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Abstract: Gender differences in pulmonary inflammation have been well documented. Although
low molecular mass hyaluronan (LMMHA) is known to trigger pulmonary lung inflammation, sex
differences in susceptibility to LMMHA are still unknown. In this study, we test the hypothesis that
mice may display sex-specific differences after LMMHA administration. After LMMHA administra-
tion, male mice have higher neutrophil, cytokine, and chemokine counts compared to that of their
female counterparts. Additionally, Ovariectomized (OVX) mice show greater LMMHA-induced
inflammation compared to that of mice with intact ovaries. Injections of OVX mice with 17β-estradiol
can decrease inflammatory responses in the OVX mice. These results show that ovarian hormones
regulate LMMHA induced lung inflammation.

Keywords: low-molecular-mass hyaluronan (200 kDa); acute lung inflammation; gender differences;
17β-estradiol

1. Introduction

Hyaluronan, or hyaluronic acid (HA), is a major component of an extracellular matrix
with a structure made up of polymeric disaccharides D-Glucuronic acid and N-acetyl-D-
glucosamine A linked by glucuronic acid bonds [1]. Rapid degradation of hyaluronic acid
produces low-molecular-mass HA (LMMHA), which has pro-inflammatory effects and
acts as an intracellular signal molecule in inflammation [2]. Patients with acute respiratory
distress syndrome, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease,
and asthma have significantly increased LMMHA [3–6].

LMMHA upregulates adhesion molecules in endothelial cells and induces produc-
tion of pro-inflammatory cytokines in airway epithelial cells [7]. In vitro studies have
shown that in response to LMMHA stimulation, macrophages are the main effector cells
in producing pro-inflammatory chemokines and cytokines [7]. Neutrophils also play key
roles in inflammatory pulmonary diseases [8,9]. Previously, we reported that intratra-
cheal administration of LMMHA (200 kDa) causes neutrophil infiltration in mice lungs,
which is associated with an increase in interleukin-6 (IL-6), chemokine (C-X-C motif) lig-
and 1 (CXCL-1), tumor necrosis factor-α (TNF-α), and chemokine (C-X-C motif) ligand
2 (CXCL-2) levels [10,11]. Our previous study suggests that phosphoinositide 3-kinase
(PI3K)/Akt1 signaling plays a key role in LMMHA (200 kDa)-induced lung inflamma-
tion [12].

Both adults and children have sex-specific differences in organ injury. Morbidity
and incidence of acute lung injury are higher in males [13–16]. Although the gender
difference in pulmonary response is obvious in different animal models of experimental
lung injury [17], it is unknown whether there is a difference in inflammatory responses
between males and females after intratracheal administration of hyaluronan (200 kDa).
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2. Results
2.1. Plasma Estradiol Concentration

Plasma estradiol concentration was measured in female mice (proestrus, estrus,
metaestrus, and diestrus) and in Ovariectomized (OVX) mice and 17β-estradiol (E2) treated
OVX mice. Plasma estradiol is at its maximum in the proestrus stage and reaches levels of
~60 pg/mL, but is reduced to ~20 pg/mL during estrus and diestrus. Estradiol was below
the detection limit in OVX mice. Plasma estradiol levels increased to ~120 pg/mL in OVX
mice that received E2 injections for 7 consecutive days.

2.2. Gender Differences after LMMHA Induces Lung Inflammation after Intratracheal Administration

Hyaluronic acid fragments (of a molecular mass of 200 kDa) are common at inflam-
matory sites in the lung and can induce lung inflammation. LMMHA (200 kDa) activates
and attracts neutrophils, which lead to lung inflammation. An intratracheal dose of
LMMHA (200 kDa, 65 mg/kg) increases total cell (Male: 3.5 × 105 ± 0.4 × 105/mL, Female:
2.7 × 105 ± 0.22 × 105/mL) and neutrophil counts (Male: 1.5 × 105 ± 0.11 × 105/mL,
Female: 0.9 × 105 ± 0.08 × 105/mL) in BALF in both males and females (Figure 1A, B). To
further quantify neutrophil sequestration, MPO activity, which reflects the parenchymal
infiltrated of neutrophils and macrophages in the lung tissue [18], was measured. These
results show an increase in MPO activity in LMMHA-treated mice 12 h after LMMHA ad-
ministration (Figure 1C) in both male and female mice, with a greater increase in male mice
(Male: 1429 ± 116 ng/mL, Female: 810 ± 70 ng/mL). Compared to male mice, female mice
show reduced thickening of the alveolar septum and reduced infiltration of neutrophils
(Figure 1D).
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2.3. Differentially Expressed Cytokine Levels in Mice Lungs Induced by LWMHA. 

