’s layer, stroma, Descemet membrane, and endothelium have been identified.
Additionally, the diversity of the structures appear to represent temporal differences during
disease progression [77]. Other observations support the involvement of several biochemi-
cal events that regulate cellular and extracellular processes, proliferation, differentiation,
and apoptosis of keratocytes, and oxidative damage [78]. The disease can be diagnosed by
assessing clinical signs such as stromal thinning, together with accurate computer-assisted
video-keratography. KC has a prevalence of approximately 1:2000.

The involvement of LOX has been identified during the development of KC. In par-
ticular, a number of studies have reported a lower expression and reduced activity of
LOX and/or cross-linking defects in corneas of individuals with KC [79–81]. Decreased
expression of LOX appears to contribute to the structural deformity of the KC cornea [80].
The risk of KC development may be associated with specific LOX polymorphisms [82].
Moreover, abnormal LOX activity is a risk factor for KC, and genetic evidence indicates
LOX variants likely increase susceptibility to developing KC [83]. Furthermore, LOX is
differentially up-regulated in corneal epithelial cells of KC patients compared to those in
healthy controls [84]. The structural deformity of the KC cornea may be related to unbal-
anced expressions of collagens (no change) and LOX (upregulated), and elevated MMP9 in
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the corneal epithelium. In recent years, a number of studies have revealed inflammatory
cytokines and matrix-remodeling enzymes to participate in the development of KC [85].

Family-based and case control studies have revealed that variations in the LOX gene
could increase susceptibility of KC development. Interestingly, mutational screening of
LOX in a cohort of 225 sporadic and 77 familial KC cases showed no involvement of LOX
with KC [86]. Genetic variants in additional genes may interact with changes in LOX. It
is notable that a novel gene for KC has been localized to a 5.6-Mb interval on 13q32 [87].
The 13q location is notable because all known genes at this locus were not mutated and
therefore excluded as functionally relevant to KC. How this locus is functionally relevant
to KC remains unknown, to our knowledge. Although there is increasing evidence that
LOX is involved in the pathogenesis and progression of KC, further studies are needed
to dissect LOX’s role including other factors and gain deeper insight into the molecular
mechanisms underlying KC development [83].

3.3. Glaucoma

Among patients with primary open angle glaucoma (POAG), the prevalence of pseu-
doexfoliation appears to be linked to geographic variation. Lysyl oxidase-like 1 (LOXL1)
gene polymorphisms have been widely studied in different ethnic populations. The litera-
ture suggests conflicting reports related to LOXL1 gene variants and glaucoma, in particular,
related to pseudoexfoliation and primary open angle glaucoma. A recent study of the north
Indian population reported a lack of association between the LOXL1 gene polymorphisms
and primary open angle glaucoma [88] consistent with a study that suggests that LOXL1
polymorphisms are not associated with POAG risk, based on meta-analysis [89]. However,
a prevalence of pseudoexfoliation glaucoma risk was reported to be associated with variants
of the LOXL1 gene in an Irish population [90], supported by additional studies indicating an
association of LOXL1 gene polymorphisms and POAG in Turkish patients [91,92], Spanish
population [93], Greek patients [94], and German patients [95]. Further population-based
studies on a large-scale basis are necessary to identify the worldwide distribution of pseu-
doexfoliation and primary open angle glaucomatous development and the relationship
with LOXL1.

To gain insights into the role of rare LOXL1 variants among different ethnic groups,
transcriptome analyses could reveal further information and identify specific pathways and
their associations with LOXL1. LOXL1 remains a potential target to better understand the
pathophysiology of the abnormal matrix, in particular, interactions with matrix components
in relation to genetic factors present in ethnic populations. Ultimately, modulation of
LOXL1 gene expression could be promising and present a potential strategy for treatment
of pesudoexfoliation and primary open angle glaucoma.

4. Conclusions and Perspectives

It is increasingly clear that the lysyl oxidase family of proteins derived from all five
paralogues is multifunctional. With recent insights into new proteolytic processing sites of
only pro-LOX, and the still limited structure/function studies of LOX-PP and additional
derived peptides, there is a need to further identify and understand intracellular and
extracellular mechanisms by which the active enzyme and enzymatically inactive products
derived from pro-lysyl oxidase have function in tumor biology, fibrosis, DR and other
ocular complications. Similar studies investigating the other four LOX paralogues would
be of interest as they may reveal additional dimensions to the biology of this important
gene family.
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