
ll
OPEN ACCESS
iScience

Article
Topologically associating domain underlies tissue
specific expression of long intergenic non-
coding RNAs
Yu Hamba,

Takashi Kamatani,

Fuyuki Miya, Keith

A. Boroevich,

Tatsuhiko

Tsunoda

tsunoda@bs.s.u-tokyo.ac.jp

Highlights
lincRNA loci are found

more enriched within

TADs than TAD

boundaries

lincRNAs are found more

inside TADs than PCGs

Expression patterns of

lincRNAs in TADs have

higher tissue-specificity

lincRNAs analysis with

TAD coordinates captures

pathological

transcriptional states

Hamba et al., iScience 26,
106640
May 19, 2023 ª 2023 The
Author(s).

https://doi.org/10.1016/

j.isci.2023.106640

mailto:tsunoda@bs.s.u-tokyo.ac.jp
https://doi.org/10.1016/j.isci.2023.106640
https://doi.org/10.1016/j.isci.2023.106640
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2023.106640&domain=pdf


ll
OPEN ACCESS
iScience
Article
Topologically associating domain underlies
tissue specific expression of long
intergenic non-coding RNAs

Yu Hamba,1,2 Takashi Kamatani,1,3,4,5 Fuyuki Miya,6 Keith A. Boroevich,2 and Tatsuhiko Tsunoda1,2,7,8,*
1Laboratory for Medical
Science Mathematics,
Department of Biological
Sciences, Graduate School of
Science, The University of
Tokyo, Tokyo 113-0033,
Japan

2Laboratory for Medical
Science Mathematics, RIKEN
Center for Integrative
Medical Sciences, Yokohama
230-0045, Japan

3Department of AI
Technology Development,
M&D Data Science Center,
Tokyo Medical and Dental
University, Tokyo 101-0062,
Japan

4Division of Precision Cancer
Medicine, Tokyo Medical and
Dental University Hospital,
Tokyo 113-8519, Japan

5Division of Pulmonary
Medicine, Department of
Medicine, Keio University
School of Medicine, Tokyo
160-8582, Japan

6Center forMedical Genetics,
Keio University School of
Medicine, Tokyo 160-8582,
Japan

7Department of
Computational Biology and
Medical Sciences, Graduate
School of Frontier Sciences,
The University of Tokyo,
Chiba 277-8562, Japan

8Lead contact

*Correspondence:
tsunoda@bs.s.u-tokyo.ac.jp

https://doi.org/10.1016/j.isci.
2023.106640
SUMMARY

Accumulating evidence indicates that long intergenic non-coding RNAs (lincR-
NAs) show more tissue-specific expression patterns than protein-coding genes
(PCGs). However, although lincRNAs are subject to canonical transcriptional
regulation like PCGs, the molecular basis for the specificity of their expression
patterns remains unclear. Here, using expression data and coordinates of topo-
logically associating domains (TADs) in human tissues, we show that lincRNA
loci are significantly enriched in the more internal region of TADs compared to
PCGs and that lincRNAs within TADs have higher tissue specificity than those
outside TADs. Based on these, we propose an analytical framework to interpret
transcriptional status using lincRNA as an indicator. We applied it to hypertrophic
cardiomyopathy data and found disease-specific transcriptional regulation:
ectopic expression of keratin at the TAD level and derepression of myocyte dif-
ferentiation-related genes by E2F1 with down-regulation of LINC00881. Our re-
sults provide understanding of the function and regulation of lincRNAs according
to genomic structure.

INTRODUCTION

A large proportion of the human genome is transcribed into RNA, yielding many non-coding RNAs

(ncRNAs) in addition to mRNAs.1 Among ncRNAs, long non-coding RNAs (lncRNAs) are broadly defined

as transcripts longer than 200 nucleotides that lack coding capacity.2,3 Accumulating evidence indicates

that without being translated into proteins, lncRNAs are functional in many cellular processes, such as

gene imprinting,4 development5 and immune response.6 Among those various mechanisms reported,

many lncRNAs are associated with chromatin-modifying complexes and guide conformational changes

in nuclear domains or regulation of transcriptional enhancer activity.7 Moreover, lncRNA dysfunction has

been associated with a variety of human diseases, including cancer, cardiovascular disease, and neurode-

generative disorders.8

lncRNAs are classified based on their genomic origin: Antisense lncRNAs are transcribed from the opposite

strand of protein-coding genes (PCGs), bidirectional eRNAs are transcribed from the enhancer region, and

lincRNAs have transcription units independent of promoters and enhancers of PCGs.9 lincRNAs possess

many characteristics of mRNAs: lincRNA transcription is regulated by key transcription factors and typical

histone modifications, and lincRNA transcripts are processed by the canonical spliceosomal machin-

ery.10–13 Compared to protein-coding genes, lincRNA expression is highly specific to cell types and tis-

sues.10,13,14 Compared to mRNA, which requires translation into protein to exert gene function, lincRNA

transcripts exert their function directly on their own. This means that lincRNA transcriptional regulation

serves as a functional control, emphasizing the importance of elucidating the molecular basis of specific

expression. Although the mechanisms that cause tissue-specific gene expression patterns have been

extensively investigated in terms of promoter sequences15 and epigenomic modifications,16 the mecha-

nisms that can comprehensively explain the nature of lincRNAs and this difference in expression specificity

between mRNAs and lincRNAs are still unclear.

