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Laser fabrication and evaluation 
of holographic intrinsic physical 
unclonable functions
Aggeliki Anastasiou1, Evangelia I. Zacharaki2, Anastasios Tsakas1, 
Konstantinos Moustakas2 & Dimitris Alexandropoulos1*

Optical Physical Unclonable Functions (PUFs) are well established as the most powerful 
anticounterfeiting tool. Despite the merits of optical PUFs, widespread use is hindered by existing 
implementations that are complicated and expensive. On top, the overwhelming majority of optical 
PUFs refer to extrinsic implementations. Here we overcome these limitations to demonstrate for the 
first time strong intrinsic optical PUFs with exceptional security characteristics. In doing so, we use 
Computer-Generated Holograms (CGHs) as optical, intrinsic, and image-based PUFs. The required 
randomness is offered by the non-deterministic fabrication process achieved with industrial friendly, 
nanosecond pulsed fiber lasers. Adding to simplicity and low cost, the digital fingerprint is derived by a 
setup which is designed to be adjustable in a production line. In addition, we propose a novel signature 
encoding and authentication mechanism that exploits manifold learning techniques to efficiently 
differentiate data reconstruction-related variation from counterfeit attacks. The proposed method 
is applied experimentally on silver plates. The robustness of the fabricated intrinsic optical PUFs is 
evaluated over time. The results have shown exceptional values for robustness and a probability of 
cloning up to 10−14 , which exceeds the standard acceptance rate in security applications.

Security of information and goods is a priority in everyday practice, that is protected by a strict legislative 
framework and various technological solutions to prevent bridge and unlawful access. Counterfeiting is the most 
common bridge of security that impacts economy and public health. For example, counterfeiting pharmaceutical 
products can be  lethal1. Similarly, counterfeiting parts in a production line usually leads to under-performance 
or even failure of the end  product2–5. Among the various security primitives, researched and developed, Physical 
Unclonable Functions (PUFs)6,7 have the potential to become the golden security  standard8. A PUF is a unique 
physical entity almost impossible to duplicate or clone. The uniqueness of its structure stems from the random 
physical phenomena introduced during  manufacturing9. PUFs can be broadly, categorized as strong and weak 
PUFs depending on how easily they can be compromised and intrinsic and extrinsic depending on whether the 
PUF entity is an integral part of the good (intrinsic)10 or not (extrinsic)11. Any random physical process is a 
potential candidate for the realization of PUFs. Indeed, there is already a plethora of research  accounts12–19 that 
include exotic solutions like  aerogels20, Raman  tags21, plasmonic  nanopapers22 wrinkles on  glasses23, perovskite 
fluorescent  dots24 or even edible unclonable  functions25 to name a few. The PUF scenery in the literature is 
evolving fast necessitating taxonomy activities like the one presented by McGrath and co  authors12. In Ref.12 the 
various PUF concepts are catalogued in terms of nature and physical process. Along similar lines, Gao et al.26 
have recently reviewed PUF technologies from the viewpoint of applications for PUFs considering unreliability 
and security issues.

The overwhelming number of PUF realizations reflects the plurality of physical processes that can be 
exploited. In most PUF demonstrations, although security of goods and services is evoked, it is surprising 
that these are rarely assessed in terms of practical implementation both in terms of industrial compatibility for 
upscaled production and PUF evaluation apparatus for Challenge Response Pair (CRP) behavior at the end 
user. In this context, it is hard to envisage how the various demonstrations  like20,23,24 mentioned above will be 
incorporated in an industrial fabrication of everyday goods or how bulky machinery, such as the spectroscopic 
equipment required in Ref.21, can be used for read out of PUF response somewhere in the supply chain. Despite 
the interesting physics and science entailed in the various PUF demonstrations, it will be the tradeoff between 
built-in complexity, hence unclonability, and industrial scalability, hence cost effectiveness, that will determine 
the viability of each PUF scheme that can be further specified for the targeted application.
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In this sense, it is instructive to revisit PUFs requirements, namely uniqueness, robustness and  unclonability9. 
Given the practical importance of PUFs one should elaborate this list with the requirements of practical imple-
mentation and cost effectiveness. These translate to compatibility with existing industrial fabrication processes 
and long-term stability of the PUF responses. Part of these requirements may be relaxed or emphasized depend-
ing on the application. For example, the so called weak  PUFs12, are easy to fabricate yet they are vulnerable 
to machine learning (ML) attacks (see Table 1  of26), hence the name. Similarly, extrinsic  PUFs12 are easier to 
fabricate, however they are by default more vulnerable compared to intrinsic PUFs since e.g. an attacker may 
interfere and replace them. A legitimate criticism concerns the fabrication methods used for the generation of 
PUFs, especially of strong PUFs, since in the vast majority these are not compatible with the fabrication methods 
used for the commodity goods. Therefore, it does not come as a surprise that electronic intrinsic PUFs are gain-
ing ground compared to other PUF implementations despite the fact that they are less secure, since they can be 
fabricated with the well-established CMOS technology. Aside from fabrication, another challenge for the PUF 
technology is that the PUF entity needs to be an integral part of the item that it aims to protect. This is still only 
partially met: in most present-day implementations the PUF is an add-on rather than part of the item and this 
compromises PUFs robustness. In silicon PUFs (e.g. SRAM  PUFs27 or MEMS  PUFs28), the PUF is indeed part 
of the item, yet these are weak PUFs. Electronic PUFs can also be considered as part of the item, yet they are 
vulnerable to machine learning  attacks29.

Interpreting these trends, one concludes that in present day PUF scenery, fabrication simplicity is favored 
over security, and extrinsic PUFs over intrinsic PUF. The next natural technological step is the development of 
intrinsic strong PUFs that are simple to fabricate and to evaluate. Despite the intensive research  activity30 a low-
cost intrinsic strong PUF technology that is industrial friendly is still elusive, hindering large-scale deployment. In 
this paper, we demonstrate for the first time to our knowledge strong intrinsic Computer-Generated Holograms 
(CGH)31 as PUFs (CGH-PUFs) on metallic goods that are fabricated using laser-based techniques, compatible 
with industrial fabrication processes. We exploit the randomness of the laser matter interaction to demonstrate 
unique optical response profiles of intrinsic PUFs that are robust, unclonable, reliable and scalable. In doing so, 
we use an industrial nanosecond IR fiber laser for the fabrication of holograms on silver surfaces and a simple 
evaluation setup to record the reconstruction upon illumination with a standard laser source. This fast, facile, and 
low-cost laser engraving fabrication process of CGH-PUFs outperforms more complex and time-assuming pro-
cesses of other PUF fabrication methods. It is the less precise control of the laser matter interaction induced by the 
IR nanosecond laser that delivers the necessary randomness for the PUF’s purposes in the micro/nanostructures 
on the samples. Moreover, we develop an advanced novel Machine Learning (ML)-based evaluation algorithm for 
the accurate PUF authentication, that adds up to robustness. The image normalization and registration processes 
as well as the computation of sophisticated similarity metrics lead to high authentication performance: the PUF 
evaluation across different days reveals enhanced robustness and a low probability of cloning.

Optical PUFs design: system architecture
Laser fabrication of holographic PUFs. Unlike previous approaches in the literature, here we revisit the 
use of laser-based techniques for the fabrication of PUFs. The necessary randomness is provided by the highly 
complicated nature of laser matter  interaction32. There are several advantages in using laser-based techniques: 
lasers are well adopted in fabrication processes for industrial  production33, hence PUF fabrication can be readily 
upscaled. The use of lasers allows for the fabrication of intrinsic PUFs in a one-step process, so that the good to 
be authenticated is the PUF itself. We benefit from the uncontrollable nature of some of the phenomena asso-
ciated with processing of materials with nanosecond laser pulses to engrave PUFs in the form of holograms. 
Especially for nanosecond lasers, the thermal process dominates the laser pulse material interaction with pro-
nounced extended Heat Affected Zone (HAZ). Laser ablation is accompanied with uncontrollable melting and 
solidification, redeposition and shockwaves as well as thermally induced  defects34–36.

