
International  Journal  of

Environmental Research

and Public Health

Review

The Sustainability Challenge of Food and
Environmental Nanotechnology: Current Status and
Imminent Perceptions

Gitishree Das 1, Jayanta Kumar Patra 1,* , Spiros Paramithiotis 2,* and Han-Seung Shin 3

1 Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu,
Gyeonggi-do 10326, Korea; gdas@dongguk.edu

2 Department of Food Science and Human Nutrition, Agricultural University of Athens,
GR-11855 Athens, Greece

3 Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu,
Gyeonggi-do 10326, Korea; spartan@dongguk.edu

* Correspondence: jkpatra@dongguk.edu (J.K.P.); sdp@aua.gr (S.P.)

Received: 8 November 2019; Accepted: 29 November 2019; Published: 2 December 2019 ����������
�������

Abstract: Nanotechnology is a connection among various branches of science with potential
applications that extend over a variety of scientific disciplines, particularly in the food science
and technology fields. For nanomaterial applications in food processing, such as antimicrobials
on food contact surfaces along with the improvement of biosensors, electrospun nanofibers are
the most intensively studied ones. As in the case of every developing skill, an assessment from a
sustainability point of view is necessary to address the balance between its benefits to civilization and
the unwanted effects on human health and the environment. The current review aimed to provide an
update regarding the sustainability of current nanotechnology applications in food science technology,
environment, and public health together with a risk assessment and toxicity evaluation.

Keywords: antimicrobials; biosensors; electrospun nanofiber; food processing; nanotechnology;
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1. Introduction

Nanotechnology was first hinted at by Richard Feynman during a speech at the annual meeting of
the American Physical Society in December 1959. Nanotechnology concerns the use of nanomaterials
at a nanometric scale in order to take benefit of the specific physico-chemical properties occurring
in this size range. Over the next two decades, the theoretical knowledge and analytical tools for
nanotechnology were established, which led to the discovery of fullerenes and carbon nanotubes a
few years later. Nanotechnology, being the intersection between physics, chemistry, materials science,
engineering, and modern molecular biotechnology, has a number of prospective uses. However,
every emerging technology needs to be balanced between the benefits for human civilization and its
unwanted effects on environment and life. In the following paper, an attempt was made to present this
balance with reference to food nanotechnology by discussing the most typical applications and also
discussing advances in green biotechnology together with risk assessments and toxicity evaluations of
novel nanomaterials for the purpose of legislation as well as public acceptance in terms of food.
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2. Nanotechnology and Its Potential Applications in Food Science Technology, Environment,
and Human Health

Nanotechnology is extensively applied in the everyday life of human beings in almost all fields.
It has appeared as a high-tech development in the field of agriculture and food with the potential to
increase global food production along with an increase in the nutritional value, quality, and safety of
food [1–3]. Progress in the arena of nanotechnology has enabled a quite wide and diverse variety of
applications in food technology which includes food additives, food safety, nano-delivery systems,
biosecurity, nanotoxicity, etc. [1,4–7]. A number of potential applications for nanotechnology in the food
and agriculture sector has been presented by He et al. [5] (Table 1, Figure 1). The use of nanomaterials
as processing aids, antimicrobials for surface contact with foodstuffs, and also in the manufacture of
biosensors and electrospun nanofibers are the most expansively studied factors which are discussed in
the current review along with their pros and cons.
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Table 1. Different examples of nano-based food products.

