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Abstract

Background: Traditionally, insulin bolus calculations for managing postprandial glucose levels in individuals
with type 1 diabetes rely solely on the carbohydrate content of a meal. However, recent studies have reported
that other macronutrients in a meal can alter the insulin required for good postprandial control. Specifically,
studies have shown that high-fat (HF) meals require more insulin than low-fat (LF) meals with identical
carbohydrate content. Our objective was to assess the mechanisms underlying the higher insulin requirement
observed in one of these studies.
Materials and Methods: We used a combination of previously validated metabolic models to fit data from a
study comparing HF and LF dinners with identical carbohydrate content in seven subjects with type 1 diabetes.
For each subject and dinner type, we estimated the model parameters representing the time of peak meal-
glucose appearance (sm), insulin sensitivity (SI), the net hepatic glucose balance, and the glucose effect at zero
insulin in four time windows (dinner, early night, late night, and breakfast) and assessed the differences in
model parameters via paired Wilcoxon signed-rank tests.
Results: During the HF meal, the sm was significantly delayed (mean and standard error [SE]: 102 [14] min vs.
71 [4] min; P = 0.02), and SI was significantly lower (7.25 · 10-4 [1.29 · 10-4] mL/lU/min vs. 8.72 · 10-4

[1.08 · 10-4] mL/lU/min; P = 0.02).
Conclusions: In addition to considering the putative delay in gastric emptying associated with HF meals, we
suggest that clinicians reviewing patient records consider that the fat content of these meals may alter SI.

Introduction

Continuous glucose monitors (CGMs) combined
with subcutaneous insulin infusion pumps provide in-

dividuals with type 1 diabetes convenience and flexibility in
managing their blood glucose levels.1,2 However, there has
been little guidance on how to use the CGM data to optimize
insulin delivery. Retrospective analysis of CGM data can
identify periods of hypo- or hyperglycemia indicating that
too much or too little insulin was given. However, there is no

method by which the CGM data can be used to directly infer
how the insulin pump settings should be modified to correct
these problems. Interpretation of the CGM data is con-
founded by factors that may have affected the subject’s in-
sulin sensitivity (SI) on any given day, such as prior exercise
and stress. Hypo- or hyperglycemia following meals with
unusually low or high glycemic indices, respectively, may be
due to an inappropriate bolus pattern (square wave, dual
wave, etc.)3 or an inappropriate duration of insulin delivery,4

rather than an error in the carbohydrate-to-insulin ratio per se.
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Additionally, all bolus estimators assume the background ba-
sal rate to be correct, which may not always be true. Further-
more, analysis of CGM data is confounded by the emerging
body of evidence suggesting that macronutrients other than
carbohydrate may require adjustments to the insulin dosing.5

Traditionally, high-fat (HF) meals have been thought to
delay gastric emptying,5 thus motivating the use of extended
or dual-wave boluses to cover these meals. However, it is not
commonly believed that HF content requires an increased
amount of insulin. Nonetheless, a prospective randomized
controlled trial (RCT) using an artificial pancreas system to
control low-fat (LF) and HF dinner meals with identical
carbohydrate content showed that even with 42% more in-
sulin being delivered, the glucose levels during the HF meal
remained elevated.6

To better understand this finding and to possibly develop an
improved method of adjusting the bolus recommendations
covering HF meals, we sought to identify the mechanism re-
sponsible for the increased insulin requirement observed in the
original RCT.6 In this study, we hypothesized that in addition
to the putative effect of fat to delay gastric emptying, it may also
limit insulin’s ability to increase glucose uptake into peripheral
tissues and suppress endogenous glucose production. We tested
this hypothesis by fitting the plasma insulin and glucose data
obtained from the RCT study6 to previously validated meta-
bolic models describing the time of peak meal-glucose ap-
pearance (sm) that represents the time constant of gastric
emptying,7 the pharmacokinetic profile of insulin following
subcutaneous delivery,8 the delay in the effect of insulin to
enhance glucose uptake into cells, the SI of the cells, and the
glucose effect at zero insulin (GEZI) to suppress endogenous
glucose production and increase glucose uptake into cells.9

Materials and Methods

Subject characteristics, meal composition, and study design
of the RCT quantifying the increase in insulin required to cover
HF versus LF meals are provided in the original publication6

(for complete meal description, see comments made by Wol-
ever10 in a Letter to the Editor and the author’s response11).