In essence, our method of hologram engravings of PUF is a speckle-based technique. Speckle-based Opti-
cal  PUFs37 are strong PUFs, i.e. unclonable and immune to attacks, that rely on the generated speckle from a 
random structure upon illumination.  Speckle38 is a form of coherent noise that results from destructive and 
constructive interference of scattered light from microstructures on the laser processed surface. It is empha-
sized that our technique differs distinctively from previously reported  techniques39 that use the engravings of 
holograms as low security tags. In our approach, the PUF is generated by the random information from the 
disorder produced upon laser processing with the nanosecond pulsed laser while the meaningful information 
carried by the hologram acts as anchor points that relax the sensitivity to probing thus improving dramatically 
robustness. Therefore, our technique overcomes the severe limitations of present-day speckle-based optical PUF 
approaches that they are “notoriously sensitive to probing and environmental variations”40. We choose to model 
CGH both in beam Diffuser (BD) design and beam Splitter (BS)31 (Fig. 1). The BD design is more demanding 
in terms of pixel size and therefore is less tolerant to potential variations during the fabrication process, hence 
most suitable for optical PUFs.

For the validation of the method, we have fabricated twenty (20) CGH on the same silver plate with the exact 
same conditions, namely pulse duration, power and passes, emulating an industrial production line in ambient 
atmosphere. Half of them (10) were engraved with a beam Splitter holographic mask and the rest with a beam 
Diffuser holographic mask. No special room conditions were applied (e.g. regulated temperature or air filtering). 
Analysis of these engravings reveals similarity in the low spatial frequency content, whereas the high frequency 
content differs significantly. It is the latter that ensures the requested unclonability. It is interesting to note that 
there are differences within the same CGH engraving: apart from the randomness during the laser ablation 
process, the heating of the sample during laser processing alters the reflectivity and therefore the conditions 
for ablation. This effect was highlighted in Ref.41 where a machine learning methodology was proposed for the 
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minimization of the consequences of sample thermalization on the CGH quality. Obviously, here we follow the 
opposite route.

The proposed method offers many degrees of freedom for additional randomness and unpredictability in 
the fabrication process that are beneficial for PUFs. Sources of randomness are (a) instabilities in the intensity 
of the laser source itself, (b) the unstable polarization of the laser sources, (c) uncertainties in the galvo mirrors 
when operating at low frequencies. Furthermore, often dyes are used to enhance the absorption and suppress 
reflection upon laser irradiation. The manual application of dye introduces some experimental variation leading 
to increased uncertainty.

For the image reconstruction, we used the experimental setup of Fig. 1e. The reconstructed image contains 
both the meaningful information, in this case the letter “S”, as well as the speckle noise. Irregular and uncontrol-
lable nano/microstructures result upon laser ablation with nanosecond pulsed lasers as discussed above. The 
higher the irregularity of the surface, the more pronounced is the speckle noise. Figure 2 shows scanning electron 
microscopy (SEM) images of the fabricated CGHs, captured with Zeiss EVO MA 10. The desired speckle is gener-
ated by the nano/microstructures in and around the crater. An example of a target image with the corresponding 
phase mask and obtained reconstructed image are shown in Fig. 1.

Authentication methodology
As described above, the response of our laser fabrication and image reconstruction system consists of a holo-
graphic image with a noisy, but structured, central shape (representing a selected letter) merged with a speckled 
background. Every new illumination of the engraved structure produces a unique image due to the random light 
scattering effects. The authentication challenge thereby can be cast as a method that is able to identify engraving-
related image effects irrespectively of the image reconstruction variation and random noise. This method should 
be powerful enough to distinguish images obtained from the most similar engravings, e.g. as the ones produced 
by the same holographic mask of a CGH, under the most challenging conditions, i.e. in loosely controlled set-
tings. To address these challenges, we follow a methodology that first minimizes the acquisition-related data 

Figure 1.  Holographic masks (a,c) and reconstructed images (b,d) for beam Splitter (a) and beam Diffuser (c) 
structure design of a CGH and the reconstruction setup (e).
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variation (misalignment of images) and then uses semi-supervised learning techniques to model the variation 
of the reconstructed images and encode each of them through a unique descriptor in a low-dimensional space, 
where relative distances can be computed. By using this descriptor in a metric space, we can assess the engrav-
ing’s authenticity, quantified as image similarity versus the original images acquired at baseline. The steps of our 
authentication methodology are illustrated schematically in Fig. 3.

In more details, the PUF generation phase of the proposed method includes the fabrication of the engrav-
ing, the holographic image acquisition and the spatial standardization of the reconstructed images. This latter 
procedure involves linear image registration, cropping and conversion to grayscale. In the signature encoding 
phase, we encoded the images with fewer variables using a non-linear dimensionality reduction technique. A 
set of multiple PUFs is used for the extraction of authentic signatures and stored to a database to be used at 
the authentication phase. To evaluate the authenticity of a CGH-PUF, we repeat the steps of image acquisition, 
standardization and dimensionality reduction, where in the latter, the new responses are combined with the 
responses from the database in order to extract the signatures of the testing sample and compare it against the 
existing (authentic) ones. If the authentication score exceeds a threshold, the testing sample is considered as 
genuine, otherwise as counterfeit.

Image standardization. As a first step, the colored (RGB) images obtained with the webcam are trans-
formed to grayscale and quantized as 8-bit unsigned integers in the range of 0 to 255, to reduce memory require-
ments and processing time. To evaluate authenticity and robustness in the creation of PUFs the definition of a 
metric is required that allows to quantify similarity between a test and a reference image sample. A point-wise 
comparison would not reveal similarities even for images obtained from the same engraving because of mis-

Figure 2.  SEM images for three indicative engravings of beam Diffuser structure design (BD3, BD1 and BD5 
respectively). Each column corresponds to different engraving and each row to different magnification: (a–c) 
220X, (d–f) 600X, (g–i) 1.84KX and (j–l) 7.45KX.
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placement during image acquisition. To remove the effect of misplacement during image acquisition we spatially 
normalize each image to a common (reference) space. For this purpose, we exploit the fact that our images 
contain a distinct pattern (the holographic shape) that can guide an image registration algorithm in the mapping 
process. In detail, let �S and �R denote the domain of a source and a reference (template) image, respectively, 
and IS(p) the intensity of the source image at pixel p ∈ �S and IR(q) the intensity of the reference image in pixel 
q ∈ �R . Image registration is a problem of calculating a spatial transformation T : �S → �R that brings the two 
images into alignment, such that the same structures spatially coincide. This is accomplished by maximizing a 
similarity criterion that quantifies the level of alignment between the images. We used as geometric mapping 
function an affine transformation that accounts for translation, rotation, scaling, and shearing effects in order to 
ensure that the reconstructed images which were used as input to our method, would not be affected from any 
possible instabilities on the reconstruction setup. For a two-dimensional spatial domain, the affine transforma-
tion is expressed with 7 parameters (1 for rotation, 2 for translation, 2 for scale and 2 for shear). Since the image 
to be mapped to the reference space is of the same modality with the template (i.e. a separate template is used 
for images with beam Diffuser or beam Splitter), we selected as similarity criterion the mean square error, which 
provides an average pixel-wise difference.

Subsequently, the images are centrally cropped to keep the most distinctive part of the reconstructed images 
and exclude the surrounding noise, while reducing the image dimensionality. Each two-dimensional image is 
then vectorized and stored as a one-dimensional vector, denoted with vvv ∈ R

D , where D is the number of pixels 
after cropping. No additional filtering is performed on the images because we have no intention of eliminating 
the background noise around the central structured pattern (symbol ‘S’ in our case). In fact, the uniqueness of 
this speckle noise is the basis for the authentication process, since it acts as the signature of the engraving, as 
presented in corresponding  literature37,42.