One of the highest order regulatory mechanisms that determine transcription patterns is genomic structure

that allows for genome-wide regulation; chromatin compaction, as seen in heterochromatin regions, limits

access to gene promoters. In the nucleus, chromosomes form higher-order structures that govern gene
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regulation.17 Recent advances in chromatin conformation capture technology have revealed the three-

dimensional structure of the genome. Adjacent chromosomal regions were shown to fold into topological

associating domains (TADs) ranging in size from a few hundred kb to 1–2 Mb.18 Chromatin structures that

comprehensively regulate the tissue-specific expression patterns of lincRNAs must be tissue and genome-

wide regulatory systems; TADs fulfill this requirement by confining enhancer-promoter interactions within

each TAD, thus enabling gene expression regulation. Literature shows that lincRNAs expression are posi-

tively correlated with those of nearby genes,19 suggesting that regulation by enhancers insulated within

TADs determine when and in which tissues lincRNAs are transcribed with neighboring genes.

In this study, first, we combined TAD coordinates from 13 primary human tissues with expression data from

the GTEx project20 to investigate into the distribution of lincRNA loci in the human genome in relation to

TADs and clarify how they are associated with tissue-specific expression patterns. Next, by defining and

utilizing two groups of PCGs: Co-expressed cis PCGs spatially close to the lincRNA locus and trans

PCGs regulated by post-transcriptional lincRNA molecules, we proposed an analytical framework to infer

biological processes relevant to traits such as tissue phenotypes and diseases. Because TAD structure is

maintained throughout the cell lineage, our method should be applicable to a broad range of human

gene expression data. Last, as an example for its medical applications, we analyzed hypertrophic cardio-

myopathy (HCM) data, and identified lincRNA signatures specific to HCM. Overall, our findings demon-

strate that interpreting the genome at the 3D level can provide insight into lincRNA functionality.

RESULTS

Characteristics of lincRNA expression in primary human tissues

First, we investigated tissue specificity of lincRNA expression by using expression data from 54 human

tissues of GTEx. t-distributed stochastic neighbor embedding (t-SNE) analysis of the expression data

showed a clear clustering of samples by tissue of origin (Figure S1A), and the expression pattern of 7345

lincRNAs appeared to be at least as tissue-specific as that of 18358 PCGs (Figure S1B). To quantitatively

compare tissue specificity of expression between lincRNAs and PCGs, we calculated tissue specificity

scores (0 = ubiquitous; 1 = specific to a single tissue) based on the Shannon entropy specificity of each

gene (Figure 1A). Overall, lincRNA has higher tissue specificity than PCG, consistent with previous find-

ings.10,11,21 The distribution of the tissue specificity scores showed bimodal distributions with high and

low specificity groups for both lincRNA and PCG. The percentage of the completely tissue-specific group

of lincRNAs was larger than that of PCGs (8.81% versus 1.06%), and the tissue specificity score of lincRNAs

was significantly higher than that of PCGs (p< 10�4; permutation test; Figure 1A right). This suggests that

there is likely a genome-wide regulatory mechanism that results in a tissue-specific expression pattern of

lincRNAs that is differentiated from the pattern of expression of PCGs.

To characterize lincRNA expression in the human tissues, we conducted an agglomerative clustering anal-

ysis on the lincRNA expression profiles from the GTEx data. This resulted in the generation of three major

clusters: class 1, 2, and 3 (Figure 1B). The distribution of the tissue specificity scores was lowest for class 1

and highest for class 3 (Figure 1C). Next, we examined the lincRNA expression intensities and found that

class 1 was the highest and class 3 was the lowest (Figure 1D). We also calculated correlation coefficients

between expression levels of lincRNA and those of neighboring genes for each cluster, and its result

showed that lincRNA expression levels were positively correlated with those of neighboring genes in

most cases (Figure 1E).

lincRNA loci show functional localization to TADs

Using TAD coordinates detected by Hi-C on 13 primary human tissues,22 we tested the hypothesis that tis-

sue-specific expression and function of lincRNAs is regulated in a manner dependent on the higher-order

structure of the genome. When PCGs and lincRNAs were compared, lincRNAs were found to have a signif-

icantly higher percentage of loci within TADs across multiple tissues (Figures 2A and S2A). More interest-

ingly, the localization of lincRNAs in TADs was more significant than those of other ncRNA subtypes such as

antisense, miRNA, and rRNA. This result suggests that beyond just being a set of untranslated transcripts,

ncRNAs, particularly lincRNAs, can be clearly differentiated in the context of the chromatin environment,

such as TADs. To rule out the possibility that the differences of the gene locus enrichment for TADs

were because of differences in gene length, we conducted a permutation test in which gene loci were

randomly replaced in the genome (Figure S2B). The results showed that although the PCG loci were less

enriched in TADs relative to the random distributions in almost all tissues (p< 10�4; permutation test;
2 iScience 26, 106640, May 19, 2023



Figure 1. The expression of lincRNAs is specific in human tissues

(A) Distribution of tissue specificity scores calculated for 7345 lincRNA (yellow) and 18358 PCGs (pink) across GTEx 54 tissues (p< 10–323).

(B) Heatmap generated by unsupervised cluster analysis of all lincRNA expression profile across all GTEx tissues. Only partial gene names are shown.

(C) Distribution of tissue specificity scores calculated for lincRNA across the three clusters.

(D) Boxplots of max expression levels of lincRNAs across all GTEx tissues for the three lincRNA clusters (class 1 versus class 2: p = 1.89 x 10–88, class 2 versus

class 3: p = 9.11 x 10–33, class 1 versus class 3: p = 1.46 x 10–249).

