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Abstract: Although the nitrate assimilation into amino acids in photosynthetic leaf tissues is active
under the light, the studies during 1950s and 1970s in the dark nitrate assimilation provided
fragmental and variable activities, and the mechanism of reductant supply to nitrate assimilation
in darkness remained unclear. 15N tracing experiments unraveled the assimilatory mechanism of
nitrogen from nitrate into amino acids in the light and in darkness by the reactions of nitrate and nitrite
reductases, glutamine synthetase, glutamate synthase, aspartate aminotransferase, and asparagine
synthetase. Nitrogen assimilation in illuminated leaves and non-photosynthetic roots occurs either
in the redundant way or in the specific manner regarding the isoforms of nitrogen assimilatory
enzymes in their cellular compartments. The electron supplying systems necessary to the enzymatic
reactions share in part a similar electron donor system at the expense of carbohydrates in both leaves
and roots, but also distinct reducing systems regarding the reactions of Fd-nitrite reductase and
Fd-glutamate synthase in the photosynthetic and non-photosynthetic organs.

Keywords: chloroplasts/plastids; dark nitrate assimilation; Fd-dependent glutamate synthase; leaves;
nitrite-to-ammonia reduction; reductant-supplying system

1. Introduction

Plants use inorganic nitrogen present in the soil for their growth mainly in the form of nitrate
(NO3

−). Following the absorption through the roots, the most oxidized form of NO3
− (+6) is reduced

to organic forms (–2) such as amino acids prior to their incorporation into proteins, nucleotides,
and chlorophylls. Although plants can assimilate NO3

− to amino acids in both the photosynthetic
leaves and non-photosynthetic roots, the major sites of nitrate assimilation are green shoots where energy
(ATP), reductant (electrons) and organic skeletons are produced by photosynthetic reactions using solar
energy. In addition, the nitrate assimilation in the leaves takes place in the night, i.e., by using storage
carbohydrates [1]. However, the activities of nitrate assimilation in darkness measured from the 1950s
to 1970s were fragmental and variable. Here, we present physiological aspects of light-independent
nitrate-to-asparagine assimilation in the leaves by referring to the light-independent nitrate assimilation
in the non-photosynthetic roots at the expense of carbohydrates, supplied by transport from the shoots,
as reviewed recently [2].

2. 15N Tracing Analysis of Dark Nitrate Assimilation into Amino Acids in Leaves

Direct evidence of dark nitrate assimilation into amino acids in the leaves was obtained by
incubating the leaf tissues with 15N-nitrate in darkness. Delwiche [3] fed detached immature leaves
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of tobacco (Nicotiana tabacum) with 15N-KNO3 solution (15 atom % excess 15N) for 24 h via petioles
in darkness, and detected 15N-labelling in ammonia plus amide-N, and in ammonia fraction by 2.89 and
0.61 atom % excess 15N, respectively. Mendel and Visser [4] conducted a short incubation (30 min) of
tomato leaf discs with 15N-KNO3 (14 atom % excess 15N) in the dark, and detected 15N-labelling in free
ammonia fraction in duplicated samples by 2.13 and 2.42 atom % excess 15N. Canvin and Atkins [5]
incubated leaf segments of wheat (Triticum aestivum L.) and corn (Zea mays L.) with 15N-NaNO3 solution
(95 atom % 15N) for 15 and 30 min in darkness. After 15 min, they detected little 15N enrichment in the
soluble amino acid fraction in darkness compared with the high 15N labelled amino acids in the light
and concluded that the nitrate assimilation was strictly dependent on the light.

Shortly after the findings of 15N-labelled amino acids in the roots of rice (Oryza sativa L.) seedlings
by feeding with 15N-ammonium [6] and 15N-nitrate [7], Ito and Kumazawa [8] conducted light and
dark incubation of leaf discs of sunflower (Helianthus annuus L.) with 15NO3

−, 15NO2
−, and 15NH4

+

for 30 min. They detected 15N-labelled glutamine (amino-N and amide-N), glutamate, and aspartate
as shown in Table 1. In these studies, 15N-labelling of individual amino acids was determined by
a combination of their separation on two-dimension thin-layer chromatography and 15N enrichment by
emission optical spectrometry, as first described by Yoneyama and Kumazawa [6]. Dark 15N-labelling
in the amino-N of glutamine, glutamate, and aspartate was less than that in the light, while the dark
15N-labelling of the amide-N of glutamine was higher than that in the light irrespective of the feeding
with 15NO3