In brief, seven adult subjects (five men and two women) 55
years of age (standard deviation [SD] = 12), with a diabetes
duration of 42 years (SD = 6; range, 15–60), hemoglobin A1c
of 7.2% (SD = 0.8), total daily insulin dose of 0.50 U/kg
(SD = 0.14; range, 0.28–0.73), and body mass index of
26.3 kg/m2 (SD = 3.6; range, 21.5–30.6) were studied on two
occasions, each lasting 18 h on consecutive days. During each
occasion, subjects were admitted to a clinical research center
on the afternoon of the first study day. At 6 p.m. on the day of
admission, subjects consumed either an HF (60 g) or LF
(10 g) dinner meal with identical carbohydrate (96.7 g
[SD = 19.1]) and were monitored until noon on the following
day. Breakfast (102.8 g [SD = 16.3] of carbohydrate), served
at 8 a.m., was identical in all respects on both days. Beginning
at 6 p.m. and ending at 12 p.m. (noon) the subsequent day,
each subject’s insulin requirement was obtained via a closed-
loop artificial pancreas algorithm12 together with blood
samples obtained approximately every 15 min during meals
and approximately every 60 min during the night. Blood
samples were assessed for plasma glucose using a YSI 2300
glucose analyzer (YSI Life Sciences, Yellow Springs, OH)
and for plasma insulin using a chemiluminescent immuno-

assay (Beckman Coulter, Fullerton, CA). During the night,
supplementary meals consisting of juices with carbohydrate
content between 7 g and 15 g were given to subjects with
glucose levels nearing 70 mg/dL to avoid the risk of hypo-
glycemia (glucose <60 mg/dL).

Metabolic model parameter estimation

Using the data (carbohydrate [in g], insulin delivery rate
[in U/h], plasma insulin concentration [in lU/mL], and
plasma glucose concentration [in mg/dL]), we estimated the
parameters of previously validated metabolic models that
represent the sm,7 insulin clearance (CINS) and delays asso-
ciated with insulin appearance in plasma following subcu-
taneous delivery (s1 and s2) and its subsequent effect (1/p2) to
increase glucose uptake in cells,8 SI of the cells, net hepatic
glucose balance at zero insulin and zero glucose (NHGB0),
the GEZI, and the ratio of the glucose distribution volume to
the bioavailability of meal carbohydrate (VG/AG).9 We pro-
vide the model equations in the Appendix.

As in previous studies assessing time-varying metabolic
parameters,13 we defined discrete time intervals in which we
assumed the metabolic model parameters to be approximately
constant: dinner interval (6 p.m.–11 p.m.), early nighttime
interval with a transition time (TN) (11 p.m.–TN), late night/
early morning (TN–8 a.m.), and breakfast (8 a.m.–12 p.m.).
We incorporated a 20-min transition phase to allow a piece-
wise smooth transition in parameter values from one interval
to the next and identified TN separately for each subject. We
estimated the pharmacodynamic model parameters SI, GEZI,
and NHGB0 separately in each interval, allowing the values to
differ between HF and LF meal glucose profiles. We esti-
mated sm separately for the LF dinner, HF dinner, breakfast,
and all supplementary meals. Pharmacokinetic model pa-
rameters describing insulin transport within the body (sub-
cutaneous depot [CINS and s1], plasma [s2], and remote
interstitial fluid surrounding insulin-sensitive tissue [p2]) and
VG/AG were assumed to be the same in each interval and to be
unaffected by meal fat content. We assessed the quality of the
estimated parameters by computing the fractional SD (FSD)
of each parameter (details are provided in the Appendix).

We report plasma glucose and insulin concentrations and
the associated model fits as mean and standard error (SE).
Goodness of fit (R2; coefficient of determination)14 are re-
ported as median and range. We report the estimated pa-
rameters as the mean and SE values and assess parameter
differences during and following closed-loop LF and HF
dinners using two-sided paired Wilcoxon signed-rank tests,14

with P < 0.05 considered significant. We performed parame-
ter identification, model simulations, and statistical compar-
isons using MATLAB version 7.14 software (The Mathworks
Inc., Natick, MA).