(E) Distribution of the Pearson correlation coefficients between adjacent PCG-lincRNA pairs across all GTEx samples for the three lincRNA clusters. A, D

****p< 10�4, Mann-Whitney-Wilcoxon test with Bonferroni correction, two-sided.
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Figure S3A), lincRNA loci were significantly more enriched in TADs than compared to the random distribu-

tions in all tissues (p< 10�4; permutation test; Figure S3B). Incidentally, antisense ncRNAs showed a wide

variation and no clear trends in their localization across tissues (Figure S3C).

To examine the relationship between gene loci enrichment in TADs and tissue specificity of their expres-

sions, we defined coordinates of TADs that could be analyzed across tissues. First, we extracted TAD re-

gions common across all 13 tissues (Figure 2B). Although the common TAD regions had a lower overall

genome coverage (total coverage: 60.1%) compared to the TAD regions in each tissue, they had a median

length of 0.64M bp per region and median gene count of 10, which did not deviate significantly from the

general definition for a TAD (Figures S4A and S4B).18 To confirmwhether these regions function as effective

TAD insulators, we examined the differences in correlations between gene expression levels according to

the gene positions in relation to the TAD regions by using the GTEx expression data. More specifically, we

calculated themoving average of the expression correlations according to the intergenic distance for three

conditions: gene pairs belonging to the same TAD, those belonging to TAD and TAD boundary, and those

belonging to different TADs. Gene pairs belonging to the same TAD maintained higher correlations than

other pairs across long distances �1M bp (Figure 2C), indicating that the gene expression regulation by

TADs was observed on a genome scale, supporting previous studies.23–25 Next, we defined the expression

level of each TAD as the average of the expression levels of the included genes, and examined the corre-

lations of the expression levels among the TADs of each chromosome using all of the GTEx expression

data. They showed almost entirely positive correlations except for a small portion that had differences in

TAD transcription levels among tissues (Figures S5A and S5B). These results confirmed that the common
iScience 26, 106640, May 19, 2023 3



Figure 2. Functional enrichment of lincRNAs in the higher-order structure of genome

(A) Ratio of genes resided in TAD of 12 tissues (adrenal grand, aota, bladder, hippocampus, left ventricle, lung, liver, ovary, pancreas, prefrontal cortex,

psoas muscle and small bowel) across lincRNA, PCG, antisense, miRNA and rRNA. Spleen data were excluded here because they showed outliers. lincRNA

versus protein_coding: p = 1.40 x 10–13, lincRNA versus antisense: p = 2.68 x 10–6, protein_coding versus antisense: p = 2.62 x 10–9, t-test independent

samples with Bonferroni correction.

ll
OPEN ACCESS

4 iScience 26, 106640, May 19, 2023

iScience
Article



Figure 2. Continued

(B) Heatmap of TAD coverage of all autosomes, X chromosomes and whole genome for 13 tissues and common regions.

(C) Moving average of expression correlation coefficients according to intergenic distances for gene pairs belonging to the same TAD, TAD and boundary,

and different TADs. Error bands represent 95% confidence intervals.

(D–F) The number of genes that resided in TADs compared to the distribution of controls (histogram) of 104 sets of randomly replaced lincRNA loci for (D)

PCG loci (E) antisense loci and (F) in common TAD region. The numbers for the true gene loci are indicated by black arrows with dashed lines.

(G) Distribution of tissue specificity scores calculated across GTEx tissues for lincRNAs in TADs, lincRNAs outside TADs, PCGs in TADs and PCGs outside

TADs.

(H) Moving average of expression correlation coefficients according to intergenic distances for lincRNA-PCG pairs belonging to the same TAD, TAD and

boundary different TADs and boundaries. Error bands signify 95% confidence intervals.

(I) Distributions of distance between gene and the nearest TAD boundary for lincRNAs in TADs and PCGs in TADs. G, I ****p< 10�4, Mann-Whitney-Wilcoxon

test with Bonferroni correction, two-sided.
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TAD regions derived from the TAD coordinates across the 13 tissues maintain the basic characteristics of

TAD, which previous studies have suggested.24,26,27 Similar to the TAD regions identified from the primary

tissues, the lincRNA loci were found to be strongly enriched within the common TAD regions against the

random distribution by permutation, whereas PCG and antisense loci were less enriched in TAD regions

(p< 10�4; permutation test; Figures 2D–2F and S3A–S3C).

To confirm these results, we performed a permutation test using circular randomization that preserves the

size and number of gene regions as well as their structure in genomic relationship to each other (p< 10�4;

permutation test; Figure S6A). We also removed possible confounders by excluding housekeeping (HK)

genes,28 setting a threshold for expression levels (Excluding genes with a median TPM less than 0.5 in

all tissue), and restricting lincRNAs to those with experimentally proven functional roles.29 Because most

of the HK genes are PCGs and are known to be located at the TAD boundary,24,25 exclusion of HK genes

could have affected patterns of PCG localization and expression specificity. However, the absence of HK

genes did not significantly affect the trends in genomic location and specificity patterns for each gene

type (p< 10�4; permutation test; Figure S6B). Filtering out low expression genes eliminated groups with

particularly high tissue specificity scores (Figure S6E), which includes a subset of class 3 (Figures 1B–1E),

genes with low expression levels and exclusive expression patterns. When restricted to lincRNAs

with experimental functional annotations, permutation pvalue was higher than in the other conditions

(p = 5.0 3 10�4; permutation test; Figure S6F) and there was no statistically significant difference in the tis-

sue specificity scores (Figure S6G). It should be noted that the number of experimentally proven functional

lincRNA genes is limited to a few hundred, and there may be an artificial bias that makes lincRNAs with

large condition-specific expression variations, such as human disease, more likely to be selected for func-

tional evaluation. In either condition, lincRNA loci were consistently localized to TADs and PCG loci were

localized to TAD boundaries, with higher tissue specificity for gene groups in TADs.