−, 15NO2
−, or 15NH4

+. The results indicated that the transfer rate of the glutamine amide-N
to 2-OG forming glutamate in darkness was lower than in the light although nitrate was reduced
sequentially to nitrite and ammonia in darkness. It is noteworthy that in the light, the 15N-labellings
of glutamine amide-N from all of 15NO3

−, 15NO2
−, and 15NH4

+ were apparently lower comparing
with those in darkness. This can be explained by a pool of NH4

+ diluted by a large amount of
photorespiratory NH4

+ [9] and assimilated into glutamine amide-N by glutamine synthetase (Table 1).
The non-photosynthetic root tissues, which have no photorespiratory activity, actively assimilated
15N into 15N-amide of glutamine and glutamate by the root feeding with 15NO3

− or 15NO2
− [2] as

observed in the leaves in darkness (Table 1).

Table 1. The 15N atom % excess of amino acids extracted from the sunflower leaf discus treated with
1 mM 15NO3

−, 15NO2
−, and 15NH4

+ for 30 min under darkness as compared to those under the light
(20,000 lux).

Amino Acids
15NO3−

15NO2−
15NH4

+

Dark Light Dark Light Dark Light

Glutamine
Amino-N 0.15 0.35 1.4 1.82 8.6 14.8
Amide-N 1.53 0.88 17.5 5.80 59.4 35.9
Glutamate 0.13 0.40 2.3 4.05 8.5 15.2
Aspartate 0.15 0.36 2.0 4.03 8.3 16.4

15N-labeling (atom % excess) of the substrates were 98.6 for K15NO3, 98.8 for Na15NO2, and 97.1 for (15NH4)2SO4.
Adapted from Ito and Kumazawa [8].

In the 1970s, a simple in vivo assay of nitrate reductase activity was widely employed using
leaf segments without extraction of enzymes. In this technique, it was assumed that nitrite, nitrate
reductase reaction product, was barely assimilated when the assay was carried out in the dark [10–12].
In vivo nitrate reductase assays were conducted using 15N-NaNO3 to measure its reduction to nitrite
and the assimilation into amino acids under aerobic or anaerobic conditions [13]. Nitrite production
was active under anaerobic conditions while 15N incorporation into amino acids was intensive under
aerobic conditions than under anaerobic conditions (Table 2).
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Table 2. Nitrite formation and 15N incorporation into amino acids in the wheat leaf segments treated
with 50 mM Na15NO3

− for 60 min under aerobic (in air) or anaerobic (in N2) conditions in darkness.

Atmosphere Aerobic Anaerobic

Nitrite formation (µg N g−1 fr wt) 2.1 ± 0.7 46 ± 2
15N incorporation (atom % excess 15N) in

Glutamine 3.74 Small quantity
Glutamate 0.92 0.22
Asparagine 0.70 0.01
Aspartate 0.88 0.06

15N-labeling (atom % excess) of Na15NO3 was 100. Adapted from Yoneyama [13].

The 15N-labelling experiments were carried out using green and white chlorophyll-less leaves
of albino mutant seedlings of rice, which were produced by chemical mutation. It was shown that
the white leaves fed with 15NO2

− in darkness [14] had lower 15N-enrichments (atom % excess 15N)
in glutamine, glutamate, and aspartate than green leaves, but a large 15N accumulation occurred in
glutamine and particularly in asparagine in the white leaves (Table 3). In vitro activities of both nitrate
reductase and nitrite reductase were detected in the leaf extracts of normal and chlorophyll-less leaves
of albino mutant seedlings of barley (Hordeum vulgare L.), although their specific activities were less
in the chlorophyll-less leaves than in the normal leaves [15].

Table 3. Assimilation of 1 mM 15NO2
− by 60-min incubation to amino acids in the green and white leaf

segments from 15-day-old albino mutant rice plants in darkness.

Amino Acid

Amino Acid Content
(µ mol g−1fr wt)

15N-Enrichment
(Atom % Excess)

15N-Content
(µg N g−1fr wt)

Green White Green White Green white

Glutamine 3.7 8.6 7.30 2.25 7.56 (60%) 5.42 (68%)
Glutamate 7.1 4.1 3.05 0.55 3.03 (24%) 0.32 (4%)
Asparagine 3.4 47.1 0.92 0.16 0.87 (7%) 2.11 (26%)
Aspartate 4.1 4.1 2.14 0.26 1.23 (10%) 0.15 (2%)

15N-labeling (atom % excess) of Na15NO2 was 99.2. The numerals in the parenthesis are % distribution of 15N
in four amino acids. Adapted from Yoneyama [14].