Figure 1. Male mice show greater inflammatory cell infiltration compared to females. 12 h after
intratracheal administration of low molecular mass hyaluronan (LMMHA) (200 kDa, 65 mg/kg),
(A) total cell and (B) neutrophil counts were performed on BALF. After BALF was performed, (C)
MPO of whole lung homogenates was measured, (D) Lung sections were stained with H&E, original
magnification 200×. Values are means ± SEM from at least five individual animals. Significant
differences are indicated by *, p < 0.05.

2.3. Differentially Expressed Cytokine Levels in Mice Lungs Induced by LWMHA

Pro-inflammatory chemokine and cytokine levels in BALF were determined to further
quantify LMMHA-triggered inflammatory response. IL-6, an inflammatory marker, delays
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spontaneous apoptosis of neutrophils and enhances the aggregation and adhesion of neu-
trophils [9]. The levels of IL-6 (Male: 58 ± 11 pg/mL, Female: 30 ± 3 pg/mL) (Figure 2A),
CXCL-1 (Male: 35 ± 12 pg/mL, Female: 20 ± 3 pg/mL) (Figure 2B), and TNF–α (Male:
33 ± 6 pg/mL, Female: 10 ± 4 pg/mL) (Figure 2C) were higher in male mice after exposure
to LMMHA compared to that of female mice. CXCL-2 is a member of the CXC chemokine
family and plays a critical role in the recruitment of neutrophils to tissue damage, infection,
and wound recovery sites [19–21]. CXCL-2, secreted by monocytes such as peritoneal and
alveolar macrophages [22,23], belongs to the CXC chemokine subfamily (α-chemokines)
which are chemoattractants. Previous studies have also shown that CXCL-2 helps recruit
neutrophils in the development of inflammation and tissue injury [24,25]. Our results
show (Figure 2D) that CXCL-2 activities are dramatically higher in the male group (Male:
21 ± 5 pg/mL, Female: 11 ± 2 pg/mL). Hence, intratracheal administration of LMMHA
leads to clear gender differences in mice lung inflammation.
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Figure 2. Male mice have a higher level of inflammatory cytokine production compared to that
of females 12 h after intratracheal administration of LMWHA (200 kDa, 65 mg/kg). (A) IL-6, (B)
CXCL-1, (C) CXCL-2, and (D) TNF-α in BALF were analyzed. Values are means ± SEM from at least
five individual animals. Significant differences are indicated by *, p < 0.05.

2.4. Estradiol Effects on LMMHA-Induced Lung Injury

To determine the role of estrogen in lung inflammation, we evaluated if E2 can mimic
regulatory functions of ovariectomized mice in acute lung injury. These results show that
compared to OVX mice, alveolar septum thickening and neutrophil infiltration is reduced
in those mice that have an E2 supplement (Figure 3A). Lung injury score was significantly
decreased in E2 treated OVX mice on quantal scoring of histological lung injury severity
(Figure 3B). OVX mice treated with E2 show significantly reduced neutrophil counts in
BALF compared to that of LMMHA-treated OVX mice (Intact: 0.85 × 105 ± 0.08 × 105/mL,
OVX: 1.4 × 105 ± 0.1 × 105/mL, OVX + E2: 0.9 × 105 ± 0.11 × 105/mL) 12 h after
LMMHA administration (Figure 3C). OVX mice treated with E2 demonstrate less intense
MPO activity in the lung tissue compared with OVX mice (Intact: 815 ± 75 ng/mL, OVX:
1300 ± 150 ng/mL, OVX + E2: 900 ± 100 ng/mL) (Figure 3D).
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Figure 3. Effects of OVX mice treated with 17β-estradiol (E2) on inflammatory cell infiltration. After
a recovery period of at least two weeks, each OVX mouse received daily subcutaneous injection of
either vehicle (sesame oil, 2 mL/kg BW) or E2 (twice a day, 3 µg/kg BW) for one week. (A) Lung
sections stained with H&E, original magnification 200×. Values are means ± SEM from at least
five individual animals, (B) Lung injury score, (C) total cell counts, and (D) neutrophil counts
were performed on BALF 12 h after intratracheal administration of LMWHA (200 kDa, 65 mg/kg).
Significant differences are indicated by *, p < 0.05.