Results

Plasma glucose (Fig. 1a) and insulin (Fig. 1b) were well fit
by the model for both the LF dinner (median R2 of 0.88
[range, 0.40–0.94] and 0.91 [range, 0.81–0.97] for plasma
insulin and glucose, respectively) and the HF dinner (0.74
[range, 0.31–0.96] and 0.90 [range, 0.71–0.94] for plasma
insulin and glucose, respectively).

Model parameters for all subjects were generally well es-
timated (e.g., median FSD for SI = 17% [range, 11–37%]
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except for subject 4, whose FSD was 92% for the HF meal).
Supplementary Tables S1–S4 (Supplementary Data are
available online at www.liebertonline.com/dia) provide the
estimated model parameters, their corresponding FSDs, and
meal information for each subject for both LF and HF meal
conditions.

Average SI (Table 1) was significantly lower during the HF
versus LF dinner (7.25 · 10-4 mL/lU/min [SE = 1.29 · 10-4]
vs. 8.72 · 10-4 mL/lU/min [SE = 1.08 · 10–4]; P = 0.02), and
average sm was significantly delayed (102 min [SE = 14]
vs. 71 min [SE = 4]; P = 0.02). We did not observe any
statistically significant differences in NHGB0 or GEZI during
the LF and HF meals or during the two nighttime intervals
(11 p.m.–approximately 4:34 a.m. and approximately 4:34
a.m.–8 a.m.) (Table 1). Parameters assumed not to be affected
by dinner fat content or to vary during the day (CINS, VG/AG,

s1, s2, and p2) were estimated to be 894 mL/min (SE = 150),
133 dL (SE = 19), 176 min (SE = 44), 51 min (SE = 12), and
0.016 min-1 (SE = 0.005), respectively. We noted that the
parameter values for the LF meal condition were statistically
similar to the parameter values reported by Kanderian et al.13

Discussion

Adjusting insulin doses for meal fat content remains con-
troversial, with patients typically being advised that fat only
affects the rate of gastric emptying and that they should
consider using an extended or dual-wave bolus.3 However,
several studies have emerged challenging this belief.5 Model
analysis confirmed the well-established belief that HF meals
are associated with delayed gastric emptying (here estimated
to be approximately 30 min) but also pointed to a significant

FIG. 1. Plasma (a) glucose and (b) insulin levels from seven subjects consuming a low-fat (LF) or high-fat (HF) dinner
with identical carbohydrate content at 6 p.m., followed by identical breakfasts at 8 a.m. Symbols indicate measured
concentration levels (mean and SE). Lines indicate the mean curves of the metabolic model fits across the seven subjects,
with the mean LF fit represented by a dashed curve and the mean HF fit represented by a solid curve.
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decrease in SI (here approximately 17%), and a possible de-
crease in GEZI later in the night, albeit this effect did not
achieve statistical significance (P = 0.06).

Although the 17% decrease in SI identified here for the HF
meal was statistically significant, it was not sufficient to ex-
plain the approximately 42% increase in the insulin require-
ment observed in the original study.6 The observed decrease in
SI is consistent with clamp studies showing that when levels of
free fatty acids are prevented from falling by a concomitant
infusion of intralipid heparin, SI is lower.15–17 However, in
those studies the decrease was largely attributed to a decrease
in insulin’s ability to suppress endogenous glucose production.

