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Ultra-short heart rate variability (HRV) analysis refers to the study of HRV features in excerpts of length <5 min. Ultra-short HRV is widely
growing in many healthcare applications for monitoring individual’s health and well-being status, especially in combination with wearable
sensors, mobile phones, and smart-watches. Long-term (nominally 24 h) and short-term (nominally 5 min) HRV features have been
widely investigated, physiologically justified and clear guidelines for analysing HRV in 5 min or 24 h are available. Conversely, the
reliability of ultra-short HRV features remains unclear and many investigations have adopted ultra-short HRV analysis without questioning
its validity. This is partially due to the lack of accepted algorithms guiding investigators to systematically assess ultra-short HRV
reliability. This Letter critically reviewed the existing literature, aiming to identify the most suitable algorithms, and harmonise them to
suggest a standard protocol that scholars may use as a reference in future studies. The results of the literature review were surprising,
because, among the 29 reviewed papers, only one paper used a rigorous method, whereas the others employed methods that were partially
or completely unreliable due to the incorrect use of statistical tests. This Letter provides recommendations on how to assess ultra-short
HRV features reliably and proposes an inclusive algorithm that summarises the state-of-the-art knowledge in this area.
1. Introduction: The dynamic modulation of heart rate (HR) is
controlled by the several voluntary and involuntary mechanisms,
including respiration, thermoregulation and the interaction of
the sympathetic (which has a response time in the order of a
few seconds) and parasympathetic activities (which works much
faster: response time 0.2–0.6 s) [1]. Those modulations result in
HR fluctuation or variability in time. Whereas the measure of HR
is a static index of autonomic input to the sinus node, which does
not provide direct information on sympathetic or parasympathetic
functions, HR variability (HRV) analysis provides a quantitative
assessment of cardiac autonomic regulation [2].

According to [3], HRV refers to the time series of the interval
variation between consecutive heart beats and it can be analysed
in time, frequency and non-linear domains [3, 4]. Common HRV
features extracted from HRV excerpts are reported in Table 1.

HRV analysis can be performed on 24 h nominal recordings
(referred as long-term HRV analysis), 5 min recordings (referred
as short-term HRV analysis) or shorter recordings [3], which in
this review is referred as ultra-short term HRV analysis. Since
clear guidelines on ultra-short HRV analysis are not available yet,
this review aimed to explore to what extent ultra-short HRV features
can be used to estimate short-term ones, which are still to be con-
sidered as a benchmark for HRV analysis. In medicine, and par-
ticularly in clinical trial design, in order to cope with this kind
of problem, the concept of a surrogate endpoint (or marker) was
introduced [5, 6]. A surrogate measure is a marker, which is
used to estimate a real clinical endpoint, when this is undesired
(e.g. death) or when it cannot be directly observed or measured.
Several regulatory bodies (e.g. FDA and NICE) have started to
accept evidence from clinical trials that show a direct clinical
benefit in using surrogate markers. Proving whether a marker is a
good surrogate of a real clinical outcome can be quite difficult,
and a combination of appropriate statistical and correlation tests is
required. Although a rich literature has been produced to answer
this question, still some authors demonstrated to be confused and
the sentence ‘a correlate does not make a surrogate’, first used
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by Fleming et al. [5], became a mantra in this field. In fact, there
is a common misconception that if a marker correlates with the
true clinical outcome, it can be a valid surrogate endpoint, replacing
the true clinical outcome. However, a much stronger condition than
correlation is required to be sure that a surrogate is valid and can
be used to replace a real clinical outcome. Another common mis-
conception is that a marker X can be considered a good surrogate
of a clinical outcome Y if statistical null-hypothesis tests demon-
strate no-significant differences between X and Y. This is a major
misconception because statistical differences may reveal themselves
only in particular conditions (e.g. when a sufficient number of
measures are observed). In addition, both correlation and statistical
tests are often used improperly (e.g. parametric tests used for non-
normally distributed features).