Compared to OVX mice, E2-treated OVX mice show significantly reduced lung IL-6
levels (Intact: 30 ± 2.5 pg/mL, OVX: 55 ± 3 pg/mL, OVX + E2: 32 ± 4 pg/mL) (Figure 4A),
CXCL-1 (Intact: 19 ± 3 pg/mL, OVX: 33 ± 6 pg/mL, OVX + E2: 21 ± 5 pg/mL) (Figure 4B),
CXCL-2 (Intact: 11 ± 1 pg/mL, OVX: 30 ± 5 pg/mL, OVX + E2: 12 ± 2 pg/mL) (Figure 4C),
TNF-α (Intact: 10 ± 1 pg/mL, OVX: 31 ± 4 pg/mL, OVX + E2: 15 ± 4 pg/mL) (Figure 4D)
12 h after LMMHA administration.
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Figure 4. Effects of OVX mice treated with 17β-estradiol (E2) on inflammatory cytokine production.
After a recovery period of at least two weeks, each OVX mouse received daily subcutaneous injection
of either vehicle (sesame oil, 2 mL/kg BW) or E2 (twice a day, 3 µg/kg BW) for one week. (A) IL-6,
(B) CXCL-1, (C) CXCL-2, and (D) TNF-α in BALF were analyzed 12 h after intratracheal administra-
tion of LMWHA (200 kDa, 65 mg/kg). Values are means ± SEM from at least five individual animals.
Significant differences are indicated by *, p < 0.05.
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3. Discussion

In this study, we demonstrate that male mice develop greater lung inflammation
than female mice after intratracheal administration of LMMHA. Ovariectomized females
exhibit increased inflammation compared to females with intact ovaries. Furthermore,
17β-estradiol injection into ovariectomized female mice reduces inflammation. Therefore,
17β-estradiol may be a key contributor to disparate gender effects in LMMHA induced
inflammation. These findings agree with previous clinical studies in which female mice
have reduced morbidity and mortality due to ischemia/reperfusion, trauma, sepsis, and
shock, which are common risk factors for ALI [13,14,26,27]. Administration of 17β-estradiol
limits neutrophil infiltration and subsequent tissue destruction in liver trauma [28,29],
carrageenan-induced pleurisy, tracheal LPS damage [17,30], and OVA-induced allergic
reaction [31]. Since neutrophils contribute to the acute phase of inflammation and recruit
other innate immune system players, 17β-estradiol suppression of neutrophil activity could
have impressive effects on immune response.

Neutrophils are key mediators of inflammatory response, particularly in LMMHA-
induced lung injury [10]. The process of neutrophil extravasation involves multiple sub-
sequent steps of margination and rolling, adhesion, diapedesis, and migration. The steps
of margination and rolling are mediated by E-selection and P-selectin on the vasculature,
which bind to Sialyl Lewis on the neutrophil. This interaction allows leukocytes to travel
to areas of need in the body before tightly binding to endothelial cells (through intracel-
lular adhesion molecule 1, ICAM-1) and traveling between endothelial cells to the site of
injury. Previous studies have shown that P-selectin is at its lowest during the luteal phase
in women and that an intramuscular 17β-estradiol injection significantly lowers soluble
P-selectin levels in healthy males [32]. Ovariectomized mice demonstrate an increase in
neutrophil accumulation compared to that of cycling animals, and 17β-estradiol inhibits
LMMHA induced lung inflammatory responses. Our study implicates endogenous 17β-
estradiol in the regulation of neutrophil infiltration by controlling the levels of P-selectin
and ICAM-1 in lung tissue injury.

Neutrophils are removed by apoptosis and macrophage phagocytosis from areas of
tissue injury, leading to resolution of inflammation [33]. This process is particularly impor-
tant in the resolution of lung inflammation. Disruption to the neutrophil apoptosis process
can lead to acute respiratory distress syndrome (ARDS) and sepsis [34]. Neuronal, cardiac,
and renal ischemia are additionally subject to sex-specific differences in apoptosis [35–37].
17β-estradiol may also inhibit the accumulation of LMMHA treated neutrophils in lung by
impairing their survival.

Differences between LMMHA-induced neutrophil infiltration in males and females
could be the result of sex specific alterations in the neutrophil estrogen receptor (ER)
phenotype: expression of ER subtypes depends on exposure of neutrophils to estrogen.
Men and premenopausal women express ERα and ERβ neutrophil subtypes. Ovulation
in women increases estrogen and upregulates ERα and ERβ. The follicular phase of the
menstrual cycle is associated with low estrogen, but in vitro incubation of follicular phase
neutrophils with 17β-estradiol leads to similar upregulation of the ERα and ERβ sub-
types [38]. Interestingly, only the ERα subtype is upregulated when neutrophils from men
are incubated with 17β-estradiol, which suggests sex-differences of ERα and ERβ subtypes
expression [38]. These differences may explain why neutrophils from men have reduced
neutrophil adhesion [39]. ERα is an important facilitator of the inflammatory response in
many types of tissue through its effects on estrogen such as in alveolar regeneration [40–44].
On the other hand, ERβ plays a role in trauma-hemorrhage induced lung injury [45],
but ERβ agonists do not impact the lung inflammatory response [46]. Further studies
are needed to determine how ERα and ERβ lead to these effects on LMMHA-treated
neutrophil functionality.