Sector Application Nanomaterials Manufacturer Current Status Note Reference

Food processing

Color additives

TiO2
Exempt from
certification <1% by weight of the food [8]

Synthetic iron oxide Exempt from
certification

<0.25% (for dogs and cats)
and 0.1 (for human) % by

weight of the finished food
[8,9]

Additive or polymer
production aid

ZnO, iron oxide,
aluminum oxide, silicon

dioxide, cobalt oxide,
manganese oxide (E530)

Authorized by EC
10/2011

Authorization based on
conventional particle size [10]

Titanium nitride
No migration reported. Only
to be used in PET bottles up

to 20 mg/kg

Carbon black

Authorized by EC
10/2011; no longer

authorized by the US
FDA as additives

<2.5% w/w in the polymer

Preservatives Silver-silica Nanox Intelligent
Materials FCS Inventory a

FCN No. 1235. <4 ppm by
weight of silver as an

antimicrobial agent blended
into polymers

[11]

Flavor carrier Silicon dioxide (E551 d)
Authorized by
EC1334/2008

<10,000 mg/kg, excluding
foods for infants and young

children
[12]

Marking fruit and
vegetables Silicon dioxide (E551) Exempt from

certification <2% of the ink solids [8]

Anticaking agents Silicon dioxide (E551) REG b <2% by weight of the food [13]

Nutritional dietary
supplement

Copper oxide, iron
oxide Approved for animal feed [14]

ZnO GRAS c

Food contact
packaging

Pesticides detection Zinc Oxide QDs R&D [15]

Pathogens detection

Magnetic nano-sensors R&D [16,17]

Plasmonic nano-sensors [18]

Fluorescent
nano-sensors [19]
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Table 1. Cont.

Sector Application Nanomaterials Manufacturer Current Status Note Reference

Food contact
packaging

Toxins detection

Fluorescent
nano-sensors R&D [20]

Plasmonic nano-sensors [21]

Phosphorescent QDs [22]

Edible film/coating

Chitosan/nano-silica
coating Tested on longan fruit [23]

Poly-ε-caprolactone Tested on fresh-cut “Red
Delicious” apples [24]

Nano-emulsion/quinoa
protein/ chitosan Tested on fresh strawberries [25]

Bio-nano-hybrid
pectins and

LDH-salicylate
Tested on fresh apricots [26]

Nano-emulsion with
lemongrass essential oil R&D Tested on fresh-cut Fuji

apples [27]

Bentonite
(Al2O34SiO2nH2O) GRAS US FDA 21CFR184.1155 [28]

Flame retardation
additives, gas barrier, etc.

Prevent abrasive wear

Montmorillonite PolyOne Corporation
Nanocor® Inc. FCS Inventory FCN No. 1163 [11]

Montmorillonite
chromium (III) oxide

Toyo Seikan Kaisha
Limited and Nanocor

Incorporated
FCN No. 932 [26]

Nano-emulsion with
lemongrass
essential oil

Oerlikon Balzers
Coating

AG, Oerlikon Surface
Solutions AG

FCN No. 1839. For use at a
thickness not to exceed 200
nm, not for use in contact
with infant formula and

human milk

[27]

Prevent abrasive wear
Heating enhancer in

polyethylene
terephthalate (PET)

polymers

Titanium aluminum
nitride

Balzers
Aktiengesellschaft GRAS

FCN No. 302. The maximum
thickness of the surface
coating shall not exceed

5 mm

[28]

Tin antimony oxide Nyacol Nano
Technologies, Inc. FCS Inventory FCN No. 1437. <0.05% by

weight of the polymer [11]

a FCS: Effective Food Contact Substance (FCS) Notifications; b REG: Food additives for which a petition has been filed and a regulation issued; c GRAS: Generally Recognized as Safe; d E
numbers are codes of specific substances used as food additives approved by the European Food Safety Authority (EFSA). EC: European Commission; FDA: United States Food and Drug
Administration; R & D: Research & Development; Layered double hydroxide. Reproduced with permission from He et al. [5].
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2.1. Nanomaterials in the Food Processing Sector