Signature encoding with t-SNE. Any authentication methodology is based on evaluating similarity or 
distance between a new sample and the reference (authentic) data. However, in our case the number of variables 
(pixels per image) is very large, and in such cases, Euclidean distances between different pairs of samples become 
numerically similar and lose their usefulness (curse of dimensionality problem). This problem is addressed with 
the use of linear or non-linear dimensionality reduction (DR) techniques that allow to extract a small num-
ber of principal features and thus represent the data in a lower dimensional space. We examined several DR 
 techniques43 and selected the T-distributed Stochastic Neighbor Embedding (t-SNE)44,45 that exhibits several 
advantages, as will be explained next. T-SNE is a variation of the Stochastic Neighbor Embedding (SNE) and, as 
a manifold-learning technique, it examines the inherent local structure in an unsupervised way in order to map 
them in a low-dimensional Euclidean space where data comparison is feasible. Its main advantages over other 
DR techniques are that it reveals data that lie in multiple (different) clusters or manifolds and also it reduces the 
tendency to crowd points together at the center. While other techniques are appropriate for single continuous 
manifolds, t-SNE can extract clustered local groups of samples, thereby allowing to disentangle a dataset that 
comprises several manifolds at once. This is beneficial for the current problem as we expect that images acquired 
from different engravings will belong to different manifolds.

Figure 3.  Schematic diagram of our methodology including laser fabrication, signature encoding and 
authentication phases.
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Assuming that V =

{

vvv
(i)
j

}

 , V ∈ R
m×D , is the set of m registered and vectorized images acquired from a small 

number of engravings (indexed by the superscript (i)) using multiple reconstructions for each engraving (indexed 
by the subscript j). In order to ensure equal representation of each engraving, we assume that approximately the 
same number of reconstructions is available from each engraving. We apply t-SNE to extract for every recon-
structed image j of engraving i a lower dimensional feature vector xxx(i)j ∈ R

d (with d << D ), and use those feature 
values as the CGHs’ signature. We used maximum likelihood estimation (MLE) to estimate the dimensionality 
d of the embedding space, which led to the selection of d = 10 features for signature encoding. The obtained set 
of signatures of all processed CGHs-PUFs, X =

{

xxx
(i)
j

}

,X ∈ R
m×d , is stored and used later for verification of 

authenticity of a new test sample.
Moreover, we may clarify that t-SNE, as all manifold embedding techniques in this category, cannot be applied 

for signature extraction of a new test sample using only the data of this new sample. The new data are concat-
enated with the existing database in order to compute joint probabilities. This is an inherent limitation of non-
linear DR techniques that causes an increase of computational cost during the inference (authentication) phase.

Authentication rule. In this study, we formulated the authentication task as a one-class classification 
(OCC)  problem46,47, in which information is provided only for one group of observations (target class) and 
this target class needs to be distinguished from all other possible classes, considered as non-targets. We fol-
lowed an OCC approach (instead of two-class problem) for two reasons. First, this method suits perfectly the 
PUF’s encoding problems due to the difficulty of collecting attack or intrusion data from all possible attack 
scenarios against an application. The second reason relates to the algorithm selected for the extraction of the 
data signatures, i.e. t-SNE. Let us note that, while t-SNE retains useful local structure—such that data points that 
cluster together in the final embedding most probably were also very similar in the original high dimensional 
space (which are expected to be data from the same engraving)—it does not explicitly preserve global structure. 
Therefore, no inference can be drawn about data similarity in the original space for data points that appear far 
away from each other in the final embedding. Based on this OCC formulation, a different classification model 
(authentication rule) will be fitted to the data signatures of each engraving.

There are various approaches of  OCC47,48 which use, for instance, a Gaussian model or a mixture of Gaussians 
 models49, Support Vector Data Description (SVDD)50, Parzen or Naive Parzen density estimators to estimate 
and threshold the density of the target  data51. In our approach, we capture the acquisition-related data variation 
of each authentic engraving by acquiring a number of different image reconstructions with varying conditions. 
If X(i) =

{

xxx
(i)
1 ,xxx

(i)
2 , . . . ,xxx

(i)
n

}

 is the set of n feature vectors for engraving i, the aim is to calculate a decision func-
tion f that predicts whether a new image sample yyy has been acquired from engraving i (i.e. is authentic) or is an 
outlier. The likelihood of a sample yyy to be an outlier is assumed to be proportional to its distance from the 
observed dataset X(i) . Thresholding of the likelihood converts the continuous distance function to a binary 
discriminant function, with a positive label indicating authenticity and a negative fraud, as expressed below:

where d(yyy,X(i)) is a (sample-to-cluster) distance metric and ξ (i) a selected threshold. This simple classification 
model is parametrized by only two variables: the threshold ξ (i) and the mean vector µ(i)µ(i)µ(i) required for the calcula-
tion of distance to the cluster X(i) (defined next in Eqs. 4 and 5). The threshold is not manually defined, but calcu-
lated as the maximum distance of all the samples in X(i) , increased by a safety margin to the decision boundary ρ,

We used a fixed value of ρ = 0.4 in our experiments.
Equation (1) provides a decision on the authenticity of a PUF by examining a single image reconstruction. 

This process is slightly prone to data acquisition-related variability. In order to improve robustness of outcomes, 
we acquire more than one images for a given engraving and obtain the final decision by majority voting. Thus, 
if Y =

{

yyy1,yyy2, . . . ,yyyk
}

 is a set of k feature vectors obtained from the same engraving, the decision on the engrav-
ing’s authenticity is based on f (Y;X(i), ξ (i)) = sign

(

∑

yyy∈Y f (yyy;X(i), ξ (i))

)

 . We evaluated the sensitivity of the 
method to the number of required images and defined it at k = 50 for the engravings used in this study.

Implementation
For the experiments of this paper we have fabricated several engravings and extracted their digital signatures 
in order to evaluate the power of the PUFs (distinction between different engravings), the resiliency to cloning 
and the robustness of the PUFs to external perturbations, i.e. the reproducibility between scans of the same 
engraving. Details on the experimental setup and the data collection process are presented in the next sections, 
and are followed by the description of the evaluation strategy and the criteria used for quantitative assessment.

Experimental details. A dataset of 10,000 photographs was obtained from 20 engravings, 10 created with 
beam Splitter mask and 10 with beam Diffuser mask. All samples of each category (Splitters and Diffusers) were 
manufactured by the laser under identical conditions (8ns pulse duration, 17% power, single shot, 2 passes). 
In the following we describe the procedure and number of data used for one of the two categories, but we note 
that the same experiments were repeated for both sets produced by beam Splitter or beam Diffuser holographic 

(1)f (yyy;X(i), ξ (i)) =

{

1 (authentic), if (d(yyy,X(i)) ≤ ξ (i)

−1 (fake), otherwise,

(2)ξ (i) = (1+ ρ) · max
xxx∈X(i)

(

d(xxx,X(i))

)

.
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masks in order to compare the performance of those two CGH structures as PUFs engraved on silver. For each 
engraving, 500 images of size 360× 640 pixels were captured by moving the XYZ stages in a pseudo-random 
way to assure that the dataset includes all possible configurations of positions in which the laser beam can cre-
ate a complete holographic image reconstruction. Images were registered to the common template space and 
cropped within a fixed bounding box of size 132× 132 , leading to a size D = 17, 424 after vectorization. The 
reconstructed images were used to learn the manifold of ‘S-shaped’ CGH-PUFs as described in section Signature 
encoding with t-SNE and to reduce data dimensionality to d = 10 using symmetric t-SNE.

For validation of the method, the obtained dataset was divided into two parts. Part 1 consisted of engrav-
ings 1–7 and was used for CGH-PUF generation and authentication based on a data split strategy, while Part 2 
consisted of engravings 8–10 and was used only for fraud detection. Specifically, Part 1 was further partitioned 
in two sets. The first set consisted of 450 samples per engraving and was used to form a database of ‘‘authentic’’ 
PUFs, for each of which a classification model was created. The second set of Part 1, i.e. 50 images from each 
of the engravings 1–7, was used to evaluate the authentication accuracy of the methodology (vector yyy in Equa-
tion 1). This data partitioning setting led to (50 · 7) · 7 authentication tests with 50 · 7 concerning intra-class 
comparisons (for evaluation of reproducibility) and (50 · 6) · 7 concerning inter-class comparisons (for evalu-
ation of malicious attacks).