From the theoretical point of view, it should be well-known
that some HRV features lose significance if computed in ultra-
short term [3]. For instance, it is recommended that spectral
analyses are performed on stationary recordings lasting at least
10 times more than the slower significant signal oscillation
period. In the case of short-term HRV analysis, the slower signifi-
cant oscillations in the so-called low-frequency (LF) power spec-
trum bandwidth have a period of 25 s (i.e. frequency of 0.04 Hz).
Thus, in order to measure the entire LF power spectrum of
HRV excerpts (i.e. including the slower components) at least
250 s of HRV signals are required. In the same manner, in order
to compute the high-frequency (HF) power, at least 1 min is
required [3]. Therefore, LF and HF power spectra computed in
excerpts shorter than 1 min lead to erroneous results. As far as
non-linear HRV features, less has been explored in the existing
literature. Moreover, approximate entropy (ApEn) has shown to
be unreliable in excerpts lasting <3 min [7].

The demands of ultra-short term HRV analysis for monitoring
individual’s health and well-being status in real life is significantly
increasing, especially in relation to wearable sensors or mobile
applications. Out of the lab, in fact, the conventional 5 min HRV
recordings might be unsuitable, due to the real-time requirements.
Healthcare Technology Letters, 2018, Vol. 5, Iss. 3, pp. 94–100
doi: 10.1049/htl.2017.0090

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:


Table 1 HRV features

HRV measures Units Description

time domain
MeanNN [ms] mean of NN intervals
StdNN [ms] standard deviation of NN intervals
MeanHR [1/min] mean HR
StdHR [1/min] standard deviation of instantaneous HR values
RMSSD [ms] square root of the mean squared differences between successive NN intervals
NN50 — number of successive NN interval pairs that differ more than 50 ms
pNN50 [%] NN50 divided by the total number of NN intervals
HRV triangular index — integral of the NN interval histogram divided by the height of the histogram
TINN — baseline width of the NN interval histogram
frequency domain
VLF [ms2] VLF power (0.0033–0.04 Hz)
LF [ms2] LF power (0.04–0.15 Hz)
HF [ms2] HF power (0.15–0.4 Hz)
LFpeak, HFpeak [Hz] LF and HF band peak frequency
LFnu, HFnu Nu LF and HF power normalised
LF/HF — Ratio of LF and HF band powers
TotPow [ms2] total power
non-linear domain
SD1, SD2 [ms] standard deviation of the Poincare’ plot perpendicular to (SD1) and along (SD2) the line-of-identity
ApEn — approximate entropy
SampEn — sample entropy
D2 — correlation dimension
dfa1, dfa2 — detrended fluctuation analysis: short-term and long-term fluctuation slope
RPlmean [beats] recurrence plot analysis: mean line length
RPlmax [beats] recurrence plot analysis: maximum line length
REC [%] recurrence rate
RPadet [%] recurrence plot analysis: determinism
ShanEn — Shannon entropy
In fact, ultra-short recording may allow continuous and
quasi-real-time monitoring of an individual’s well-being status
(i.e. mood, attention, and stress levels) [8]. Many apps and wearable
devices are being released into the market, claiming to do HRV ana-
lysis in real time (from 10 s to 1 min). Although there is a clear need
for such technologies, unfortunately, two problems remain
unsolved:

(i) there are not yet clear guidelines on how to analyse HRV in the
ultra-short term and which ultra-short HRV features can be
considered as good surrogates of short-term ones;

(ii) there is no clear algorithm to identify reliable ultra-short HRV
features for the detection of an event.

In analogy with evidence-based medicine, this Letter provides a
critical review of the state-of-the-art methods used to assess ultra-
short HRV validity, providing key recommendations on how to
assess ultra-short HRV features that are good surrogates of short-
term ones. As described by Grant et al. [9], there are different typ-
ologies of literature reviews. According to our previous experiences
[8, 10–12], the typology of the review is strongly depended on the
heterogeneity and the quality of the available published literature,
which in this case did not allow a more mathematical pooling
(e.g. a meta-analysis). Nonetheless, several authors gave effective
methodological contributions, although in a fragmented manner.
Consequently, this Letter aimed to harmonise these contributions
in a comprehensive algorithm that can be useful to guide scholars
in future studies.