There have been enormous uses of nanotechnology in the food processing sector which include the
formulation of novel functional nanomaterials for applications in the food, microscale and nanoscale
processing, manufacture of new foodstuffs with enhanced properties and various design of instruments
and methods for their possible use in bio-safety and food security [29]. Nanotechnology offers effective
approaches in food processing regarding improvement of physico-chemical characteristics of foodstuffs
along with improvement in nutrient constancy and bioavailability. Some of the uses of nanotechnology
in food sector industries are discussed below. Titanium dioxide and silica dioxide have been exclusively
used as processing aids and their use as food additives is allowed within the European Union under the
codes E171 and E551, respectively. Titanium dioxide is used mostly as a color enhancer. Weir et al. [30]
reported that the highest TiO2 content (normalized per serving) was estimated in candies, including
chewing gums, chocolate, etc., reaching as higher as 100 mg Ti, whereas dairy products contained
less than 0.06 mg Ti. Silicon dioxide, in contrast, is basically used as an anti-caking agent; however,
its use in food model preparation for xenobiotic analysis offers significant advantages [31]. Recently,
the French government has banned the sale of food products containing TiO2 starting from 1 January
2020 [32]. Nanoencapsulation (i.e., encapsulation in a protective envelope of a nanometric scale) may
offer significant advantages and new possibilities. The variety of nanocarriers, nanoencapsulation
approaches, conditions, and formulae must be nominated as per the food matrix characteristics and
the type of encapsulated compound [33]. Research is primarily dedicated to the effective incorporation
of lipophilic compounds such as fatty acids, antioxidants, carotenoids, and vitamins [34,35]. A wide
range of delivery systems has been described to expand the compatibility between the food matrix
and the bioactive compound, provide adequate protection against chemical and physicochemical
degradation during specific processing or storage conditions, enhance controlled release upon specific
environmental stimuli, and to prolong the antimicrobial potential of the encapsulated antimicrobial
compounds. These are the principles on which the structural design of systems for effective delivery of
bioactive compounds have been comprehensively studied [36,37].

2.2. Nanomaterials in Food Contact Surfaces

The use of nanocomposites for food contact surfaces has become an area of intensive research.
More accurately, the antimicrobial potential of metals and their oxides currently employed as well
as their consequences on the mechanical and thermal properties on packaging has been studied
at length. Regarding the former, the antibacterial potential of nanoscale silver is already known.
There are numerous instances of silver incorporation in glass and graphene oxide-inhibiting biofilm
formations [38] and in packaging ingredients, like polyvinylpyrrolidone (PVP), cellulose, low-density
polyethylene, etc., that exhibit good antibacterial activity against both Gram-positive and Gram-negative
species and, in some cases, enhancing the physicochemical stability of the foodstuffs. Another class of
compounds, termed photocatalytic nanoparticles, has also been extensively considered. Moreover,
the uses of TiO2-based polymer coating are effectively applied against biofilm-forming foodborne
pathogens [39]. Apart from using metals and their oxides, nano-emulsions have been utilized in
improving the antimicrobial potential of compounds. Otoni et al. [40] have described the development
of edible films from pectin, papaya puree, and cinnamaldehyde emulsions. Donsi et al. [41] created a
film consisting of modified chitosan and containing a nano-emulsion of mandarin essential oil. Besides
the antimicrobial activities, nanocomposites are also being utilized to significantly improve basic
packaging properties. These properties include protection from physico-chemical or microbiological
quality deterioration that is generated from exposure to environmental stimuli. This improvement is
accredited to the enhancement of the barrier properties against gases, volatile compounds, and moisture
migration along with mechanical and heat resistance [42].
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2.3. Nanotechnology in Quality and Safety Management of Food

The invention of improved biosensor-based nanotechnology has enabled its potential applications
in food-based safety management for detecting both the chemical and biological contaminants. The most
extensively studied approaches involve the exploitation of silicon-based nanowires on the basis of
their biocompatibility and tunable electrical properties and gold nanoparticles due to the fact of their
biocompatibility, ideal optical performance, controlled manufacture, and carbon nanotubes, and their
dual application in electrodes and transducer components.