3. Enzymes for Nitrate Assimilation for Nitrate Assimilation in Leaves

3.1. Nitrate Reduction to Ammonia

Nitrate is not only an essential nutrient but also a signaling molecule of cellular events in response
to its fluctuating availability in both space and time. Nitrate is taken up into the roots by the nitrate
transporters on the plasma membrane and regulates lateral root developments [16]. Transported in the
xylem, nitrate is distributed within the plant by the nitrate transporters located in the shoots, leaves,
flowers and seeds, and triggers expression of nitrate-responding genes, leaf development, and seed
germination [17–19]. Nitrate reductase in the cytosol (Equation (1)) and ferredoxin (Fd)-dependent
nitrite reductase in the chloroplasts/plastids (Equation (2)) catalyze the sequential reactions of nitrate
reduction to nitrite and nitrite to ammonia, respectively (Figure 1).

Nitrate reductase (NADH-NR, EC 1.6.6.1; NAD(P)H-NR, EC 1.6.6.2)
2e

NO3
− + NADH or NAD(P)H + H+

→ NO2
− + NAD+ or NADP+ + H2O (1)
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Nitrite reductase (NiR, EC 1.7.7.1)
6e

NO2
− + 6 Fdred + 8 H+

→ NH4
+ + 6 Fdox + 2 H2O (2)

NADH produced by glycolysis served as a major electron donor to nitrate reductase (NADH-NR,
EC 1.6.6.1) in the leaves of most plant species [20,21], while a bi-specific nitrate reductase to NADH and
NADPH (NAD(P)H-NR, EC 1.6.6.2) was found in the leaves of soybean (Glycine max. Merr.) [22,23] and
barley [24]. NR, located in the cytosol as homodimer or homotetramer [25], utilizes two electrons from
NAD(P)H to reduce nitrate. The enzyme has three functional domains for binding of the prosthetic
group or cofactor: flavin adenine dinucleotide (FAD), heme-Fe, and molybdate-pterin (MoCo) [17,26].
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Figure 1. Nitrate and nitrite assimilation in the leaf cells in darkness. AATP1, ATP/ADP
transporter; AS, asparagine synthetase; AspAT: aspartate aminotransferase; cp2OGT, chloroplastic
2-OG transporter; Fdred, reduced ferredoxin; Fd-GOGAT, Ferredoxin-dependent glutamate synthase;
Fd-NiR, Ferredoxin-dependent nitrite reductase, GS2: chloroplastic glutamine synthetase; ICDH,
NADPH-isocitrate dehydrogenase; NR: nitrate reductase; PEPCase, phosphoenolpyruvate carboxylase;
OAA, oxaloacetate; OPPP, oxidative pentose phosphate pathway.

Ferredoxin-dependent NiR (Fd-NiR), localized in the chloroplasts/plastids [25,27–29], utilizes six
electrons from photo-reduced ferredoxin (Fd) as the electron donor to reduce nitrite to ammonia.
Fd-NiR has two prosthetic groups: a siroheme and an iron-sulfur cluster, linked by one of four
cysteine residues of the iron-sulfur cluster [26,30]. The high NiR activity, assayed by the disappearance
of nitrite or formation of ammonia, was detected in the presence of strong reducing dyes methyl
viologen or benzyl viologen reduced chemically by dithionite [31,32]. NiR activity in vitro was found
in the presence of Fd reduced by ferredoxin: NADP+ oxidoreductase (FNR, EC 1.18.1.2) depending
on NADPH, which was generated by a diaphorase containing glucose 6-phosphate dehydrogenase
(G6PDH, EC 1.1.1.49) [33]. The in vitro titration analysis showed that the NiR may make a complex
close to 1:1 with reduced Fd for the efficient electron transfer [34].
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3.2. Glutamine Synthesis and Metabolism to Glutamate and Asparagine in Leaves

Up to 1974, it was generally accepted that ammonia assimilation is catalyzed by ammonia-inducible
glutamate dehydrogenase (GDH, EC 1.4.1.2), which catalyzes a reversible amination of 2-oxoglutarate by
ammonia generating L-glutamate and its conversion to ammonia and 2-oxoglutarate. Under conditions
of ammonia excess, ammonia was assimilated into glutamine by glutamine synthetase (GS or
L-glutamate:ammonia ligase (ADP), EC 6.3.1.2, Equation (3)), and under more excessive levels
of ammonia and glutamine, asparagine served as an storage compound of nitrogen via the catalysis by
glutamine-dependent asparagine synthetase (AS, EC 6.3.5.4).