In the present study, we did not observe differences in
NHGB0 (the hepatic glucose balance that would be expected
at zero insulin), but this does not preclude the possibility that
insulin’s ability to alter the balance was impaired in the HF
meal. Our analysis does not allow the time course of insulin’s
effect to alter NHGB0 to be separated from the time course of
its effect to increase peripheral glucose uptake, as this would
require the use of glucose tracers.18,19 It is also possible that
the decrease in GEZI, observed later in the night, contributed
to the increased insulin level, although this effect did not
achieve statistical significance in this study (P = 0.06) and
occurred at a time when plasma insulin levels and SI were
well matched. Thus, we attribute the difference between the
observed increase in insulin requirement (42%) and the
amount that can be explained by the decrease in SI (17%) to
the mismatch between the delay in insulin effect (1/p2) and
the peak meal absorption time sm. In the present study, 1/p2

was 62 min, whereas sm was 102 min for the HF meal, as
opposed to 71 min for the LF meal. Such a mismatch reduces
insulin’s ability to increase glucose disposal, thus increasing
the insulin requirement.

The present study design included only one level of meal
carbohydrate content (96 g) with two levels of meal fat content
(10 g vs. 60 g) and is therefore not sufficient to infer the insulin
dosing for a moderate amount of fat (10–20 g) or to determine if
further increases in the amount of fat would increase the insulin
requirement. Although the effect of fat on insulin requirement
was possibly enhanced due to the substantially increased meal-
fat content in this study (60 g), other controlled studies have
found this effect for meal-fat content ranging from 6.6 to
52.0 g.5 In particular, at least one study showed that 35 g of
meal-fat content increased postprandial glucose concentrations
by approximately 40 mg/dL at 5 h.20 Thus, there is an emerging
body of evidence suggesting that meal-fat content alters the
dose of insulin required for those meals.

However, whether the insulin dosing should be obtained
via an adjustment to the carbohydrate-to-insulin ratio (con-
sistent with fat decreasing insulin’s ability to dispose of car-
bohydrate) or via an additional factor proportional to the
grams of fat per se (consistent with carbohydrate and fat
having independent effects) is unclear. Equally unclear is how
to factor the effects of the amount of protein or the glycemic
index of a meal into the insulin dosing calculation. None-
theless, our results showing a metabolic model to be capable
of fitting observed glucose profiles for a specific meal, be it LF
or HF (Fig. 1), suggests that model analysis could potentially
be used to calculate the optimal insulin dosing and delivery
pattern (dose amount and duration) for any meal.

The metabolic model used in the present study was composed
entirely of submodels developed and validated by other inves-
tigators for reasons unrelated to the characterization of meal
responses in subjects with type 1 diabetes. The pharmacokinetic/
pharmacodynamic models are identical to those proposed by
Sherwin et al.8 in 1974. Model components describing the effects

Table 1. Mean Values of the Variable Parameters Insulin Sensitivity, Net Hepatic Glucose

Balance at Zero Insulin and Zero Glucose, and Glucose Effect at Zero Insulin

and the Time of Peak Meal-Glucose Appearance Across the Seven Study Subjects

Parameter,
meal type

Dinner
(6 p.m.–11 p.m.)

P
value

Early night
(11 p.m.–TN)

P
value

Late night
(TN–8 a.m.)

P
value

Breakfast
(8 a.m.–12 p.m.) P value

SI · 10-4 (mL/lU/min)

LF 8.72 (1.08)
0.02a

7.89 (1.01)
0.16

7.08 (1.86)
0.99

6.72 (1.29)
0.69

HF 7.25 (1.29) 10.94 (1.36) 7.04 (1.97) 6.41 (1.50)

NHGB0 (mg/dL/min)

LF 2.55 (0.69)
0.81

2.41 (0.54)
0.58

3.13 (0.51)
0.58

1.56 (0.03)
0.44

HF 3.07 (0.68) 3.23 (0.52) 2.54 (0.42) 1.55 (0.03)

GEZI · 10-2 (min-1)

LF 0.81 (0.24)
0.69

0.71 (0.18)
0.84

1.02 (0.17)
0.06

0.50 (0.01)
0.38

HF 0.89 (0.25) 0.64 (0.06) 0.59 (0.05) 0.51 (0.01)

sm (min)

LF 71(4)
0.02a —

60 (7)
0.30

HF 102 (14) 57 (5)