Previous studies show that inhibition of PI3K or genetic deletion of Akt1 enhances
LMMHA-induced apoptosis of neutrophils. Phosphorylation of p38 and ERK1/2 was
significantly decreased in Akt1−/− mice neutrophils treated with LMMHA [12]. Adminis-
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tration of 17β-estradiol after trauma-hemorrhage prevents phosphorylation of Kupffer cell
p38 MAPK and normalizes Kupffer cell production of IL-6, TNF-α, MIP-1α, and CXCL-2.
Further studies are needed to investigate whether 17β-estradiol prevents the increase
in neutrophil infiltration and cytokine production via PI3K, Akt, and p38MARK after
LMMHA administration.

4. Materials and Methods
4.1. Mice and Model Description

C57BL/6 mice aged 6–8 weeks were obtained from the Zhejiang Academy of Medical
Sciences. All experiments were approved by the laboratory animals ethical committee of
the Zhejiang University of Technology and followed the NIH guide for laboratory animals
(NIH Publication No. 85–23, revised 1996) for the care and use of animals. Mice were
maintained under specific pathogen-free conditions and given access to food and water.
To obtain mice at known stages of the estrous cycle, vaginal smears were examined daily.
Mice have 4 or 5-day estrous cycles, and only mice with at least two consecutive 4-day
cycles were used. LMMHA (200 kDa, 65 mg/kg) was administered to the trachea with a
microsprayer (Penn-Century, Wyndmoor, PA, USA) [16].

4.2. Ovariectomized (OVX)

The lower abdomen of ether-anesthetized mice was sliced, and ovaries were re-
moved. The abdominal tissue was sutured, and an intramuscular injection of Pentantibiotic
(570 mg/kg) was made. Vaginal smear cellular morphology was analyzed to determine
the effectiveness of OVX after 7 days. After a recovery period of at least two weeks, OVX
mice received subcutaneous injection of either vehicle (sesame oil, 2 mL/kg BW) or E2
(17β-estradiol, twice a day, 3 µg/kg BW) for one week. The experimental protocol was
approved by the Laboratory Animals Ethical Committee of Zhejiang University of Technol-
ogy (11 May 2020) and was registered on the Zhejiang University of Technology Animal
Protocols Register (20200512053, 11 May 2020).

4.3. Bronchoalveolar Lavage Fluid (BALF)

Mice were sacrificed 12 h after intratracheal administration of LMWHA (200 kDa,
65 mg/kg). A midline incision was used to expose the trachea, which was then cannulated
with a sterile 22-gauge needle. A total of 0.5 mL of cold PBS was injected and retrieved
through the midline incision four times for a total of 1.8 mL BALF collected per mouse.
The samples were then centrifuged, and sample supernatants of were stored at −80 ◦C. A
hemocytometer was used to count total cell numbers in BALF samples. BALF neutrophil
counts were determined using cytospin preparations stained with the Diff-Quick staining
kit (IMEB, San Marcos, CA, USA).

4.4. ELISA

IL-6, TNF-α, CXCL-1, and CXCL-2 levels in BALF were quantified with mouse ELISA
assay kits (R&D Systems, Minneapolis, MN, USA) as per the manufacturer’s protocol. 17β-
estradiol levels in plasma were measured using a high sensitivity ELISA kit (ADI-900-174,
Enzo Life Sciences).

4.5. Myeloperoxidase Assay

After BALFs were obtained, whole-lung homogenates were measured using a mouse
myeloperoxidase (MPO) ELISA kit (Cell Sciences, Canton, MA, USA) per manufacturer
protocol.

4.6. Lung Injury Score

Lung inflammation was assessed as described previously [10]. Blinded quantal injury
assessment was performed through evaluation of alveolar septae, alveolar hemorrhage,
intra-alveolar fibrin, and intra-alveolar infiltrates. A 10% buffered formalin was used to
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fix lung tissues overnight. These sections then underwent H&E staining: dehydration,
clearing, and embedding in paraffin. At minimum, five fields were examined per section.

4.7. Statistical Analysis

Data from at least three independent experiments are expressed as mean ± SEM. In
comparisons of two groups, a Student’s paired two-tailed t-test was used.

5. Conclusions

Our results illustrate the role of ovarian hormones and exogenous estrogen in modu-
lation of lung injury and neutrophil accumulation in LMMHA-injured lungs. In addition,
IL-6, CXCL-1, TNF-α, and CXCL-2 have been shown to enhance the inflammatory response
in OVX and male mice. Finally, they show that 17β-estradiol can be considered as a therapy
for reducing lung inflammation.
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IL-6 Interleukin-6
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