2. Methods and materials: Relevant studies on the use of ultra-
short HRV analysis were first identified and selected by searching
on PubMed and OvidSP databases. Articles were searched using
Boolean combinations of the following keywords or their equivalent
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medical subject heading terms: heart rate variability, HRV, ultra-
short, and very short. Title, abstract, and full text were chosen as
fields of the search. However, due to the lack of guidelines on how
to analyse HRV in the ultra-short term, the nomenclature used in
many scientific papers was very heterogeneous, if not misleading.
For instance, many studies performing HRV analysis on segments
<5 min did not use the tag ‘ultra-short term’ or did not mention the
length of HRV excerpts analysed (i.e. ultra-short, short- or long-term
analysis) in the study. Therefore, a linear search of references of
retrieved articles was required and performed.

The heterogeneity and quality of available literature led us to
conduct a state-of-art review to address the current concerns and
offer a comprehensive perspective on the issue [9].

To limit the linear search, the following criteria were utilised:
papers published in the last 15 years (since 2003), focusing on
healthy and non-pregnant adult humans. Shortlisted papers were
considered suitable for this review if they met the following criteria:

† the subjects were human beings over 18 years old;
† HRV was analysed on excerpts <5 min;
† HRV features were extracted with reliable methods and reported
with sufficient statistical quality [3].
3. Results and discussion: Since 2003, 29 papers [13–41] were
identified as shown in Fig. 1. An overview of the methods
employed in the shortlisted 29 papers to assess the validity of
ultra-short HRV features is synthetically reported in Fig. 1,
whereas the characteristics of the reviewed studies are reported in
Table 2.

The studies focused on ultra-short HRV features for different
purposes: 18 focused on mental stress or mental workload detection
[13–29]; one focused on athletic performance monitoring [30]; one
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Fig. 1 Flow chart of the literature search
focused on auditory stimuli [31]; the remaining investigated the re-
liability of ultra-short HRV features in control condition (e.g. only
resting condition). The 18 studies investigating mental stress used
one or more of the following tasks to induce mental stress: com-
puter work task, flight simulator, Stroop colour word task, arith-
metic task, memory task, logic task, game task, public speech
task, academic examination, and other physical–mental tasks.
Ten papers [25–34] investigated three or fewer HRV features.
De Rivecourt et al. [25] explored MeanHR, LF, and HF as
indices for momentary changes in the mental effort during simu-
lated flight. However, only two HRV frequency features were
investigated at different lengths (i.e. 240, 120, 60 and 30 s). Choi
et al. [26] investigated frequency HRV features to detect stress
using 240 s excerpts. Hjortskov et al. [27] explored only three
HRV frequency features (LF, HF and LF/HF) in 3 min segments
during rest and computer working. Wang et al. [28] investigated
MeanNN, RMSSD, and HF during rest and stress sessions at
30 s. Li et al. [29] investigated MeanNN, RMSSD, and HF in
30 s compared with all the durations of rest and stress sessions
(i.e. 10 min). Esco et al. [30] only investigated RMSSD during
pre and post exercise, as RMSSD showed to be a reliable feature
to assess performances in athletes. They investigated RMSSD at
different time scales of 10, 30, and 60 s. Nardelli et al. [31] inves-
tigated Poincare’ plot features (SD1 and SD2) at 15, 25 and 60 s
during a control condition and effective sound. Thong et al. [32]
investigated three HRV features StdNN, RMSSD, and HF at differ-
ent time scales from 10 to 300 s (with a step of 10 s) at control con-
dition. Munoz et al. [33] investigated only two HRV features:
StdNN and RMSSD at 10, 30 and 120 s during a control condition.
Flatt et al. [34] investigated one HRV feature, RMSSD, at 55 s
during a control condition. The remaining studies investigated
more than three HRV features.

As shown in Fig. 1, seven out of the 29 studies [17, 18, 22, 24,
26, 27, 40] did not report any method to validate the use of ultra-
short HRV features or reference to support the adoption of ultra-
short HRV features. Eight studies [13, 14, 16, 19, 23, 28, 34, 39]
also did not report any method to validate the use of ultra-short
HRV features but they relied on the results of five previous
studies [20, 25, 35, 38, 41]. Unfortunately, those five studies are
part of 11 studies that cannot be considered fully reliable as detailed
below.