Images in Part 2 were not used at all in the creation of the database of ‘‘authentic’’ PUFs, so that the created 
image manifold (by t-SNE) did not span the space of those engravings. The aim of this experiment was to use 
the images obtained from those unknown engravings as test samples for assessment of the probability of physi-
cal cloning by a malicious manufacturer. In order to be consistent with the experiments performed with Part 
1, we selected an equal number of random test images (i.e. 50) per engraving. This led to (50 · 3) · 7 additional 
authentication tests concerning inter-class comparisons. In summary, the number of vectorized images used 
in the dimensionality reduction step by t-SNE was m = (450 · 7)+ 50 · 10 = 3650 and included images from 
both Part 1 and Part 2.

Upon signature encoding, the classification models were formed to identify authenticity or counterfeit by 
calculating the thresholds (Eq. (2)) and the cluster centers for each one of the engravings in Part 1.

Response to perturbation of reconstruction conditions. To investigate the tolerance of our authentication system 
to experimental faults, we set up an experiment to test reconstruction of images using beam Diffuser design in 
extreme conditions from a set of engravings. During this particular phase, we placed the HeNe laser beam to a 
position such that only half of the engraving was illuminated. We performed this test for engravings 7–9, and we 
added engraving 7 in the signature encoding set (Part 1), and engravings 8 and 9 in the dataset for fraud detec-
tion (Part 2). Figure 5 presents the aggregated results from the evaluation of our framework on engraving 7. For 
all tests that were performed in accordance with the criteria in the following section, BD7 performed worse than 
the other Diffuser CGH-PUFs, but the results remained within acceptable limits.

Assessment criteria. This section is devoted to the evaluation of CGH-PUFs’ responses regarding their 
accuracy and their reproducibility. We first computed the intra-class distances within each engraving ( Dintra ) 
and the inter-class distances across engravings ( Dinter ) in order to provide a visual assessment of class separabil-
ity and comparison with work of others. For each engraving the intra- and inter-class distances are calculated 
in the Rd space using the metric of Eq. (5) and visualized as histograms (Fig. 4). Besides histogram plots, we 
computed 3 quantitative metrics for the CGH-PUFs evaluation: the authentication/classification accuracy, the 
probability of cloning indicating resiliency in attacks and the robustness assessing reproducibility over time.

• Authentication accuracy. The accuracy of PUF authentication was examined in respect to the potential of 
identifying authentic samples and rejecting counterfeit attempts. The former was assessed by the ratio of 
original samples that were recognized by our framework as “authentic” (True Positives) and the latter as the 
ratio of the fake engravings recognized as “authentic” (False Positives). These metrics were used to evaluate 
the performance of scattering-based PUF-tags on a combination of carrier and taggant materials in a recent 
optical authentication  system52.

• Probability of cloning. For the estimation of the probability of cloning (POC) of the CGH- PUF by a fraud 
manufacturer who has knowledge of the conditions of the manufacturing process and the information regard-
ing the holographic mask, we used an approach similar to the methodology presented  in37,53. Taking into 
consideration the histograms of inter- and intra-class distances of each engraving, we estimate the POC by 
fitting a Gaussian distribution on each of the histograms and computing the overlap area. This value cor-
responds to the amount of fake samples that look more “authentic” than some original samples. POC allows 
to evaluate the resiliency to attacks without the need to binarize the decision (i.e. use a predefined threshold 
ξ).

• Robustness. A complementary metric of equivalent importance for a PUF’s efficiency is robustness. There 
are various definitions of the robustness in  literature20,21,52,54,55, depending on the field of application and the 
category of the PUF, but they can all be summarized as the ability of the PUF to be reproducible and generate 
the same response when the evaluation process is repeated under the same conditions, without being affected 
by modifications in the external environment. We therefore measure robustness of the CGH-PUGs by the 
variation of intra-class distances across repetitions on the authentication process. If the distribution of Dintra 
for specific engraving at time t is denoted as Pt , we quantify any temporal changes through comparison with 
the intra-class distances distribution of subsequent time points t + 1 and t + 2 . Two well-known metrics used 
to measure similarity of probability distributions, the Bhattacharyya  distance56 and the Kullback–Leibler 
 Divergence57.
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Results
Beam Splitters vs beam Diffusers. To assess the performance of the method, every engraving of Part 1 
obtained by the Splitter or Diffuser structures was used to create a database of CGH-PUFs and was then validated 
against the other engravings in Part 1. Also, every engraving of Part 2 was tested against each CGH-PUF in 
Part 1. Table 1a shows the results of all the authentication tests with respect to True Positives and False Positives 
estimated by our method.

Figure 4 illustrates three indicative pairs of histograms selected to visualize good, average and worst clas-
sification performance for both CGH structures. The pairs of histograms show the distance of every sample 
from the cluster center of the engraving it belongs to (intra-class distances) and the distance from the cluster 
center of every other engraving in the database (inter-class distances), based on the defined metric (methods) 
respectively. For both CGH structures, there is no overlap between inter- and intra-class distances, with the sole 
exception of the BS4, where, as it is observed in the Table 1a and in the histogram of Fig. 4c, there is a small 
group of samples whose the distance metric exceeds the predefined threshold. However, in case of Diffusers, the 
separation of histograms is more evident. The gap between the distributions of inter- and intra-class distances 
that are presented is equivalent or better comparing to the histogram visualizations that are demonstrated is 
related work  of21,37,52,55 based on their similarity indexes.

Following the methodology presented  in37,53, we used the values of inter- and intra-class distances to estimate 
the probability of cloning. Table 1b shows the estimated values for BS and BD design. According to the  literature53, 
the acceptance range, that has been used for security applications, is in the order of 10−5 . It is evident that our 
method achieves significantly lower probability of cloning for all BD engravings and lower or comparable POC 
for BS engravings. The Splitter structure contains intrinsically a repetitive pattern and, thus, it is less satisfactory 
for cloning prevention than the Diffuser. Observing the deviations of Splitter PUFs from the accepted limit, we 
concluded that engravings with BD holographic masks are more suitable for the creation of unclonable security 
tags and we proceeded next to the evaluation of the Diffuser CGH-PUFs.

Robustness: S-pattern versus speckle. In addition to the previous tests performed with input the 
CGH-PUFs obtained after registration and cropping, we also demonstrate some supplementary tests, where 
every reconstructed image is divided in two parts: the square (central) region of holographic pattern and the 
speckle noise around it (Fig. 6). The analysis was repeated for every image as well as each of these two subregions 
separately (Fig. 7). Our aim was to investigate the impact of the introduced holographic pattern to the CGH-

Table 1.  Results: authentication accuracy and probability of cloning.

(a) Authentication accuracy of Splitter and Diffuser structures

Splitter CGH-PUFs

# Engraving True positives TP (majority rule)

False positives FP (majority rule)

BS1–BS7 BS8–BS10 BS1–BS7 BS8–BS10

BS1 50/50 1/1 0/300 1/150 0/6 0/3

BS2 50/50 1/1 0/300 0/150 0/6 0/3

BS3 50/50 1/1 0/300 0/150 0/6 0/3

BS4 46/50 1/1 0/300 0/150 0/6 0/3

BS5 50/50 1/1 0/300 0/150 0/6 0/3

BS6 50/50 1/1 0/300 0/150 0/6 0/3

Diffuser CGH-PUFs

# Engraving True positives TP (majority rule)

False positives FP (majority rule)

BD1-BD7 BD8-BD10 BD1-BD7 BD8-BD10

BD1 50/50 1/1 0/300 0/150 0/6 0/3

BD2 50/50 1/1 0/300 0/150 0/6 0/3

BD3 50/50 1/1 0/300 0/150 0/6 0/3

BD4 50/50 1/1 0/300 0/150 0/6 0/3

BD5 50/50 1/1 0/300 0/150 0/6 0/3

BD6 50/50 1/1 0/300 0/150 0/6 0/3

(b) Probability of cloning (POC) for BS and BD CGH design

# Engraving Splitter # Engraving Diffuser

BS1 4.4 ×10−5 BD1 8.9 ×10−14

BS2 3.4 ×10−7 BD2 1.9 ×10−15

BS3 7.2 ×10−11 BD3 9.6 ×10−18

BS4 3.0 ×10−2 BD4 2.2 ×10−17

BS5 2.2 ×10−5 BD5 5.9 ×10−11

BS6 3.7 ×10−5 BD6 1.5 ×10−12
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PUFs authentication capacity and robustness and to compare our hologram-based approach against techniques 
that use only speckle pattern.