However, Tempest et al. [35] reported a new pathway of ammonium assimilation by the coupled
reactions of GS and NADPH-dependent glutamate synthase (L-glutamine (amide): 2-oxoglutarate
aminotransferase: NADPH-GOGAT, EC 1.4.1.13) in bacteria. In plants, glutamate synthase activity with
ferredoxin (Fd-GOGAT, EC 1.4.7.1) (Equation (4)) in the chloroplasts was reported by Lea and Miflin [36].
Extensive studies provided evidence for the operation of GS (GS2)/GOGAT (Fd-GOGAT) cycle in the
chloroplasts/plastids as the major route of primary nitrogen assimilation [37] and photorespiratory
ammonium re-assimilation in leaves [9,38–42].

Glutamine synthetase (GS, EC 6.3.1.2)

L-Glutamate + NH3 + ATP→ L-Glutamine + ADP + Pi (3)

Fd-glutamate synthase (Fd-GOGAT, EC 1.4.7.1)
2e

L-Glutamine + 2-Oxoglutarate + Fdred→ 2 L-Glutamate + Fdox (4)

15N tracing studies confirmed an in vivo operation of GS2/Fd-GOGAT cycle for the nitrogen
assimilation from nitrate, nitrite, and ammonia into amino acids in the light or in darkness (see Table 1).

The GS occurs in two forms, cytosolic GS1 and plastidial GS2, in both leaves and roots with
different ratio according to plants [43]. The cytosolic GS1 in the senescent leaves may function to
assimilate a high level of ammonia during nitrogen remobilization [44,45]. Two forms of GOGAT,
Fd-GOGAT and NADH-GOGAT (EC 1.4.1.14), are distinguished in leaves and roots of different
plant species. The Fd-GOGAT in vitro activity was found active in the light-grown mature leaves,
and the isolated chloroplasts showed a high activity of Fd-GOGAT in the light and low activity
in darkness [46,47]. The enhancement of Fd-GOGAT activity and the Fd-GOGAT protein level during
the greening of the etiolated plants [48] via a reversible red/far-red reaction provided evidence for
a regulation mediated by the phytochromes [39,49]. Two molecules of glutamate are formed from
glutamine and 2-OG through the intramolecular reactions of NH2-releasing glutaminase and 2-OG
transamidation with -NH2 using reduced Fd (Equation (4)) [50–52].

In the cytosol of leaf cells, the amide-N of glutamine is transferred to aspartic acid to form
asparagine by asparagine synthetase utilizing ATP (AS, Equation (5)). AS could use both ammonia
and glutamine-amide while glutamine is a preferred amide donor. Km for glutamine (0.04–1.0 mM)
was 40-fold lower than for ammonium ion [53]. The accumulation of asparagine [54] and AS-mRNA of
Class I ASN genes [55–57] was enhanced in darkness. This is consistent with a carbon supply by an
anaplerotic reaction of cytosolic phosphoenolpyruvate carboxylase [58,59]. Oxaloacetate thus formed
is transaminated with glutamate by aspartate aminotransferase to aspartate, substrate of AS (AspAT,
Equation (6)).

Asparagine synthetase (AS, EC 6.3.5.4)

L-Glutamine + L-Aspartate + ATP→ L-Asparagine + L-Glutamate + AMP + PPi (5)
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Aspartate aminotransferase (AspAT, EC 2.6.1.1)

L-Glutamate + Oxaloacetic acid↔ L-Aspartate + 2-Oxoglutarate (6)

AspAT in plants exists as isoforms, which are located in different subcellular compartments.
The ASP2 mRNA for cytosolic AspAT2 in Arabidopsis was most abundantly expressed in root tissue and
accumulated at higher levels in illuminated leaves and dark-adapted leaves [60], indicating that AspAT2
may be involved in synthesizing aspartate pool for asparagine synthesis by AS2 in dark-adapted plants.