Contaminants, such as allergens, toxins, and pesticides, have been efficiently detected using such
biosensors. Regarding allergen detection, improvements have included methods for the discovery
of the Ara h1 peanut allergen in chocolate candy bars through a nanobead-enhanced optical fiber
surface plasmon resonance biosensor [43], foreign protein contamination (ovalbumin) in whole milk
by combining immunomagnetic separation and surface-enhanced Raman scattering [44], and soy
protein in soy products by a long-wavelength fluoroimmunoassay by means of a conjugate made up of
anti-soy protein antibodies bound to nile blue color doped silica nanoparticles [45].

The enhancement of biosensor technology for bacterial and mycotoxin detection has drawn
specific attention [46,47]. Efficient mycotoxin detection was also conveyed by many authors [48,49].
Several biosensors have been developed for pesticide detection also [50].

2.4. Electrospun Nanofiber of Food Interest

There is a growing interest in the use of electrospun nanofibers in food sector industries, particularly
in the encapsulation of new food ingredients, enzymes, and other types of bioactive compounds
along with the electrospinning of biopolymers for food additives, novel packaging, food sensors,
food coatings, and flavor enhancement, etc. (Figure 2) [51–56].
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These applications include active food packaging and preservation of nutrients, enhancing the
texture and nature of the food, etc. There are a number of examples of the use of electrospun fibers in
the food sectors, such as the addition of antimicrobial agents to electrospun fibers and the use of them in
packaging materials for increasing the shelf-life of foods. Natural polymers, such as alginate, chitosan,
collagen, gelatin, etc., are being electrospun and tested for their medical applications. Furthermore,
food materials, such as zein, soy protein, whey protein, etc., are also being electrospun for their potential
applications in the food sector [57,58]. Additionally, intelligent active packaging materials are also being
created by electrospun processes for the integration of biosensors into fibers to indicate the expiry date
of food products [59]. Fabra et al. [60] reported the use of a bio-based polyester multilayer packaging
material with high barrier interlayer electrospun zein nanofibers for food packaging applications.
Another application of electrospinning technology is in the case of chocolate making, where the use of
electrospinning results in a lower amount of chocolate sauces and the production of fiber particles
give varied texture and mouth feeling as compared to bulk chocolate particles [53]. Kriegel et al. [61]
introduced eugenol into polyvinyl alcohol and cationic chitosan blended with a Gemini surfactant
(Surfynol 465) and tested its promising antibacterial activities [61]. Conservation of active bioactive
compounds through a process of encapsulation in the electrospun fibers is one of the most extensively
studied fields in the application of electrospun nanofibers in food technology, and it is considered
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one of the most efficient techniques to protect highly sensitive compounds from various adverse
environmental conditions [55]. Folic acid is one example of this application and its beneficial effects,
as without any coating it is vulnerable to degradation when exposed to light and acidic conditions.
However, when it is encapsulated within sodium alginate-pectinpoly nanofibers, almost 100% of
the folic acid is retained after 41 days of storage in the dark at pH 3 as presented by Alborzi [62].
Apart from encapsulation of vitamins and minerals, electrospun fibers techniques are also used for
delivery of probiotic bacteria [55,63]. Liu et al. [64] used an aqueous solution containing two edible
polysaccharides, pectin and pullulan, for encapsulation of probiotic bacteria Lactobacillus rhamnosus
GG [64].