To quantify the robustness, we performed the experiments in the same readout regime, by capturing 50 
images per engraving for 2 more days within a week and compare their intra-class distances with the results of 
the initial experiment. Table 2 demonstrates the robustness assessed through the Bhattacharyya distance and KL 
Divergence based on the histogram of Dintra per engraving. A value of zero (0) for both Bhattacharyya distance 
and KL divergence indicates identical distributions. The robustness level estimated by both metrics reveals high 
similarity between the data of the baseline measurements and those from the additional experiments.

Discussion
The presented PUF generation and authentication methodology is based on sample-to-cluster distances evaluated 
in a low dimensional space. In one-class classification problems most techniques use only the ‘‘authentic’’ class 
dataset and identify deviations as intrusions. Since our approach relies on signature encoding with t-SNE, it is 
more efficient if a large number of samples (from different engravings) are used for manifold learning, in order 
to better express relations and pairwise similarities between the different subspaces and optimize the decision 
boundary (threshold ξ).

The outcomes of analysis assessing authentication accuracy, probability of cloning and robustness demonstrate 
the high potential of CGHs as PUFs. This computational image processing and representation approach allows 
to quantify the differences among various engravings. A comparison between beam Splitter and beam Diffuser 
holographic structures reveals that the use of the latter increases the tolerance of the CGH-PUFs to counterfeit 
attacks, possibly due to the characteristic periodic pattern of a BS structure which makes image reconstruction 
less sensitive to any minor alterations of the material after the laser micromachining process. Consequently, the 
captured reconstructions tend to be more similar among the engravings, a fact that is imprinted on the results, 
where BS CGHs appear to have higher probability of cloning, especially the engraving BS4 (Table 1b).

The results of the BD CGH-PUFs show remarkable performance during the analysis. All the engravings 
demonstrate a probability of cloning which is much lower than the recommended upper limit for security appli-
cations. Concerning the analysis of the intentionally perturbed experiment of the engraving BD7, we have tested 
the sensitivity of the method to strong perturbations of the data acquisition procedure. Although the acquired 
images were not complete, as only a partial view of the image reconstruction was obtained on the readout setup, 
the method succeedes in distinguishing the authentic versus fake responses. In the presented results (Fig. 5), 
BD7 shows 36 False Positives, which belong to BD8 and BD9 engravings, whose reconstructed images were also 
partially obtained. Nevertheless, despite the acquisition-related artifacts, our method presents good performance, 
as all the POC estimations for the BD engravings (Table 5b) are above the acceptable limit.

In optical PUFs literature, a typical approach for cryptographic-authentication applications utilizes speckle 
noise as distinctive factor for modelling and encoding of the  PUFs37. It has been observed that random speckle 

Figure 4.  Histograms of inter- and intra-class distance for 3 Engravings of beam Splitter (a–c) and beam 
Diffuser (d–f) CGH-PUFs, considering the best case (a,d), the worst case (c,f) and a randomly selected average 
case (b,e) based on their POC estimation.
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pattern, generated from laser illumination over heterogeneous, semi-transparent materials, is a secure optical 
PUF. The problem that arises in case of the experiments that capture exclusively speckle noise is the sensitivity 
of the setup to changes of the external environment (e.g. changes in background lightning conditions add indis-
tinguishable noise). Our framework utilizes CGH-PUFs that contain in addition to speckle noise a predefined 
holographic patter. This distinctive pattern is useful in guiding the image registration algorithm in the preproc-
essing step (since it allows to find spatial correspondences) and therefore helps to correct any misplacement 
errors during image acquisition.

Moreover, this holographic pattern is encoded in the low-dimensional data signature along with the speckle 
noise information. To determine if there is any benefit of its presence, we investigated the POC and robustness of 
our system within a time span of a week on two different image sub-regions: the square enclosing the holographic 
pattern and the speckle noise area around it (Fig. 6). The obtained POC values (Fig. 7) show that in half of the 
cases (engravings) the S-pattern sub-region provides lower POC, compared with the total image. The superiority 
of the S-Pattern is observed in robustness Table 2, where, compared to the speckle sub-region, it shows to be a 
little more stable during the experiments across time points. The Bhattacharyya Distance values indicate that 
there are more similarities across time points for the S-Pattern sub-region than for the speckle sub-region, or 
both parts together (cropped image) for all the engravings, except BD5. KL Divergence appears to have similar 
performance for cropped image and S-pattern, but in the case of speckle, it seems less stable, especially from 
baseline experiments to the 3rd time point.

With respect to potential replication threats it should be noted that although the laser engraved CGH 
structures for a single item in a production line could be potentially replicated on soft substrates, such as 

Figure 5.  Performance under extreme perturbation of experimental conditions (Engraving BD7): Histogram 
(a) shows intra- and inter-class distances, sub-figure (b) shows POC from the 3 time points within a week for 
cropped images, S-pattern and speckle, and sub-table shows the assessment criteria.

Figure 6.  Example illustrating the image segmentation into the S-Pattern area and the pure speckle around it.
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Polydimethylsiloxane (PDMS), this could only be replicated using a multistep nanoimprint lithography on 
non-metallic bulk substrates like e.g. polymers. Therefore the proposed method of fabrication of intrinsic optical 
PUFs is suitable for hard materials, like silver, rather than soft materials.

The ease in the fabrication of extrinsic PUFs is reflected on the overall fabrication cost. However as mentioned 
before, extrinsic PUFs suffer from vulnerability to attacks. The cost benefits of laser fabrication of intrinsic opti-
cal PUFs presented here, can be better appreciated when compared to existing intrinsic PUF solutions found 
in the literature, namely electronic PUFs and silicon PUFs. In both cases, these are fabricated using standard 
photolithographic methods that are multistep, more expensive and complex than laser methods. On the other 
hand, the proposed method is an one step method that uses a low cost nanosecond industrial laser with minimal 
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Figure 7.  Probability of cloning for the 3 different datasets with cropped images (including S-pattern and 
speckle), only S-Pattern or only speckle around the pattern, across 3 time points within a week.

Table 2.  Robustness measured by Bhattacharyya distance and Kullback–Leibler (KL) divergence.

# Engraving

Baseline vs 2nd time point Baseline vs 3rd time point

Cropped image S-Pattern Speckle Cropped image S-pattern Speckle

Bhattacharyya distance

BD1 1.2 ×10−2 2.6 ×10−3 4.3 ×10−3 1.7 ×10−2 8.1 ×10−4 1.7 ×10−2

BD2 1.6 ×10−3 9.5 ×10−4 9.3 ×10−3 1.8 ×10−3 9.0 ×10−4 4.1 ×10−3

BD3 2.1 ×10−3 9.3 ×10−4 1.2 ×10−3 4.6 ×10−4 1.6 ×10−2 8.0 ×10−3

BD4 7.8 ×10−3 7.4 ×10−4 1.1 ×10−1 3.7 ×10−3 6.2 ×10−3 8.6×10−2

BD5 5.1 ×10−4 2.0 ×10−3 1.5 ×10−3 6.6 ×10−3 8.1 ×10−3 2.6 ×10−3

BD6 6.2 ×10−5 3.7 ×10−4 2.4 ×10−3 1.9 ×10−3 3.7 ×10−6 6.4 ×10−4

KL divergence

BD1 1.4 ×10−1 6.0 ×10−2 7.4 ×10−2 2.1 7.2 ×10−2 1.9

BD2 2.8 ×10−2 8.6 ×10−2 2.6 ×10−1 5.3 ×10−2 6.0 ×10−2 1.2 ×10−1

BD3 5.0 ×10−2 6.1 ×10−1 1.4 ×10−1 2.9 ×10−2 4.2 1.5 ×10−1

BD4 8.5 ×10−2 5.1 ×10−2 2.5 5.0 ×10−2 2.3 ×10−1 2.57

BD5 1.3 ×10−2 2.3 ×10−2 8.4 ×10−2 3.5 ×10−2 5.2 ×10−1 2.4 ×10−1

BD6 1.9 ×10−2 2.1 ×10−1 3.0 ×10−2 2.7 ×10−2 5.9 ×10−3 4.2 ×10−1
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(nearly zero) running and maintenance costs. The PUF requirement for randomness in the fabrication process 
minimizes the initial acquisition cost since the laser source should be unstable both in terms of intensity and 
polarization and the galvo system should introduce uncertainty in the positioning of the laser beam.