Values in parentheses are SEs.
aIndicates statistically significant differences between low-fat (LF) and high-fat (HF) values (P < 0.05).
sm, time of peak meal-glucose appearance; GEZI, glucose effect at zero insulin; NHGB0, net hepatic glucose balance at zero insulin and

zero glucose; SI, insulin sensitivity; TN, transition time.
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of insulin and glucose at zero insulin to increase glucose uptake
and decrease endogenous glucose production are derived from
the minimal model equations of Bergman et al.9 and the model
describing the rate of meal glucose appearance follows from
work by Wilinska et al.7 The combined model (Appendix, Eqs.
1–5) has been used to characterize interday variability in meta-
bolic parameters in adult subjects with type 1 diabetes studied
under closed-loop control,12 with the results subsequently used to
predict closed-loop study results obtained in an independent
population of pediatric subjects.21 We note here that Eq. 3 of the
combined model that describes the insulin effect on glucose was
the same in the model reported by Sherwin et al.8 and the min-
imal model of Bergman et al.9

Independently, Schiavon et al.22 have recently shown that
the minimal model subcomponent can be used to derive an
index of SI using only CGM data and subcutaneous insulin
delivery and that this estimate is well correlated with the
traditional oral minimal model estimate of SI. This suggests
that plasma insulin concentration data per se are not needed
when identifying the model. However, without these data SI

can only be identified in combination with CINS (see Ap-
pendix). Having at least some insulin data also improves the
precision (FSD) of the estimated parameters, which, while
being generally acceptable (FSD <37% in 13 of the 14 esti-
mates of SI obtained in this study), was higher than desired in
some cases (e.g., Supplementary Table S1, 92% in subject 4
for HF meal). Furthermore, although the models used in the
present analysis are well established, with reports on their use
dating back more than 40 years,8 the ability to fit or charac-
terize a specific meal at a specific point in time, as previously
shown13 and reconfirmed here (Fig. 1), or to predict average
results that could be obtained in a population of subjects not
used to derive the model21 does not imply that the model will
be able to predict the response to a different meal consumed
on the same day or the same meal consumed on a different
day by a subject. Factors affecting inter- and intraday changes
in metabolic parameters remain unknown.

In summary, the results of the present study suggest that
previously validated models can be combined to describe
complex meal response profiles. The ability to model these re-
sponses may ultimately serve to improve existing open-loop
bolus estimators and possibly optimize a closed-loop, artificial
pancreas system. The analysis presented in this study adds to the
findings reported in the original study,6 showing that HF meals
require more insulin than LF meals with identical carbohydrate
content. Specifically, parameters identified here indicate that
increased insulin requirement was due to both delayed gastric
emptying and an effect of fat to decrease SI. We suggest that
clinicians and dieticians reviewing patient records consider the
fat content of meals with unexpectedly high glucose levels when
considering the insulin requirements for those meals.
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Appendix

Metabolic model equations

Insulin subsystem (pharmacokinetic model).

s1

dISC

dt
¼ � ISCþ

ID

CINS

(1)

s2

dIP

dt
¼ � IPþ ISC (2)

where s1 and s2 represent the insulin time constants for
subcutaneous insulin concentration (ISC) and plasma insulin
concentration (IP), respectively, ID denotes the delivered
insulin, and CINS denotes the insulin clearance rate.

Glucose subsystem (pharmacodynamic model).

dIEF

dt
¼ � p2IEFþ p2S1IP (3)

dGP

dt
¼ � (GEZIþ IEF)GPþNHGB0þRA (4)

RA¼
AGCarb

VGs2
m

(t� tm)exp � (t� tm)

sm

� �
for tqtm (5)

where IEF denotes the effect of insulin on glucose, 1/p2 is the
time constant for the insulin effect, SI denotes the insulin
sensitivity, GP denotes the plasma glucose concentration,
GEZI denotes the glucose effect at zero insulin, NHGB0

represents the net hepatic glucose balance, RA denotes the
rate of glucose appearance due to meal carbohydrates (Carb),
VG denotes the glucose distribution volume, AG is a number
between 0 and 1 indicating the bioavailability of meal car-
bohydrates, sm is the time of peak meal-glucose appearance,
and tm denotes the mealtime. Parameters (s1, s2, p2, GEZI,
NHGB0, sm, and ratios VG/AG and SI/CINS) are identifiable
from pump insulin data (ID, Eq. 1), glucose concentration
(GP, Eq. 4), and meal carbohydrate (Carb, Eq. 5). If plasma
insulin data are available, as in the present study, SI and CINS

can be separately identified.