2.5. Antimicrobial-Rich Nanoparticles in the Food Sector

Spoilage of food materials is caused due to the contamination of food that leads to the growth and
proliferation of pathogenic microorganisms, such as bacteria, fungi, food- and water-borne pathogens,
etc., which results in the loss of quality of the food [65,66]. Basically, the contamination of food materials
is caused due to the fact of exposure to the environment, faulty food processing, and low-quality
packaging [65,66]. In order to tackle such issues, there is a need for the development of effective
antimicrobial food processing and packaging material which should be safe, effective, and low cost.
Besides, the safety evaluations for the active antimicrobial food packaging materials equipped with
nanoparticles which can effectively prevent the proliferation of pathogens and protect food from
the adverse environment along with increasing the shelf-life of the foods is essential for the future.
In such cases, nanomaterials can play a significant role in contending with harmful pathogens and in
protecting food [65,67]. Recently, a number of nano-based antimicrobial agents have been tested as
food packaging materials, and they have been proven to show enhanced properties such as thermal
stability, pH resistance, and other physico-chemical potentials [65,67–70]. There are several ways of
using the antimicrobial compounds as packaging materials in food packaging systems which include
the addition of a packet of volatile antimicrobial agents in the packing system which will diffuse slowly
into the packet and provide protection to the food from external contaminations. Another way is to
directly mix the antimicrobial agents into the polymers used as packaging materials. The other way is
to coat the antimicrobial compounds on the surface of the packaging materials or utilize antimicrobial
packaging materials directly [66,70,71]. However, effective safety management of these materials is
essential in order to protect human health and the environment. Possible mechanisms of action for
the effectiveness of antimicrobial agents depends on the controlled release of the active compounds
into a system that can provide a durable antimicrobial packaging material, and this can be achieved
by the use of nano—micro-structures, such as nanofibers, nano-capsules, and micro-capsules, in the
packaging system which helps in the gradual release of the active compounds and also provides
mechanical potential for the packaging materials [70]. These types of improved materials are also
equipped with smart technologies, such as indicators and dyes, which shows the quality of the product,
durability, temperature, pH, and degree of contamination of the food [70,72].

3. Sustainability of Food Nanotechnology

A rapid development in novel nanomaterials and related applications has been witnessed over
the last decade. Moreover, this tendency is likely to continue further in the future. A number of
promising opportunities have been identified for nano-based technologies which are intended for
the improvement of sustainability in agriculture and food systems (Figure 3) [73,74]. These include
sensors for testing chemicals, measuring physical, chemical, or biological properties, and for detecting
pathogens or toxins in products; advanced techniques for detection and control of harmful pathogens
and to increase food safety; technology for water treatment in agricultural fields; nano-based fertilizers,
etc. [73–75]. However, there are many apprehensions concerning their influence on the environment
and human health. Addressing these concerns, the European Food Safety Authority (EFSA) has
developed and published a practical approach for real risk assessment on the use of engineered
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nanomaterials in food and food chain [76]. Within this document, the lack of consistent detection
methods, identification, and classification of engineered nanomaterials, especially in multifaceted
ecological samples, is mentioned. This issue was also recently talked about by the Organization for
Economic Co-operation and Development [77].
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The aim of green nanobiotechnology has been adequately presented by Hutchison [78] and
Maksimovic and Omanovic-Miklicanin [79]. These may be abridged into two cornerstones:
the enlargement of positive effects on the health of humans and well-being and the diminishment
of the hostile effects on the environment. Nevertheless, this attitude is significantly hindered by the
aforementioned lack of reliable methodology and our inadequate knowledge of the factors which are
responsible for the toxic properties of nanomaterials. Study of the structure of various food products at
the nanoscale range is a developing area in the field of nanotechnology and, in the near future, it will
be a reality to assess the food structure and develop new food materials at the nanoscale range.

3.1. Nano-Based Sensors

Nano-based sensors and probes have proved to be beneficial for the improvement of agricultural
productivity as well as in food protection and preservation [73,74,80–82]. There are numerous examples
of nano-based sensors and devices that detect various types of pathogens, toxins, and contaminants in
food products and in packaging materials [74,75,82,83]. Regardless of several remarkable achievements,
accomplishing the careful and delicate recognition of specific pathogens and toxicants in food remains
challenging. The capacity to differentiate between live and dead pathogenic microbes in the food system
among a large number of pathogens is always challenging, and it needs to be studied extensively [84].
Furthermore, the manufacture of specific types of nanosensors targeting specific functions in the food
system is also challenging [85].