Another advantage of this work is the simple and easy to incorporate readout setup. Compared to other more 
complicated and time-consuming  procedures20,26, our authentication system is not based on expensive labora-
tory equipment, neither requires high expertise or increased workload and it can be implemented in a compact 
setup by a non-expert user.

Conclusion
We presented a novel, simple, low-cost and industrial friendly system for strong intrinsic PUF in the form of 
CGH-PUFs. The proposed methodology of laser fabricated PUFs combined with sophisticated image analysis 
techniques delivers an authentication mechanism for strong anti-counterfeiting. CGH-PUFs are essentially a 
speckle-based technique that, however, overcome limitations of present day similar approaches that suffer from 
low robustness due to sensitivity of speckle on experimental conditions in the read out. The CGH-PUFs exhibit 
low probability of cloning and a good level of robustness while retaining the merit of simplicity both in fabrication 
and read out. We anticipate that our method will impact the proliferation of PUFs in everyday commodity items.

Methods
Design of CGH. The CGH is designed as a binary phase only hologram using the commercially available 
software VirtualLab Fusion by  LightTrans41. The CGH is designed to work as beam Diffuser or beam Splitter. In 
particular, the CGH design procedure is based on an optimization process using the classical Gerchberg–Saxton 
 algorithm58. The overall goal of this process is to find the optimal phase mask for a target image (in our case the 
‘S’ pattern) by minimizing a cost function (in our case the Mean Square Error) for a given set of parameters, 
such as wavelength of the light source, fabrication feature size, phase levels, to name a few. The output of this 
optimization process is the phase mask that is exported as a bitmap image and subsequently engraved on the 
silver plate.

Experimental setup. We fabricated intrinsic optical PUFs in the form of holograms on silver using a ns 
infrared (1070 nm) fiber laser system developed by Sisma SpA, with galvo mirrors scanner and a f-theta lens (f 
= 100 mm). Silver is a high reflectivity precious metal, that it is very hard to engrave. The first demonstration of 
laser engraving of holograms on silver was presented  in59. Here, we follow the fabrication protocol outlined  in59. 
For the image reconstruction, the sample was positioned in a XYZ linear stage (Aerotech ANT130). The holo-
graphic image was captured by a low-cost web camera, with an adjusted red filter in front of its lens. The distance 
between the laser output and the sample is 38 cm while the distance between the sample and the reconstruction 
plane is 74 cm. The whole process is automated using Aerotech motion Composer and Matlab Software. Our 
experiment was performed in a light proof box with minimal background light and illuminated with a typical 
HeNe Laser emitting at 633 nm.

Image standardization. To transform image to grayscale, we used the luminosity  method60, which weighs 
R, G and B components according to their wavelengths, to define the coefficients for the calculation of the gray-
scale image intensity values I:

Signature encoding with t-SNE. During manifold learning with t-SNE, the default value ( p = 30 ) was 
used for the perplexity of the Gaussian kernel which indicates the effective number of local neighbors of each 
point and is employed in the computation of joint probabilities in t-SNE. We also note that, as the original 
dimensionality D was very large, we first performed Principal Component Analysis (PCA)61 reducing the dimen-
sionality to 50 before applying t-SNE. Since this step is intended to only remove linear correlations among vari-
ables, the selection of a precise number of principal components is not critical, as long as the selected value is 
large enough to retain the majority of original variance in the data.

Authentication rule: distance metric. To encode the variation of a CGH-PUF representation, X(i) , that 
includes the different image manifestations of a single engraving i scanned on various time points, we use the 
cluster center µµµ(i) ∈ R

d calculated as sample mean:

We define the probability of a new test sample yyy to have been acquired from engraving i to be inverse proportional 
to its Euclidean distance from the cluster center µµµ(i) , which is given by the following equation:

(3)I = 0.299 · R + 0.587 · G + 0.114 · B

(4)µ(i)µ(i)
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Robustness. (a) Bhattacharyya distance is widely used in various research domains (feature extraction and 
selection, image processing, etc.) for measuring class  separability62. Assuming that the intra-class histograms 
follow Gaussian distribution with mean µ and variance σ 2 , the Bhattacharyya distance DB between Pt (reference 
point) and Pt+1 (next time point), is calculated as

The experiments were repeated two times within a week ( t = {1, 2}).
(b) Kullback–Leibler (KL) Divergence also known as relative entropy, is a measure of how one probability 

distribution is different from another (reference) probability  distribution57,63,64. It is used to calculate how much 
information is lost when we approximate one distribution with another and represents the expectation of the 
logarithmic difference between the two probabilities:

Received: 15 October 2021; Accepted: 18 January 2022

References
 1. European Union, IPR office. 2019 Status report on IPR infringement. Tech. Rep., European Union (2019).
 2. World Health Assembly. Counterfeit medical products: International Medical Products Anti-Counterfeiting Taskforce: Report by the 

Secretariat (World Health Organization, Governing body documents, ***, 2010).
 3. Mackey, T. K. & Liang, B. A. The global counterfeit drug trade: Patient safety and public health risks. J. Pharm. Sci. 100, 4571–4579. 

https:// doi. org/ 10. 1002/ jps. 22679 (2011).
 4. Aldhous, P. Counterfeit pharmaceuticals: Murder by medicine. Nature 434, 132 (2005).
 5. World Trademark Review. Counterfeit automotive parts increasingly putting consumer safety at risk (2019).
 6. Pappu, R., Recht, B., Taylor, J. & Gershenfeld, N. Physical one-way functions. Science 297, 2026–2030. https:// doi. org/ 10. 1126/ 

scien ce. 10743 76 (2002).
 7. Herder, C., Yu, M. D., Koushanfar, F. & Devadas, S. Physical unclonable functions and applications: A tutorial. Proc. IEEEhttps:// 

doi. org/ 10. 1109/ JPROC. 2014. 23205 16 (2014).
 8. Potkonjak, M. & Goudar, V. Public physical unclonable functions. Proc. IEEE 102, 1142–1156 (2014).
 9. Maes, R.  Physically Unclonable Functions: Constructions, Properties and Applications (Springer Science & Business Media, 2013).
 10. Chen, S., Li, B. & Cao, Y. Intrinsic physical unclonable function (PUF) sensors in commodity devices. Sensors 19, 2428 (2019).
 11. Böhm, C. & Hofer, M.  Physical Unclonable Functions in Theory and Practice ( Springer Science & Business Media, 2012).
 12. McGrath, T., Bagci, I. E., Wang, Z. M., Roedig, U. & Young, R. J. A PUF taxonomy. Appl. Phys. Rev. 6, 011303 (2019).
 13. Wali, A. et al. Biological physically unclonable function. Commun. Phys. 2, 39. https:// doi. org/ 10. 1038/ s42005- 019- 0139-3 (2019).
 14. Gao, Y., Ranasinghe, D. C., Al-Sarawi, S. F., Kavehei, O. & Abbott, D. Memristive crypto primitive for building highly secure physi-

cal unclonable functions. Sci. Rep. 5, 12785. https:// doi. org/ 10. 1038/ srep1 2785 (2015).
 15. Arppe, R. & Sørensen, T. J. Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat. Rev. 