In fact, 11 identified studies [15, 20, 21, 25, 29, 31, 32, 35, 36,
38, 41], including the five mentioned in the previous sentence
[20, 25, 35, 38, 41], performed only a partial assessment either
using only statistical significance or performing only correlation
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tests. In fact, three of 11 studies [20, 32, 41] employed statistical
significance tests to prove that there were no statistically significant
changes in HRV features in short versus ultra-short term, assuming
short-term HRV analysis (i.e. 5 min) as a benchmark. They con-
cluded that ultra-short HRV features were good surrogates of
short-term ones if no-significant differences were observed, using
a significance threshold >0.05 (p> 0.05).

Unfortunately, this result is arguable because, although a p-value
<0.05 is conventionally used to support the hypothesis that two
distributions are significantly different, it is well-known that no con-
clusions can be drawn for p-value >0.05, as detailed in [42]. For
instance, two distributions could result in a p-value >0.05
because of their cardinalities. In particular, one of those three
studies [20] also assessed ultra-short term HRV features in two con-
ditions (i.e. rest and stress) using a non-parametric test (p< 0.05) to
find the shortest duration needed to distinguish the two conditions.
Nevertheless, also, in this case, the results are arguable as the study
[20] explored only those HRV features judged as good surrogates if
no statistically significant changes in short versus ultra-short term
were observed using a p-value >0.05. Furthermore, one study
[21] used one-way analysis of variance (ANOVA) to determine
which HRV features (i.e. those computed at 220, 150, 100 or
50 s) could discriminate between rest and stress sessions with
p< 0.05. However, due to the nature of HRV features, which are
non-normally distributed (especially in the frequency domain), a
non-parametric test should have been used instead, or HRV features
should have been log-transformed before using the ANOVA test.

On the other side, seven studies [15, 25, 29, 31, 35, 36, 38]
employed only correlation tests to prove that ultra-short term
HRV features behaved as short-term ones; in fact, they concluded
that ultra-short HRV features were good surrogates of short-term
ones if significantly correlated with their equivalent short HRV
features. As anticipated in the introduction, this result is arguable
because as stated by Fleming et al. [5], ‘a correlate does not
make a surrogate’, although an appropriate correlation test is the
first step for the identification of a good surrogate.

Only two studies [30, 37] performed both statistical significance
test and correlation analysis. Unfortunately, also in these two
studies, the statistical significance analysis consisted of only
observing if the p-value was >0.05, which is not a suitable
method for the reasons discussed above.

Employing invalid statistical significance analysis led to unreli-
able results, especially regarding frequency HRV features. In fact,
Baek et al. [37] and Salahuddin et al. [41] computed very low fre-
quency (VLF) in 270 and 50 s although, as reporting also in [3],
VLF is only reliable in long-term HRV analysis. De Rivecourt
et al. [25] and Salahuddin et al. [41] employed only correlation ana-
lysis and an inaccurate statistical significance test (i.e., p> 0.05),
reported that LF and HF are reliable in segments lower than
30 s, whilst at least 250 and 60 s are necessary for LF and HF,
respectively [3].

Finally, only one study [33] investigated in a more rigorous way
the validity of ultra-short HRV features. In fact, Munoz et al. [33]
compared 10, 30, and 120 s HRV features with 5 min ones, using
Pearson’s correlation test (after having normalised HRV features
with log-transformation), Bland–Altman plots and Cohen’s d statis-
tical test. Unfortunately, Munoz et al. reported the results on only
two time domain HRV features under one condition (i.e. resting)
and it was not clear if other features were computed but not reported
or not computed at all. In the first case, a correction to the p-value
should be employed too [43, 44].