3.2. Nano-Based Control of Pathogens

The application of nano-based materials in food packaging, for protection against harmful
pathogens and to increase the shelf-life of food materials by nano-coating and smart packaging,
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is commercially used [86–88]. However, there are a number of issues which prevent the smooth
implementation of these nano-based materials for food safety. The exact mechanism of such effects
on pathogens is not fully understood. Furthermore, the effect of environmental parameters, such as
temperature, pH, light, and excretes from food, while packaging is also not properly explained [89].
Finally, the safety of nano-empowered packaging materials which are used straightway on food
products and food processing equipment needs to be proved in order to avoid any unintentional
negative results on human health [86,89].

3.3. Nano-Based Fertilizers

There is a current and growing body of literature on the development of nano-based materials as
nano-fertilizers for agrochemical delivery [90–93]. Notwithstanding being an extremely active research
field, approaches to ensuring targeted delivery to specific organisms through the use of biological
materials, such as antibiotics and other hormones or materials, to be triggered at extreme environmental
conditions are usually lacking. A number of challenges, such as the nature of interactions between
plants and nanomaterials, the effect of nanomaterials on plant growth, the nutritional value of the food
as well the quality, are still not clear and, thus, prevents the effective use of smart nano-based fertilizers
in agriculture [73,92].

3.4. Nanoparticle Toxicity

The cause of nano-toxicity and its future nature has been extensively studied recently. There are
numerous entrance points for release of engineered nanomaterials into the environment which
includes direct application to an environmental compartment (either intentionally or through
unintentional product degradation), wastewater treatment plant effluent, and wastewater treatment
plant sludge [94,95]; yet, it is hard to guess the pertinent absorptions of nanoparticles that are released
at any given point of time [94]. The amplified nanoparticle utilization in a number of applications
including food industries has raised a major concern for food safety and the potential consequences
on public health and the environment [96]. The effects on aquatic and terrestrial systems along with
associated factors have been recently reviewed by Bundschuh et al. [97]. A number of portions of the
human body, especially the skin, lungs, and the intestinal tracts, are in continuous exposure to the
outside environment and these parts are vulnerable to nanoparticle exposure [98]. In such cases, the
importance of size, shape, chemical composition, solubility, surface properties, and aggregation have
been very early recognized [99]. Size-dependent toxicity has also been exhibited in numerous studies
involving human lung cells [100]. Nanoparticle shape also significantly affects exerted toxicity [101–103].
A variety of nanoparticles, with respect to their size and configuration, could be highly lethal to cells
by causing oxidative stress or/and organelle damage [98]. The effect of surface properties on toxicity
level has also attracted significant attention, since a variety of coating ingredients, such as proteins,
polysaccharides, various surfactants, and citric acid, have been effectively applied [104]. A better
understanding of the effect of nanoparticles on various parts of the human body is presented in
Figure 4. It is shown that exposure of nanoparticles to various organs may cause specific diseases
in that particular organ; for example, when nanoparticles are inhaled, they may cause diseases like
emphysema, bronchitis, lung cancer, and neurodegenerative diseases, and further, when intestinal
tracts are affected by these nanoparticles, they may result in cancer-related diseases [98,103].
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Besides, a number of risk assessment efforts have been undertaken in order to predict the amount
of nanoparticles exposed to the environment from various sources, and a summary of this has been
presented [94,105,106] which shows that a large dynamic range of nanoparticles are exposed to the
environment, and it requires an accurate methodology to measure it. A multidisciplinary tactic
which merges experimental, computational, and theoretical methods could be helpful in finding a
risk assessment method in order to confirm the eco-toxicological issues linked with the engineered
nanoparticles and their exposure to food and the environment.

3.5. Operational Approaches

Detection of nanomaterials in the food and various environmental products is a very challenging
task, mostly due to the fact of their reactive nature and the concomitant transformations. An effective
analysis would include a sample preparation step that would facilitate detection and characterization.
Ideally, it should remove any interfering substances and preserve the state and nature of the
nanomaterial; however, it is influenced by the analytical step that follows. In general, sample
preparation includes a number of steps such as the homogenization of the sample, extraction, and
stabilization of the nanomaterials. The type of solvents used in the initial step may affect the second
step significantly. Thus, apart from the matrix, the morphological characteristics of the nanomaterial
and the subsequent separation technique need to be considered. In Table 2, representative studies for
the detection of inorganic and organic nanoparticles in the biological samples are summarized. In the
case of inorganic nanoparticles, matrix interference is removed by chemical or enzymatic digestion
that may be assisted by microwaves or sonication followed by solid or liquid phase extraction process.
After extraction has taken place, a fractionation method precedes and is united with a detection one.