Figure 1 depicts the scheme of nitrate assimilation in darkness in the leaf cells. Nitrate delivered
from the xylem is reduced to NO2

− by the cytosolic NR using NADH from glycolysis. Nitrite is diffused
into the chloroplasts [61] and reduced to ammonia by Fd-NiR. The ammonium is assimilated to
glutamine by chloroplast-localized GS2 using ATP imported [62] and then to glutamate by Fd-GOGAT
using 2-OG produced via cytosolic NADP-dependent isocitrate dehydrogenase (NADPH-ICDH,
EC 1.1.1.42) [63–65] and/or in part by mitochondrial NAD-dependent isocitrate dehydrogenase
(NADH-IDH, EC 1.1.1.41) [66]. Glutamate and glutamine in the chloroplasts are released to the cytosol
and glutamate is metabolized to aspartate by cytosolic AspAT2. Aspartate thus produced is combined
with the amide of glutamine, forming asparagine by leaf cytosolic AS2. The nitrogen assimilation
pathway from nitrate to asparagine catalyzed by Fd-NiR, GS, Fd-GOGAT, AspAT and AS in darkness
in the green leaves was in line with 15NO2

− tracing data shown in Table 3. In chlorophyll-less white
leaves, which contained proplastids [14], the activity of AS2 (asparagine formation) might be higher
than the Fd-GOGAT activity (glutamate formation), suggesting a low level of Fd-GOGAT without
light [48].

4. Reductant-Supplying Systems for Dark Nitrogen Assimilation in Leaves

4.1. Reductant Supply for Nitrate Reductase and Nitrite Reductase

NADH-NR (Equation (1)) from spinach (Spinacia oleracea) had a midpoint redox potentials (Em7)
of −60 mV and Em0 of NADH being −320 mV [26]. NADH can be generated in the cytosol by the
respiratory network through glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) or
through an anaplerotic reaction by malate dehydrogenase (NAD-MDH, EC 1.1.1.37) [21].

Following nitrite import from the cytosol into the chloroplasts/plastids by passive diffusion, nitrite
is reduced to ammonia by NiR. This reaction involves a flow of six electrons from Fdred→ ((4Fe-4S)
→ siroheme) → NO2

− (Equation (2)). Ferredoxins are reduced by photosystems and discovered
in 1963 in the leaves of Cucurbita pepo [27] and spinach leaves [28,29]. The Em of Fd siroheme for
NO2

−-binding and that of (4Fe-4S) cluster of spinach NiR were determined to be−290 mV and −365 mV,
respectively [67]. In maize, four Fd iso-proteins were identified showing the tissue-preferential
distribution: leaf-specific and light-inducible FdI (Em = −423 mV) and FdII (Em = −406 mV) in leaves;
FdIII (Em = −345 mV) and FdIV in all plant parts including roots [68–72] (Table 4).

Table 4. Representative iso-proteins of Fd and FNR identified in the leaves and roots of maize
and Arabidopsis.

Plant Species Fd Species FNR Species References

Maize [68,71,73,74]
Leaves FdI, FdII, FdIII, FdIV, FdVI LFNR1, LFNR2, LFNR3, RFNR
Roots FdIII, FdIV, FdVI RFNR

Arabidopsis [75]
Leaves Fd1, Fd2, Fd3 LFNR1, LFNR2, RFNR1, RFNR2
Roots Fd3 RFNR1, RFNR2

L, leaf-type; R, root-type.
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Under the light, leaf NiR received electrons from Fd reduced in the photosystem I (PSI),
while in darkness without the light energy, stromal Fd received electrons via FNR from the primary
electron donor NADPH (Em =−320 mV, [76]), as shown in Figure 2. In darkness, plastidial NADPH was
generated by oxidative pentose phosphate pathway using G6PDH (EC 1.1.1.49) and 6-phosphogluconate
dehydrogenase (6PGDH, EC 1.1.1.44) at the expense of glucose 6-phoshate (G6P) produced from starch
in the plastids and G6P imported from the cytosol to the plastids [77–81]. Thus, FNR (EC 1.18.1.2,
Em = ~ −320 mV, [82]) in leaves and roots could catalyze the reversible electron transfer between
NADPH and leaf-type Fd (e.g., FdI in maize) and root-type Fd (e.g., FdIII in maize) (see Table 4) as
shown in Equation (7) [83,84]. In the leaves, both leaf-type and root-type FNRs were found in the
stroma of the leaf chloroplasts as well as some leaf-type FNRs in the thylakoid membrane [73–75],
and gene expression for the root-type FNRs was induced by nitrate feeding [18,73]. In vitro electron
donation from NADPH to maize FdIII:R-FNR complex was active with a ratio of 1.00, in contrast to
a lower ratio (0.68) in the leaf NADPH-FdI:L-FNR system [85].