We also examined the tissue specificity of gene expressions inside and outside the TAD regions. Because

the broad genomic environment in testis, where dramatic chromatin architectural reorganization

throughout spermatogenesis and temporary disappearance of TADs are observed,30 does not ensure

maintenance of TAD structure and regulation, we excluded the expression data of testis from the following

analyses. Without testis expression data, lincRNA expression maintained higher tissue specificity than

those of PCGs (Figure S7A). When lincRNAs and PCGs were divided into groups of those which were

located inside and outside TADs, expressions of the groups included in TADs showed higher tissue spec-

ificities for both types of genes (Figure 2G). The relationship between the TAD localization and tissue spec-

ificity of lincRNA expressions was also examined for the three previously described classes (class 1, 2, and 3)

of lincRNAs identified from their expression patterns. In class 1 and 2, which had relatively low overall tissue

specificity, the expression of lincRNAs inside TADs showed significantly higher tissue specificity compared

to those outside TADs (Figure S7B; class 1: p = 5.0783 10�9, class 2: p = 3.163 10�3). The difference in the

expression specificities between groups within and outside TADs was the largest in class 2. On the other

hand, in class 3, which has the highest overall tissue specificity, there was no significant difference in expres-

sion specificities between lincRNAs inside and outside TADs. This implies that the direct contribution of

localization in TADs to the tissue specificity is limited and that additional regulatory mechanisms are

required to explain the increased tissue specificity. Comparison of the proportion of genes present in

TADs between classes showed that class 2 had the highest ratio, class 3 had a ratio as high as class 2,

and class 1 had the lowest ratio (Figure S7C; class 1: ratio = 0.594, class 2: ratio = 0.684, class 3: ratio =

0.676), suggesting that localization of loci to TADs possibly serves as a basis for downstream regulation

of expression.
iScience 26, 106640, May 19, 2023 5
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We examined the correlation of gene expression between lincRNAs and PCGs with intergenic distance and

position in the genome structure, and found that lincRNA-PCG pairs belonging to the same TAD main-

tained a slightly higher correlation than other positional gene pairs at distances greater than 10K bp. Of

interest, contrary to the expectation that gene pairs located at the TAD boundaries would inevitably

have higher correlation coefficients because of their ubiquitous expression patterns, in-TAD gene pairs

located a few hundred bp closer together tended to have higher correlation coefficients than those at

the TAD boundaries (Figure 2H). The distribution of the distance from the loci of lincRNAs and PCGs inside

TADs to the nearest TAD boundary, respectively, showed that lincRNAs were located farther from the

boundary and more internal to TADs than PCGs (p = 3.90 3 10�134; Figure 2I).

Analytical framework for trait-specific transcriptional status of TAD units indicated by

lincRNAs

Because the expression pattern of lincRNA is more cell- and tissue-specific than that of PCG, lincRNAs

could be useful and sensitive biomarkers; their expression profiles can be used for identifying expression

states specific to particular biological phenomena. Therefore, we proposed the following analysis scheme

for biomedical applications (Figure S8). First, lincRNAs that vary specifically for a biological phenomenon of

interest are identified with a differential expression (DE) analysis. Next, the cis- and trans-target genes of

lincRNAs are analyzed. Based on the results above, genes that have loci in the same TAD and show similar

expression patterns to lincRNAs are identified as cis-target genes. Because lincRNAs and cis-target genes

are specifically regulated by regulatory sequences insulated within TADs, gene ontology (GO) term enrich-

ment analysis are used to identify trait-specific functions common across the cis-target genes. For trans-

target genes, under consideration of their functionality, genome-wide genes that have expression patterns

negatively correlated with the lincRNAs are identified. lincRNAs often regulate trans-target genes with co-

factors. Therefore, if there is a common upstream regulator of the trans-target genes, it is likely to be a co-

factor of the lincRNA. Further information on the subcellular localization of the lincRNAs would enable

identification of the upstream factors that interact directly with lincRNAs. Because lincRNAs are polyA-

modified, albeit inefficiently,31 they are detectable by standard RNA-Seq as well as PCGs. TADs are also

maintained in most tissues and cells.32 Therefore, this analysis framework is applicable to a wide range

of samples profiled with conventional RNA sequencing methods.

lincRNA indicated transcriptional analysis highlighted HCM-specific transcriptional

regulations

As one of biomedical applications of the above analysis scheme, we applied it with a dataset of

expression profiles from HCM33 to identify pathologically relevant molecular profiles common to pa-

tients with heterogeneous genetic backgrounds. We identified 6,095 DEGs in human HCM by using

RNA-Seq data of myocardial tissues from healthy human volunteers and myocardial tissues from

HCM patients with multiple genetic backgrounds (Table S1, FDR<0.05, Figure S9A). The results of

GO analysis for all DEGs showed that GO enrichment related to translational processes was detected

at a top level in HCM, with decreased expression of translation-related genes consistent with a recent

report,34 and GO terms such as mitochondria and energy production, which are important for myocar-

dial function, also showed significant enrichment, indicating that the overall DEGs captured the char-

acteristics of HCM (Figure S9B).