Int. J. Environ. Res. Public Health 2019, 16, 4848 12 of 21

Table 2. Representative studies for the recognition of nanomaterials in biological entities.

Target Nanoparticle (NP) Matrix Sample Preparation Detection/
Quantification Method Comments Reference

Ag NPs chicken meat sonication followed by proteinase K
treatment SP-ICP-MS

The established method exhibited good performance
with respect to trueness, repeatability, reproducibility,

and ability to determine Ag NPs transformed into
silver sulfide.

[107]

Ag NPs sock fabric HNO3/H2O2 digestion ICP-OES

The sock manufacturing process may control silver
release; high silver concentration will end with the

wastewater treatment facility limiting the disposal of
the biosolids as agricultural fertilizers.

[108]

Cu NPs topsoil colloidal soil suspensions digested by
HNO3/HCl/H2O2 and microwaves ICP-MS

The significance of dwell time, background removal,
and sample dilution as methods for optimization and

recovery maximization were highlighted.
[109]

TiO2
water suspended
particulate matter filtration SP-ICP-MS TiO2 NPs from sunscreens are possibly released into

the water but settle into the sediment. [110]

TiO2 NPs, Ag NPs, Au
NPs water none SP-ICP-MS

Lime softening followed by alum coagulation
collected with powdered activated carbon adsorption

resulted in removal of Au and Ag NPs and almost
complete of TiO2 NPs in wastewater.

[111]

Various fullerenes wastewater
filtration followed by

sonication-assisted toluene extraction
and partial evaporation

LC-QqLIT-MS The established method was characterized as very
effective. [112]

C60 and C70 fullerenes soil and sediment sonication-assisted toluene extraction
and partial evaporation UHPLC-HRMS A fast and sensitive method suitable for the analysis

of very complex matrices. [113]

Various fullerenes water and sediment
LLE with toluene (water samples);

ultrasound extraction and PLE
(sediment samples)

UHPLC-MS/MS An effective approach for fullerene analysis in
biological entities. [114]

Graphene and graphene
oxide wastewater biomass solubilization followed by thermal

digestion and reduction PTA The proposed approach provided had promising
results. [115]

SWCN sediment sonication in the presence of
surfactants NIRF Spectroscopy The applicability of this tactic was exhibited. [116]

NPs: NanoParticles; SP-ICP-MS: single particle inductively coupled plasma mass spectrometry; OES: Optical Emission Spectroscopy; LC-QqLIT-MS: liquid chromatography coupled to a
hybrid triple quadrupole linear ion trap mass spectrometry; UHPLC-HRMS: Ultra High Performance Liquid Chromatography coupled with High Resolution Mass Spectrometry; LLE:
liquid-liquid extraction; PSE: pressurized solvent extraction; PTA: Programmed Thermal Analysis; SWCN: Single-Walled Carbon Nanotubes; NIRF: Near InfraRed Fluorescence.
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Detection was mostly achieved through microscopic and spectrometric techniques. Regarding
the microscopic techniques, electron microscopy may provide information on the morphological
characteristics and nature of the nanomaterials. However, sample preparation introduces high
uncertainty [117]. This issue was addressed, at best, in the liquid samples by application of
environmental (or atmospheric) scanning electron microscopy which can be carried out with a
basic sample preparation method. Light scattering was initially regarded as a harmonizing approach.
However, unequal distribution of the size of the nanoparticles hinders the potential in the complicated
samples. This limitation was only partially addressed, at least in liquid samples, by nanoparticle
tracking analysis (NTA) [118]. As far as spectrometric techniques are concerned, they may be
provided with detection, identification, and quantification of nanoparticles. Inductively coupled
plasma-mass spectroscopy (ICP-MS), single-particle ICP-MS (spICP-MS) as well as matrix-assisted
laser desorption/ionization-time of flight (MALDI-TOF) are mostly used due to the satisfactory size
and concentration limit of detection [119] but no information regarding size, shape or aggregation may
be obtained. However, this limitation is overruled by coupling with a fractionation technique [120].