2Fd (Fe3+) + NADPH↔ 2Fd (Fe2+) + NADP+ + H+ (7)

The previous investigations of 15NO3
− and 15NO2

− reduction and assimilation into amino acids
in leaf segments in darkness showed high magnitudes than in the light in tobacco [3], tomato [4],
sunflower [8], and rice [14], while negligible in wheat and maize leaves [5]. Such difference in magnitudes
may be derived from an availability of electron in NADPH-FNR-Fd systems under changing electron
donating system in darkness (Figure 2).
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LFNR, leaf-type FNR; RFNR, root-type FNR. The other abbreviations in Figure 1 legend.

Under anaerobic condition, the nitrite accumulation was large and glutamine quantity became
small (Table 2). These results were caused by the elevated level of NO3

−-reducing NADH and the
shortage of NADPH [12,86]: The NADPH deficiency may reduce nitrite-to-ammonia reduction and
induce the glutaminase activity of GOGAT, causing disappearance of glutamine [85]. Expression studies
determined the level of Fd and FNR in the plants deprived of light by continuous or prolonged darkness.
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This dark stress declined the photosynthetic FNR subforms (LFNRI and LFNRII) at both mRNA and
protein levels at the base section of wheat leaf in the presence of nitrate [87], and leaf-type Fds (Fd I and
Fd II) in maize leaves [68], suggesting a less efficient contribution of NADPH-FNR-Fd system necessary
to the reactions of Fd-NiR and Fd-GOGAT. Exposure of Arabidopsis to environmental stress such as
extended high light (120 h at approximately 500 micromole photons m2 sec1) resulted in a gradual
decrease of AtFd2 (At1g60950) in its mRNA (to 10% of the WT level) and protein (to 13%) [88].
Down-regulation or mutation of Fd in Arabidopsis [89] and potato (Solanum tuberosum) [90] caused an
inactivated photosynthesis and inhibited plant growth.

4.2. Reductant Supply to the Fd-Dependent GOGAT

Ammonia produced by NiR in the plastids is assimilated into glutamine by GS2 using energy (ATP)
from mitochondria [62,79]. The glutamine amide-N is transferred to 2-OG, yielding two molecules
of glutamate takes place in the chloroplasts/plastids by Fd-GOGAT [36,52,91]. Fd-GOGAT is a flavin
and iron-sulfur-containing protein. The isopotential of these chromophore and cluster were reported
to have Em of −225 ± 10 mV in the enzyme from spinach leaves [92]. NADPH, generated by the
oxidative pentose phosphate pathway, was also shown to be a primary electron donor for the reactions
of Fd-GOGAT in darkness [80].

A 15N-tracing study in sunflower leaf discs (Table 1) showed that the activity of glutamine
amide-N transfer to 2-oxoglutamate forming glutamate in darkness was less active than in the light,
where PSI supplied electrons to Fd (see Figure 2). The activity of Fd-GOGAT in vegetable leaves was
the major regulating step of nitrate assimilation in the whole plant [1].

5. Conclusions

Leaves represent a major site of primary nitrogen assimilation in concert with roots,
photorespiratory NH4

+ re-fixation, and translocation of nitrogen within the plant. 15N-tracing studies
with leaves demonstrated that nitrate was reduced to ammonia and assimilated into glutamine,
glutamate, aspartate, and asparagine in the light and in darkness. In the present review, we examined
that the reductive incorporation of nitrate into amino acids occurs in darkness in the leaves through
the isoforms of NR, NiR, GS, Fd-GOGAT, AspAT, and AS. To provide reducing equivalents to the NiR
and Fd-GOGAT reactions in the dark, single leaf contains the photosynthetic form of FNR and Fd and
heterotrophic form of FNR and Fd, indicating inter-connected electron supply systems in the light and
in darkness. It remains to dissect the operation mechanism of electron donation systems in distinct
types of photosynthetic cells and heterotrophic cells of a leaf.
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