Next, we identified lincRNAs with differing expression levels in HCM. We found that 132 lincRNAs were

significantly up-regulated and 140 lincRNAs were significantly down-regulated in the myocardium tissues

from patients compared to those from healthy volunteers (Figure 3A). We found that 113 of these lincRNAs

resided within 11 TADs with altered expression levels, indicating HCM-specific cis-association by lincRNAs

(Figure 3B). We performed GO enrichment analysis of these 113 lincRNAs and DEGs in the same TADs ac-

cording to three patterns: DEGs in all TADs with altered expression levels, DEGs in TADs with up-regulated

expression levels, and DEGs in TADs with down-regulated expression levels. Significant GO enrichment

was observed only for DEGs in TADs with down-regulated expression levels, which indicated a relevance

of a GO category in biological pathways related to keratinization (Figures 3C, S10A, and S10B). Among the

genes used in the GO analysis, keratin associated proteins were found to be downregulated in HCM (Fig-

ure 3D). On the other hand, we could observe that some genes of the keratin family weremarkedly up-regu-

lated (Figures 3E and S10C). It has been reported that the K8/K18 pair is ectopically expressed downstream

of TNF-a in a desmin-deficient mouse model of heart failure and exerts a cardioprotective effect in the

myocardium after tissue injury, and that K8/K18 is also ectopically expressed in human failing myocardium,
6 iScience 26, 106640, May 19, 2023
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Figure 3. Analysis of TAD-related cis function of lincRNA

(A) Volcano plot showing differentially expressed lincRNAs between in HCM and healthy control tissues (log2 fold-change (FC) > 0.58 or log2 FC <-0.58,

FDR <0.01).

(B) Dot plots showing the distribution of TAD expression levels and their chromosomal locations, that were calculated as the median of log2 FCs of all genes

in the same TAD.

(C) Enriched biological processes based on DEGs in TADs with significantly lower expression levels (n = 9; FDR <0.05, Fisher’s Exact test).

(D and E) Gene expression levels (TPMs) for (D) keratin associated proteins and (E) keratin family genes in healthy and HCM tissues.
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where TNF-a expression is up-regulated.35 Because the symptoms of HCM are also caused by mechanical

stress because of abnormal physiological power production in sarcomeres,36 it is possible that the ectopic

expression of intermediate filaments acts to protect the myocardium. Ectopic expression of intermediate

system filaments may have a protective effect on the myocardium. However, in HCM, we did not observe

any changes in the expression of the K8/K18 pair as observed in the heart failure mouse model, and the

activity of the upstream factor TNF was also suppressed compared to controls, whereas the expression

of the K5/K14 and K1/K10 pairs was significantly upregulated (Figures 3D,3E, and S10C). This suggests

that several different keratin pairs contribute to myocardial protection depending on the type of myocar-

dial stress of different intensity and duration in humans.

Finally, we analyzed genome-wide trans-regulations of the post-transcriptional lincRNAs in HCM. To iden-

tify potential pairs of lincRNAs functional in HCM and their trans-target genes, we calculated the correla-

tion of gene expression between pairs of 272 lincRNAs and 1930 PCGs, both with significantly altered

expression levels (Figures 3A and S9A). Among the pairs with significantly correlated expression levels (ab-

solute value of correlation coefficient >0.8), 303 pairs were positively correlated whereas 22 pairs were

negatively correlated (Figure 4A). Furthermore, more than half of the negatively correlated pairs (15 pairs)

were between PCGs and LINC00881. LINC00881 is known to be expressed specifically in cardiomyocytes

after differentiation,37 whereas it was significantly reduced in HCM (Figure 4B). Gene ontology analysis of

the 15 PCGs that were negatively correlated with LINC00881 showed an enrichment of ontology terms
iScience 26, 106640, May 19, 2023 7
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Figure 4. Analysis of trans function of lincRNA

(A) Distributions of the Pearson correlation coefficients between differentially expressed PCGs and lincRNAs.

(B) Gene expression levels of LINC00881 and the PCGs negatively correlated with LINC00881 in HCM and healthy tissues (***p< 0.001, Mann-Whitney-

Wilcoxon test two-sided with Bonferroni correction).

(C) Enriched biological processes among PCGs negatively correlated with LINC00881 (n = 15; FDR <0.05, Fisher’s Exact test).

(D) Bar plot representing CN-RCI values for DANCR (cytoplasmic RNA control), LINC00881 and NEAT1 (nuclear RNA control) across GM12878 and K562.

(E) Transcriptomic footprints inferred with oPOSSUM (left and center) and Ingenuity Pathway Analysis (IPA: right) for 13 transcription factors.
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related to myocyte development (Figures 4B and 4C). According to lncATLAS, a database of subcellular

localization of lncRNAs, LINC00881 is relatively localized in the nucleus, suggesting that it functions in

the nucleus (Figure 4D). Because the 15 negatively correlated PCGs are located on different chromosomes

and not near to the locus of LINC00881 (chromosome 3), it is highly likely that LINC00881 regulates these

genes through nuclear factors. Therefore, we applied oPOSSUM (ver.3.0) to the promoter region sequence

data to search for nuclear factors that commonly regulate the 15 PCGs (Table S2). In addition, to narrow

down the number of plausible factors with different approaches, we used Ingenuity Pathway Analysis
8 iScience 26, 106640, May 19, 2023
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(IPA) to search for nuclear factors that function upstream of the set of PCGs that vary in HCM, and 13 reg-

ulatory factors were commonly identified in these two analyses (Figure 4E). Of the three transcription fac-

tors with positive IPA Activation Zscore, E2F1 was shown to bind well to the promoter region of the target

gene (Figures S11A–S11E). These results support the importance of E2F1 as a regulator of HCM traits and

suggest that down-regulation of LINC00881 may be involved in the regulation of myocardial-specific path-

ways in HCM.
DISCUSSION

In this study, we demonstrated that lincRNA loci are significantly enriched within TAD regions and their

localization is associated with tissue specificity at a genome-wide level. More specifically, PCG loci were

enriched in TAD boundaries, whereas lincRNAs showed locus enrichment for TADs. lincRNAs enriched