Chem.https:// doi. org/ 10. 1038/ s41570- 017- 0031 (2017).
 16. Burzurí, E., Granados, D. & Perez, E. M. Physically unclonable functions based on single-walled carbon nanotubes: A scalable and 

inexpensive method toward unique identifiers. ACS Appl. Nano Mater. 2, 1796–1801 (2019).
 17. Uppu, R. et al. Asymmetric cryptography with physical unclonable keys. Quantum Sci. Technol. 4, 045011 (2019).
 18. Park, J. et al. Disordered heteronanostructures of MoS2 and TiO2 for unclonable cryptographic primitives. ACS Appl. Nano 

Mater.https:// doi. org/ 10. 1021/ acsanm. 0c033 67 (2021).
 19. Torun, N., Torun, I., Sakir, M., Kalay, M. & Onses, M. S. Physically unclonable surfaces via dewetting of polymer thin films. ACS 

Appl. Mater. Interfaceshttps:// doi. org/ 10. 1021/ acsami. 0c168 46 (2021).
 20. Fratalocchi, A., Fleming, A., Conti, C. & Di Falco, A. NIST-certified secure key generation via deep learning of physical unclonable 

functions in silica aerogels. Nanophotonicshttps:// doi. org/ 10. 1515/ nanoph- 2020- 0368 (2020).
 21. Gu, Y. et al. Gap-enhanced Raman tags for physically unclonable anticounterfeiting labels. Nat. Commun. 11, 516. https:// doi. org/ 

10. 1038/ s41467- 019- 14070-9 (2020).
 22. Cheng, H. et al. Plasmonic nanopapers: Flexible, stable and sensitive multiplex PUF tags for unclonable anti-counterfeiting applica-

tions. Nanoscale 12, 9471–9480. https:// doi. org/ 10. 1039/ d0nr0 1223h (2020).
 23. Martinez, P. et al. Laser generation of sub-micrometer wrinkles in a chalcogenide glass film as physical unclonable functions. Adv. 

Mater.https:// doi. org/ 10. 1002/ adma. 20200 3032 (2020).
 24. Liu, Y. et al. Unclonable perovskite fluorescent dots with fingerprint pattern for multilevel anticounterfeiting. ACS Appl. Mater. 

Interfaces 12, 39649–39656. https:// doi. org/ 10. 1021/ acsami. 0c111 03 (2020).
 25. Leem, J. W. et al. Edible unclonable functions. Nat. Commun.https:// doi. org/ 10. 1038/ s41467- 019- 14066-5 (2020).
 26. Gao, Y., Al-Sarawi, S. F. & Abbott, D. Physical unclonable functions. Nat. Electron. 3, 81–91. https:// doi. org/ 10. 1038/ s41928- 020- 

0372-5 (2020).
 27. Guajardo, J., Kumar, S. S., Schrijen, G. J. & Tuyls, P. FPGA intrinsic PUFs and their use for IP protection. In Lecture Notes in 

Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4727 LNCS, 
63–80. https:// doi. org/ 10. 1007/ 978-3- 540- 74735-2_5 (2007).

 28. Willers, O., Huth, C., Guajardo, J., Seidel, H. & Deutsch, P. On the feasibility of deriving cryptographic keys from MEMS sensors. 
J. Cryptogr. Eng. 10, 67–83. https:// doi. org/ 10. 1007/ s13389- 019- 00208-4 (2020).

 29. Delvaux, J. Machine-learning attacks on PolyPUFs, OB-PUFs, RPUFs, LHS-PUFs, and PUF-FSMs. IEEE Trans. Inf. Forensics Secur. 
14, 2043–2058. https:// doi. org/ 10. 1109/ TIFS. 2019. 28912 23 (2019).

 30. Dachowicz, A., Atallah, M. & Panchal, J. H. Optical PUF design for anti-counterfeiting in manufacturing of metallic goods. In 
Proceedings of the ASME Design Engineering Technical Conference, vol. 1B-2018. https:// doi. org/ 10. 1115/ DETC2 01885 714 (2018).

 31. Kress, B. C. & Meyrueis, P. Applied Digital Optics: From Micro-optics to Nanophotonics (Wiley, 2009).
 32. Stafe, M., Marcu, A. & Puscas, N. N. Pulsed Laser Ablation of Solids: Basics, Theory and Applications, vol. 53 (Springer Science & 

Business Media, 2013).
 33. Dixit, U. S., Joshi, S. N. & Davim, J. P.  Application of Lasers in Manufacturing: Select Papers from AIMTDR 2016 (Springer, 2018).

(6)DB(Pt , Pt+1) =
1

4
ln

(

1

4

(

σ 2
Pt

σ 2
Pt+1

+
σ 2
Pt+1

σ 2
Pt

+ 2

))

+
1

4

(

(µPt − µPt+1
)2

σ 2
Pt
− σ 2

Pt+1

)

.

(7)DKL(Pt ||Pt+1) =
∑

iǫX

Pt · log

(

Pt

Pt+1

)

https://doi.org/10.1002/jps.22679
https://doi.org/10.1126/science.1074376
https://doi.org/10.1126/science.1074376
https://doi.org/10.1109/JPROC.2014.2320516
https://doi.org/10.1109/JPROC.2014.2320516
https://doi.org/10.1038/s42005-019-0139-3
https://doi.org/10.1038/srep12785
https://doi.org/10.1038/s41570-017-0031
https://doi.org/10.1021/acsanm.0c03367
https://doi.org/10.1021/acsami.0c16846
https://doi.org/10.1515/nanoph-2020-0368
https://doi.org/10.1038/s41467-019-14070-9
https://doi.org/10.1038/s41467-019-14070-9
https://doi.org/10.1039/d0nr01223h
https://doi.org/10.1002/adma.202003032
https://doi.org/10.1021/acsami.0c11103
https://doi.org/10.1038/s41467-019-14066-5
https://doi.org/10.1038/s41928-020-0372-5
https://doi.org/10.1038/s41928-020-0372-5
https://doi.org/10.1007/978-3-540-74735-2_5
https://doi.org/10.1007/s13389-019-00208-4
https://doi.org/10.1109/TIFS.2019.2891223
https://doi.org/10.1115/DETC201885714


14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2891  | https://doi.org/10.1038/s41598-022-06407-0

www.nature.com/scientificreports/

 34. Chichkov, B. N., Momma, C., Nolte, S., Von Alvensleben, F. & Tünnermann, A. Femtosecond, picosecond and nanosecond laser 
ablation of solids. Appl. Phys. A Mater. Sci. Process. 63, 109–115. https:// doi. org/ 10. 1007/ BF015 67637 (1996).

 35. Brown, M. S. & Arnold, C. B. Fundamentals of laser-material interaction and application to multiscale surface modification. In 
Laser Precision Microfabrication, 91–120 (Springer, 2010).

 36. Harilal, S. S., Freeman, J. R., Diwakar, P. K. & Hassanein, A. Femtosecond laser ablation: Fundamentals and applications. Springer 
Ser. Opt. Sci. 182, 143–166. https:// doi. org/ 10. 1007/ 978-3- 642- 45085-3_6 (2014).

 37. Mesaritakis, C. et al. Physical unclonable function based on a multi-mode optical waveguide. Sci. Rep. 8, 1–12. https:// doi. org/ 10. 
1038/ s41598- 018- 28008-6 (2018).

 38. Bianco, V. et al. Strategies for reducing speckle noise in digital holography. Light Sci. Appl.https:// doi. org/ 10. 1038/ s41377- 018- 
0050-9 (2018).

 39. Wlodarczyk, K. L., Ardron, M., Weston, N. J. & Hand, D. P. Holographic watermarks and steganographic markings for combating 
the counterfeiting practices of high-value metal products. J. Mater. Process. Technol. 264, 328–335 (2019).