Model parameter identification procedure

We estimated the insulin subsystem parameters using the
measured plasma insulin data. For the glucose subsystem,
initially, we estimated a different TN for each of the two meal
types. However, the TN estimates for both meal types were
within 15 min of each other. We found that constraining TN to
be the same for both meal types yielded model fits similar to
the unconstrained fits. Hence, we used the following proce-
dure for model estimation.

Step 1. Estimated the parameters of the insulin subsystem
(s1, s2, and CINS) by driving it with the insulin
delivery data (ID) and minimizing the squared
error between the predicted IP and the measured
insulin data during the 18-h study period for the
LF/HF meal types.

Step 2. Fixed TN and the insulin subsystem parameters and
estimated the parameters of the glucose subsystem
(VG/AG, p2, SI, GEZI, NHGB0, and sm) by mini-
mizing the squared error between the predicted GP

and the measured glucose data during the 18-h
study period for both meal types. We estimated the
parameters SI, GEZI, and NHGB0 separately in
four time windows. For example, SI was estimated
as SI(D) during dinner, SI(N1) during early night,
SI(N2) during late night, and SI(B) during breakfast.
For each meal, including supplementary meals, we
estimated a separate sm. We weighted the squared
error by 2 for glucose values above 180 mg/dL and
below 70 mg/dL to better capture the peak and
nadir glucose levels.

Step 3. Fixed the parameters of the glucose and insulin
subsystems and estimated TN by minimizing the
squared error of the glucose subsystem.

Step 4. Repeated Steps 2 and 3 until convergence, which
was assessed by determining whether the differ-
ence between the squared error in the present it-
eration and the previous one was <10–3.

After the convergence criterion was met, we confirmed
that the parameter values did not change when Steps 2 and 3
were repeated once again.
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Parameter fractional standard deviations

We assessed the parameter uncertainties that provide infor-
mation about the quality of model fit by computing their frac-
tional standard deviations (FSDs; the percentage of the ratio
between the SD and the estimated value). There are two meth-
ods for computing the parameter SDs: (1) the Jacobian ap-
proximation of the metabolic model and (2) the Monte Carlo
sampling method.23 The Jacobian method is straightforward but
approximate; the Monte Carlo method provides accurate esti-
mates of the FSDs if the estimated parameters remain within the
specified bounds, but it is computationally expensive.23,sect. 15.6

We used the Monte Carlo method in three out of the seven
subjects to verify the correctness of the FSDs estimated from
the Jacobian method.

The Monte Carlo method involves generating virtual data,
fitting the model on the virtual data to obtain model param-
eter distributions, estimating the parameter SDs, and, lastly,
computing the FSDs. We generated 1,000 realizations of the
glucose and insulin data for each subject using the formula
yS = yT + x, where yS denotes the simulated data, yT is the

measured data, and x * N (0, r), with r set to the root mean
squared error between yT and the best-fit model. Fitting the
model to each virtual data sample, we obtained the parameter
distributions and estimated their FSDs. To assess the reli-
ability of the computed FSDs, we recomputed them using 500
of the 1,000 realizations and found the values obtained to be
similar to those yielded by using all 1,000 realizations. Fur-
thermore, for the parameters that did not hit the bounds, we
found that the FSDs obtained via the Monte Carlo method
yielded values similar to those obtained by the Jacobian ap-
proximation of the metabolic model. We noted that in cases
where parameters consistently hit the bounds in the 1,000
realizations, the parameter distributions were skewed toward
those bounds, yielding unreliable estimates of the SDs. In
those cases, the Jacobian method offers the only means of
estimating the FSDs. After verifying the similarity between
the FSDs obtained by the Jacobian and Monte Carlo methods
for three subjects, we used only the Jacobian method
to compute the FSDs for the other subjects. Supplementary
Tables S1–S4 provide the parameter estimates and their FSDs
estimated for each subject using the Jacobian method.

866 LAXMINARAYAN ET AL.