in TADs had higher tissue specificity than other lincRNAs or PCG, suggesting that TADs could be the

basis for tissue-specific expression of lincRNAs. The increased tissue specificity associated with TAD

localization complements the mechanisms of tissue-specific expression by promoters15 and epige-

nomes16 that have been investigated. Importantly, we validated the cis functions previously reported

for individual lincRNA loci, such as ANRIL38 and ANRASSF1,39,40 as whole gene type properties and

demonstrated its significance. As shown in Figure S7C, lincRNAs expressed in multiple tissues have

increased tissue specificity according to TAD localization, and these lincRNAs’ regulation or function

can be associated with a sub-TAD state in which the structure within the TAD changes from tissue to

tissue, whereas one-to-one recognition of transcription factors and regulatory sequences may be pref-

erable for the highly specific lincRNA regulation. Often, the unknown function of lincRNAs has been in-

ferred from the function of their neighboring genes because of the expression correlation between

lincRNAs and their neighboring genes.41 We show at the whole genome level that expression correla-

tion is higher for genes in the same TAD than for gene pairs at other locations regardless of intergenic

distance, as has been suggested so far.26,27,42 Especially cis-association between lincRNAs and neigh-

boring PCGs in TADs, which are highly tissue-specific genes, could suggest their functional relationship.

Furthermore, among genes in TADs, lincRNAs may function as core TAD factors because lincRNAs are

located farther from the boundary than PCGs. Recent study shows that lncRNA Eleanor activates ESR1

gene and neighboring genes in the same Eleanor-TAD in breast cancer cells.43 Such lincRNA cis-acti-

vation at TAD level may occur in a broad genomic region. PCGs were significantly enriched at TAD

boundaries with low expression specificity; McArthur and Capra reported that house-keeping genes

are abundant at the highly conserved TAD boundary across multiple cell types,44 which is consistent

with our results.

In addition to lincRNAs and PCGs, we also examined enrichment in TADs for various gene types registered

in GENCODE and found that the rate of enrichment varies among gene types. As this study shows, there is

potential to gain new understanding of function and its regulation in many gene types from the perspective

of genome structure. Future reevaluation of various genomic elements from the perspective of higher or-

der structure can be expected to yield new insights into genomic function and evolution.

We further surmised that the identification of two groups of cis- and trans-regulated genes of lincRNAs

would allow us to infer the mechanisms that produce differences in traits between samples. To demon-

strate this, we analyzed data from human HCM to identify a group of genes associated with HCM-specific

expression variation of lincRNAs and their upstream genes, which provided insight into the pathways rele-

vant to HCM pathogenesis. HCM is often caused by mutations in sarcomere-related genes. However, there

are many cases in which genetic abnormalities are not identified, and there is a need to understand the mo-

lecular mechanisms of the pathogenesis of HCM and to develop therapeutic methods. Here, based on our

new approach and data from patients with multiple genetic backgrounds, we found elevated keratin gene

expression and an HCM-specific transcriptional pathway by E2F1 with down-regulation of LINC00881.

Ectopic expression of keratin in myocardium has been reported in studies of desmin-deficient mouse

models of heart failure,35 although little is known about its relevance in human cardiac disease. Although

only expression of the keratin K8/K18 pair was detected in the mouse model, the human HCM samples

showed little expression of K8/K18 and elevated expression of the K5/K14 and K1/K10 pairs instead. In

mice, K8/K18 is thought to function as an alternative cytoskeleton to compensate for desmin deficiency,

whereas what the differences in keratin pairing mean in human stressed myocardium has not yet been

investigated. Future work is needed to clarify its precise background mechanisms.
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In conclusion, this study demonstrated that, at a genome-wide level, the lincRNA loci were significantly

localized to TADs compared to PCGs and that this localization was associated with the tissue-specificity

of gene expression. Based on this, we proposed a new analysis framework for diseases/traits that are rele-

vant to lincRNA expression, applied it to HCM data, and identified transcriptional regulations specific to

HCM pathogenicity. This study will contribute to a fundamental understanding of the molecular basis un-

derlying tissue-/disease-specific expression of lincRNAs.
Limitations of the study

It should be noted that there is some limitations of this study: it uses data from existing tissue-derived

TADs as information on 3D structures, and it is not possible to refer to sub-TADs or local loop struc-

tures that are finer than information on a given TAD region. Although more TAD coordinates from

primary human tissues are needed, there are often different algorithm-based tools used in Hi-C

data analysis to identify TADs resulting in the introduction of considerable technical noise. This makes

it challenging to ensure robustness, especially with multiple external TAD datasets. It is difficult to

clearly identify molecular mechanisms by which lincRNA expression specificity is increased in TADs

or that cause the expression correlation between lincRNA and coding gene pairs in TADs. Future

accumulation of time-series expression data and experimental corroboration is awaited to elucidate

those mechanisms. Furthermore, the relatively small sample size (n = 37) for the analysis of HCM-spe-

cific transcriptional states could potentially introduce bias, requiring further external validation and

experimental corroboration.
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Contact, Tatsuhiko Tsunoda (tsunoda@bs.s.u-tokyo.ac.jp).
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Materials availability

This study did not generate new unique materials.

Data and code availability

All data analyzed during this study were retrieved from public repositories. GTEx v8 release gene expres-

sion data are available through the GTEx Portal [https://gtexportal.org/home/datasets]. TAD coordinates

on hg38 estimated from human Hi-C data are available through 3D Genome Browser [http://3dgenome.

fsm.northwestern.edu/publications.html]. A list of housekeeping genes is available at [http://www.tau.

ac.il/�elieis/HKG/]. Experimentally supported functional lncRNA data are available through LncTarD 2.0

Browser [https://lnctard.bio-database.com]. ChIP sequencing data are available through ChIP-Atlas

[https://chip-atlas.org]. Raw RNA sequencing data of HCM and control myocardial tissues are available

through NCBI Sequence Read Archive (SRA) under accession GSE130036.33 Code used for all processing

and analysis is available upon request. Any additional information required to reanalyze the data reported

in this paper is available from the lead contact upon request.