Specific characterization of organic nanoparticles, such as fullerenes and carbon nanotubes,
have been comprehensively assessed; however, graphene and graphene oxides have not been so
exclusively studied. In the latter case, only limited literature is currently available. The most effective
approach was described by Doudrick et al. [115] which included chemical reduction of graphene oxide,
allowing a competent extraction and separation from background carbon and reliable quantification
by programmed thermal analysis (PTA). Information on the size, shape, and degree of accumulation
of organic nanoparticles is acquired as in the case of inorganic ones through electron microscopy,
light scattering, and NTA techniques. Regarding fullerenes, the separation and extraction process
together with the detection and quantification approaches were appraised by Astefanei et al. [121].
In brief, in complex matrices, removal of proteins and surfactants precedes liquid–liquid extraction
that is usually employed as such or in combination with ultrasounds using oxidizing agents or salts
and toluene. Liquid chromatography coupled with mass spectrometry (LC-MS) is the detection
step that is mostly employed. A widespread extraction, separation, and detection process has
been described for effective detection and quantification of carbon nanotubes and comprehensively
reviewed [122]. Depending on the matrix, a pre-treatment involving chemical or enzymatic digestion,
either sonication-assisted or not, is essential. Then, extraction and separation through a variety of
approaches, such as asymmetric flow field-flow fractionation (AF4), chromatographic or electrophoretic
techniques may take place followed by quantification strategies such as spICP-MS, thermal gravimetric
analysis-mass spectrometry (TGA-MS), etc.

Finally, a major challenge is to distinguish between anthropogenic contamination and naturally
occurring nanoparticles. In the case of inorganic ones, this may be achieved through the calculation of
specific ratios such as Ti to Fe and Ce to La [123,124].

3.6. Measurement Issues

The capacity to quantify the presence of nanomaterials in the food system at a particular time period
is a very critical issue for its potential application in the food system [125,126]. These quantifications
of the nanomaterials comprise both the preparation and storage of the food products, along with its
digestion and channel through the alimentary canal of the digestive system of the humans which is itself
a various complicated issue due to the multifaceted nature of the human body and the thermodynamic
instability of the nanomaterials [125]. It is also not clear what factors in specific are needed to be
quantified. A number of factors are accountable for the establishment of a highly applicable method in
the measurement of nanomaterials in the food system that comprise the case of how nanomaterials are
added, and it is always essential to identify them whether they are natural or added from external sources
as food additives, enhancers or emulsions. Besides, the multifaceted nature of the human alimentary
canal also creates further concerns in the measurement and classification of the nanomaterials [125].
A number of analytical methods particularly in a combined form are applied to basically measure
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the nanomaterials in the food [125,127]. These methods include microscopy (transmission electron
microscopy, scanning electron microscopy), chromatography, spectroscopy (X-ray powder diffraction
spectroscopy, energy-dispersive X-ray spectroscopy), centrifugation, chromatography, and other related
methodologies [128].

4. Conclusions

There is numerous evidence for the involvement of the science of nanotechnology in almost all
steps of the food chain. In addition, novel nanomaterials along with their applications are expected
to emerge within the upcoming years. Consequently, it is imperative to discuss these advancements
through a green biotechnology perspective. The essential first step towards this direction is the
improvement of the analytical tools that will allow accurate and reliable quantification of the planned
nanomaterials in a multifaceted environmental sample. Then only will our understanding regarding
their conversions and bio-kinetics be improved, allowing for the design of safer nanomaterials with
reduced environmental impact.
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