 40. Bin Tarik, F., Famili, A., Lao, Y. & Ryckman, J. D. Robust optical physical unclonable function using disordered photonic integrated 
circuits. Nanophotonics 9, 2817–2828. https:// doi. org/ 10. 1515/ nanoph- 2020- 0049 (2020).

 41. Anastasiou, A., Zacharaki, E. I., Alexandropoulos, D., Moustakas, K. & Vainos, N. A. Machine learning based technique towards 
smart laser fabrication of CGH. Microelectron. Eng.https:// doi. org/ 10. 1016/j. mee. 2020. 111314 (2020).

 42. Mesaritakis, C. et al. Photonic pseudo-random number generator for internet-of-things authentication using a waveguide based 
physical unclonable function. arXiv preprint http:// arxiv. org/ abs/ 2001. 11794 (2020).

 43. Turchetti, C. & Falaschetti, L. A manifold learning approach to dimensionality reduction for modeling data. Inf. Sci. 491, 16–29. 
https:// doi. org/ 10. 1016/j. ins. 2019. 04. 005 (2019).

 44. Van Der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2625 (2008).
 45. Arora, S., Hu, W. & Kothari, P. K. An analysis of the t-SNE algorithm for data visualization (2018). http:// arxiv. org/ abs/ 1803. 01768.
 46. Tax, D. M. & Müller, K. R. Feature extraction for one-class classification. In Lecture Notes in Computer Science (Including Subseries 

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 2714, 342–349. https:// doi. org/ 10. 1007/3- 540- 
44989-2_ 41 (2003).

 47. Khan, S. S. & Madden, M. G. One-class classification: Taxonomy of study and review of techniques. https:// doi. org/ 10. 1017/ S0269 
88891 30004 3X (2014).

 48. Mazhelis, O. One-Class Classifiers: A Review and Analysis of Suitability in the Context of Mobile-Masquerader Detection.  Revue 
Africaine de la Recherche en Informatique et Mathématiques Appliquées. https:// doi. org/ 10. 46298/ arima. 1877 (2007).

 49. Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. 
B (Methodological) 39, 1–22. https:// doi. org/ 10. 1111/j. 2517- 6161. 1977. tb016 00.x (1977).

 50. Tax, D. M. & Duin, R. P. Support vector data description. Mach. Learn. 54, 45–66. https:// doi. org/ 10. 1023/B: MACH. 00000 08084. 
60811. 49 (2004).

 51. Bishop, C. M. Novelty detection and neural network validation. IEE Proc. Vis. Image Signal Process. 141, 217–222. https:// doi. org/ 
10. 1049/ ip- vis: 19941 330 (1994).

 52. Arppe-Tabbara, R., Tabbara, M. & Sørensen, T. J. Versatile and validated optical authentication system based on physical unclon-
able functions. ACS Appl. Mater. Interfaces 11, 6475–6482 (2019).

 53. Shariati, S., Standaert, F.-X., Jacques, L. & Macq, B. Analysis and experimental evaluation of image-based PUFS. J. Cryptogr. Eng. 
2, 189–206 (2012).

 54. Armknecht, F., Maes, R., Sadeghi, A. R., Standaert, F. X. & Wachsmann, C. A formal foundation for the security features of physical 
functions. In  Proceedings—IEEE Symposium on Security and Privacy, 397–412. https:// doi. org/ 10. 1109/ SP. 2011. 10 (2011).

 55. Erozan, A. T., Hefenbrock, M., Beigl, M., Aghassi-Hagmann, J. & Tahoori, M. B. Image PUF: A physical unclonable function for 
printed electronics based on optical variation of printed inks. IACR Cryptol. ePrint Arch. 2019, 1419 (2019).

 56. Schweppe, F. C. On the Bhattacharyya distance and the divergence between Gaussian processes. Inf. Control 11, 373–395. https:// 
doi. org/ 10. 1016/ S0019- 9958(67) 90610-9 (1967).

 57. Kullback, S. & Leibler, R. A. On information and sufficiency. Ann. Math. Stat. 22, 79–86. https:// doi. org/ 10. 1214/ aoms/ 11777 29694 
(1951).

 58. Gerchberg, R. W. & Saxton, W. O. On information and sufficiency. Optik (Stuttgart) 35, 237–250 (1972).
 59. Alexandropoulos, D. et al. Fabrication of holographic optical elements on silver by nanosecond IR laser source. Microelectron. 

Eng.https:// doi. org/ 10. 1016/j. mee. 2020. 111312 (2020).
 60. Recommendation ITU-R BT.601-7 & Broadcasting, B. T. S. Studio encoding parameters of digital television for standard 4:3 and 

wide-screen 16:9 aspect ratios BT Series Broadcasting service. Int. Telecommun. Union 7 (2011).
 61. Abdi, H. & Williams, L. J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2, 433–459 (2010).
 62. Kailath, T. The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol. 15, 52–60 

(1967).
 63. Joyce, J. M. Kullback–Leibler divergence. Int. Encycl. Stat. Sci. 720, 722 (2011).
 64. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

Acknowledgements
The authors would like to thank Panagiotis Rizomiliotis, Assistant Professor at Harokopio University, Athens, 
Greece for the valuable discussions regarding PUF’s standards in security applications and Ioannis Chrysis for 
his valuable help and participation in the fabrication process. Provision of the fiber laser source by SISMA S.p.A. 
is gratefully acknowledged. This publication has been financed by the Research Committee of the University 
of Patras.

Author contributions
A.A., E.I.Z. and D.A. wrote the paper; D.A. was the initiator of this work; A.A., A.T. and D.A. designed the setup; 
A.A conducted the experiments and analyzed the data; A.A., E.I.Z. and D.A. interpreted the results; K.M. and 
D.A. supervised the study; all authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to D.A.

Reprints and permissions information is available at www.nature.com/reprints.

https://doi.org/10.1007/BF01567637
https://doi.org/10.1007/978-3-642-45085-3_6
https://doi.org/10.1038/s41598-018-28008-6
https://doi.org/10.1038/s41598-018-28008-6
https://doi.org/10.1038/s41377-018-0050-9
https://doi.org/10.1038/s41377-018-0050-9
https://doi.org/10.1515/nanoph-2020-0049
https://doi.org/10.1016/j.mee.2020.111314
http://arxiv.org/abs/2001.11794
https://doi.org/10.1016/j.ins.2019.04.005
http://arxiv.org/abs/1803.01768
https://doi.org/10.1007/3-540-44989-2_41
https://doi.org/10.1007/3-540-44989-2_41
https://doi.org/10.1017/S026988891300043X
https://doi.org/10.1017/S026988891300043X
https://doi.org/10.46298/arima.1877
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1023/B:MACH.0000008084.60811.49
https://doi.org/10.1023/B:MACH.0000008084.60811.49
https://doi.org/10.1049/ip-vis:19941330
https://doi.org/10.1049/ip-vis:19941330
https://doi.org/10.1109/SP.2011.10
https://doi.org/10.1016/S0019-9958(67)90610-9
https://doi.org/10.1016/S0019-9958(67)90610-9
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1016/j.mee.2020.111312
www.nature.com/reprints


15

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2891  | https://doi.org/10.1038/s41598-022-06407-0

www.nature.com/scientificreports/

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	Laser fabrication and evaluation of holographic intrinsic physical unclonable functions
	Optical PUFs design: system architecture
	Laser fabrication of holographic PUFs. 

	Authentication methodology
	Image standardization. 
	Signature encoding with t-SNE. 
	Authentication rule. 

	Implementation
	Experimental details. 
	Response to perturbation of reconstruction conditions. 

	Assessment criteria. 

	Results
	Beam Splitters vs beam Diffusers. 
	Robustness: S-pattern versus speckle. 

	Discussion
	Conclusion
	Methods
	Design of CGH. 
	Experimental setup. 
	Image standardization. 
	Signature encoding with t-SNE. 
	Authentication rule: distance metric. 
	Robustness. 

	References
	Acknowledgements