METHOD DETAILS

GTEx data processing

GTEx expression data (gene transcripts per kilobase million (TPM)) used in this study was downloaded from

the GTEx portal [https://gtexportal.org/home/datasets; accessed 12.20.2019, file ‘‘GTEx_Analysis_2017-

06-05_v8_RNASeQCv1.1.9_gene_tpm.gct.gz’’], which contained 17,382 postmortem samples. The editing

level was called on the GTEx v8p release (study accession phs000424.v8.p2).

Based on gene type classification of GENCODE Release 25 annotation file, expression values of 7345

lincRNA and 18358 protein-coding genes (PCGs) were extracted from GTEx data and clustering was per-

formed for each gene types. For sample clustering, we performed a t-SNE and a Euclidean distance-

based clustering with scikit-learn (v.0.22) using the following parameters: sklearn.manifold.TSNE(n_

components = 2, init = ’random’, random_state = 101, method = ’barnes_hut’, n_iter = 1000, verbose =

2, perplexity = 40).fit_transform(sample_expression_data).

lincRNA clustering

Clustering based on lincRNA expression patterns across tissued was performed using scikit-learn (v.0.22)

agglomerative clustering method with default parameters. Median gene-level TPM by tissue was log2-

transformed and clustered into three classes to avoid imbalances in the number of genes per cluster.

Gene expressions based on the three clusters determined were plotted on a heatmap.

Co-expression with neighboring genes

All gene loci were annotated with GENCODE Release 25 annotation file. The basic gene annotation file was

converted to BED file format using a custom bash script. Neighboring genes of lincRNAs were identified by

bedtools (v2.29.2)54 using the distance between gene bodies. Pearson’s correlation coefficients for expres-

sion correlations were calculated between adjacent genes with the GTEx expression data.

Tissue specificity

To assess the specificity of gene expression across all tissues, an entropy-based specificity score was calcu-

lated using the Jensen-Shannon specificity variance metric (JSS DPM) in the tspex package.47 Using GTEx

expression data, the score for each gene was quantified as a continuous value between 0 (ubiquitous

expression) and 1 (tissue-specific expression).

Topologically associating domains

We downloaded and used TAD coordinates on hg38 estimated from human Hi-C data from 3D Genome

Browser [http://3dgenome.fsm.northwestern.edu/publications.html; accessed 02.09.2020, file ‘‘hg38’’].

For 13 primary tissues (adrenal gland, aorta, bladder, small bowel, prefrontal cortex, hippocampus, liver,

lung, ovary, pancreas, psoas muscle, spleen and left ventricle).

For TADs from each of the primary tissues, we identified all genes that reside within TADs for lincRNA, pro-

tein coding, antisense, processed pseudogene, transcribed processed pseudogene, processed transcript,
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sense intronic, To be Experimentally Confirmed (TEC), unprocessed pseudogene, transcribed unpro-

cessed pseudogene, unitary pseudogene, transcribed unitary pseudogene, polymorphic pseudogene,

miRNA, snRNA, snoRNA, rRNA and miscRNA. Only those genes of which the entire gene body was con-

tained within TAD regions were considered. We used a permutation scheme to obtain randomized distri-

bution of gene positions for evaluating whether or not loci of each gene type are enriched within TADs: the

gene loci were re-shuffled (10,000 permutations genome-wide) to count the number of genes in TADs and

to estimate permutation p-values. Each permutation consists of the same TAD coordinates and gene sets,

in which TAD regions were kept whereas the gene positions were randomly shuffled using the shuffle utility

of bedtools (v.2.29.2).54 This was repeated for each of the 13 tissues.

To obtain a list of common TAD regions, TAD coordinates which overlapped across all the 13 tissues were

determined using the intersect utility of bedtools (v.2.29.2).54 The resulting list of 2,326 common regions

were used as common TADs for the statistical framework described below.

Genes contained in the common TADs were identified using the intersect utility of bedtools (v.2.29.2).54 To

confirm the insulating effect of TADs on gene expression, we examined the moving average of the expres-

sion correlations according to the intergenic distance for gene pairs with different positions in relation to

the TAD and the correlation of TAD expression levels for each chromosome. Pearson’s correlation coeffi-

cients were calculated for gene expression values in GTEx, and the intergenic distances were calculated

with GENCODE Release 25 annotation file. Moving averages were used to examine trends in expression

correlations and smooth out short-term variation by calculating the average of the data over an interval

of log10(bp+1) intergenic distance. Confidence intervals were calculated from standard error of correlation

coefficients within the sliding window. To quantify the expression levels of each TAD region, GTEx TPM

data were log2-transformed and standardized, and median expression levels were calculated among

genes included in each TAD. Pearson’s correlation coefficients were calculated for expression levels be-

tween TADs. For all lincRNAs and PCGs, in addition to the permutation tests and tissue specificity score

calculations described above, a circular randomized permutation test was performed (10,000 permutations

chromosome-wide) that preserves the size and number of gene regions plus their structure in genomic rela-

tionship to each other, using the regionR package (v.1.30.0)57 and R (v.3.6.2). Permutation tests and tissue

specificity scores described above were performed for lincRNAs and PCGs under the following conditions:

exclusion of HK genes,28 restriction to lincRNAs with experimentally proven functional roles,29 setting a

threshold for expression levels (median TPM more than 0.5 at least in one tissue).

In addition to the position patterns of lincRNAs and PCGs within and outside TADs, we compared the dis-

tribution of the shortest distances between genes and TAD boundaries in order to examine their distribu-

tion within TADs. The distance from each lincRNA and PCG within a TAD to the nearest TAD boundary was

calculated using the distanceToNearest utility of regionR packages (v.1.30.0)57 and R(v.3.6.2).
RNA-seq quality control and data analyses of human HCM

Publicly available RNA-Seq datasets with accession code GSE130036,33 which contained 37 fastq files

(myocardial tissues from 28 HCM patients and 9 healthy donors) were downloaded from the NCBI GEO

database.

Quality control of the reads was performed with FastQC (v.0.11.8) and MultiQC (v.1.9).48 The reads were

trimmed with fastp (v.0.20.1)49 and aligned to the human hg38 reference (GENCODE Release 25 basic

gene annotation) using STAR (v.2.7.3a)50 with default parameters. Quantification of gene expression was

performed using RSEM (v.1.3.1)51 with default parameters. The raw count matrix containing all the samples

was created using tximport package (v.1.14.2)52 and R (v.3.6.2). Normalization and differential expression

analysis were carried out using DESeq2 package (v1.26.0)53 and R (v.3.6.2). Difference of gene expression

was considered significant if their log2 fold change (HCM/control) was >0.58 or <�0.58 and its false discov-

ery rate (FDR) was <0.05 upon correction for multiple testing with the Benjamini–Hochberg method.
GO enrichment analysis

For determining DEGs between myocardial tissues of HCM patients and healthy donors, after confirming

that 41567 genes with observed background expression (TPM >0 in at least one sample) covered 20595

reference genes registered in PANTHER, GO term enrichment analysis was performed using the
16 iScience 26, 106640, May 19, 2023
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PANTHER Overrepresentation Test (release 02.24.2021) and the GO ontology database (release

02.01.2021).56
Analysis of disease-specific expression status with lincRNA expression as an indicator

We calculated median log2 fold change of genes within each TAD that had at least one differentially ex-

pressed lincRNA according to the common TAD coordinates, setting the log2 fold change of genes with

FDR R0.05 to 0. TADs with median log2 fold change >0.58 or <-0.58 for DEGs within them were defined

as having significant differences in expression levels. We performed GO analysis on the genes included in

TADs with significant differences in expression levels according to three gene sets: all genes, up-regulated

genes, and down-regulated genes.
Identification of lincRNA candidates suppressing the target genes

Correlations of expression levels between differentially expressed lincRNAs and PCGs from all 37 samples

were calculated. For PCG and lincRNA expression levels, we used normalized TPM values. These normal-

ized values were obtained with RSEM (v.1.3.1).51 Only gene pairs with Pearson’s correlation coefficient >0.8

were considered for further study.
Subcellular localization of LINC00881

To characterize the molecular function of LINC00881, we ascertained its subcellular localization using

LncATLAS database (lncatlas.crg.eu).45 LncATLAS provides relative concentration index (RCI) to define

and quantify RNA localization, which is defined as the log2-transformed ratio of FPKM (fragments per kilo-

base per million mapped) in the cytoplasm vs. nucleus.
Transcription factor analysis

To identify transcription factors predicted to be involved in regulatory function of LINC00881, we searched

over-representation of predicted transcription factor binding sites (TFBS) in gene promoters and proximal

50 regulatory regions (G5,000 bp from TSS) by Single Site Analysis (SSA) of oPOSSUM ver.3.0.55 The CORE

collection of JASPAR database was used as the source of DNA binding profiles. A set of 15 coding genes

negatively correlated with LINC00881 were input to SSA to obtain Z-scores and Fisher scores for each pre-

dicted transcription factor. To functionally filter the sequence-based predicted transcription factors, we

selected nuclear factors involved in transcriptional regulation from those predicted to be upstream regu-

lators (categories: ‘‘transcriptional regulator’’ and ‘‘ligand-dependent nuclear receptor’’) by the use of In-

genuity Pathway Analysis (IPA, Qiagen). Z-Score (ZS), used to calculate the predicted activation state from

IPA, was used to infer likely activation states of upstream regulators based on comparison with amodel that

assigns random regulation directions. Only those hits found in both analyses were considered for the

overlap.

To support the ability of the identified co-factor candidates to actually regulate their target genes, human

ChIP-seq data registered in ChIP-Atlas46,58 for 6 genes (OXO3, NKX2-5, E2F1, MYCN, MAX and NR3C1)

were specified and the corresponding results were streamed to IGV (v.2.16.0) to obtain snapshots.
QUANTIFICATION AND STATISTICAL ANALYSIS

Student’s t-test was used to determine the percentage of each gene type in the TAD. Mann-Whitney-

Wilcoxon test two-sided with Bonferroni correction was used to compare gene specificity between the

two groups. ns: P> 0.05, **P< 0.01, ***P< 0.001, ****P< 10-4, Student’s t-test and Mann-Whitney-

Wilcoxon test. P< 0.05 and FDR <0.05 were considered to be statistically significant. Unless

otherwise stated, all statistical analyses were performed in Python 3.8.0 statistical environment, using

the packages pandas (v.0.25.3), scikit-learn (v.0.22), scipy (v.1.5.2), numpy (v.1.17.4), statannot (v.0.2.3)

and tspex (v.0.6.2) and all plots were generated in python using the packages seaborn (v.0.11.0) and mat-

plotlib (v.3.1.2).
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