Hence, among the 29 identified papers, one paper justified the
adoption of ultra-short HRV features with a rigorous method but
reporting only on two time domain HRV features. Conversely,
seven papers did not provide any justification, eight papers based
their choice on unreliable articles, 11 papers performed only a
partial assessment (i.e. either statistical significance or correlation
tests) and two papers performed a complete assessment (both
Healthcare Technology Letters, 2018, Vol. 5, Iss. 3, pp. 94–100
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Table 2 Characteristics of studies

Author, year HRV features investigated Length, s Condition N. Sub Justification for ultra-short HRV adoption

Arza, 2015 [40] MeanHR, StdNN, RMSSD,
pNN50, VLF, LF, HF, LF/HF and

LFnu

180 rest/stress 25 † none

Baek, 2015 [37] MeanHR, StdNN, RMSSD,
pNN50, VLF, LF, HF, LF/HF,

TotPow, LFnu, HFnu

270–10 control 500 † Stat.: Kruskal–Wallis test (p> 0.05)
† Cor.: Pearson’s correlation analysis and

Bland–Altman plot
Boonnithi, 2011 [14] MeanNN, StdNN, MeanHR,

StdHR, RMSSD, pNN50, VLF,
LF, HF, LF/HF, LFnu, HFnu

50 rest/stress 6 † referred to the literature [20]

Brisinda, 2014 [15] All features reported in Table 1,
except HRV index and TINN

120, 60, 30 rest/stress 113 † Cor.: ICC

Choi, 2009 [26] LF, HF, LF/HF 240 rest/stress 3 † none
De Rivecourt, 2008 [25] MeanHR, LF and HF 240, 120,

60, 30
rest/mental
workload

19 † Cor.: Pearson’s on log transformed features

Esco, 2014 [30] RMSSD 60, 30, 10 pre/post
exercise

23 † Stat.: ANOVA (p> 0.05), Cohen’s d
† Cor.: ICC and Bland–Altman graph on

log transformed features
Flatt, 2013 [34] RMSSD 55 control 25 † referred to the literature [20, 35]
Hjortskov, 2004 [27] LF, HF and LF/HF 180 rest/stress 12 † none
Kim, 2008 [19] StdNN, RMSSD, pNN50, HRV

index, TINN, LF, HF
180 rest/stress 68 † referred to the literature [20, 41]

Kwon, 2016 [39] StdNN, RMSSD, MeanHR, LF,
HF, LF/HF, TotPow, LFnu and

HFnu

30 control 14 † referred to the literature [20]

Li, 2009 [29] MeanNN, RMSSD and HF 30 rest/stress 399 † Cor.: Pearson on log transformed features
Mayya, 2015 [16] StdNN, RMSSD, pNN50, LF, HF,

LF/HF, SD1, SD2, and dfa1
60 rest/stress 49 † referred to the literature [20]

McNames, 2006 [36] MeanHR, StdNN, RMSSD, LF,
HF, LF/HF, TotPow, LFnu and

HFnu

600–10 control 54 † Cor.: ICC

Munoz, 2015 [33] StdNN and RMSSD 120, 30, 10 control 3.387 † Cor.: Pearson and Bland–Altman plot on
log transformed features

† Stat.: Cohen’s d
Nardelli, 2017 [31] SD1 and SD2 60, 25, 15 rest/sound 32 † Cor.: Spearman correlation and

Bland–Altman plot
Nussinovitch, 2011 [35] MeanNN, StdNN, RMSSD, HRV

index, pNN50, LF, HF, TotPow
60–10 control 7 † Cor.: ICC

Pandey, 2016 [17] MeanNN, StdNN, MeanHR,
StdHR, RMSSD, VLF, LF and

HF

60 rest/stress 15 † none

Papousek, 2010 [22] MeanHR, LF, HF and LF/HF 180 rest/stress 65 † none
Pereira, 2017 [21] MeanNN, StdNN, RMSSD,

pNN20, pNN50, LF, HF, LF/HF,
LFnu, SD1, SD2, SampEn

and dfa1

220–50 rest/stress 14 † Stat.: ANOVA between rest and
stress at different time scale (p< 0.05)

Salahuddin, 2007 [20] MeanNN, RMSSD, pNN50, HRV
index, TINN, VLF, LF, HF,
LF/HF, LFnu, and HFnu

150–10 rest/stress 24 † Stat.: Kruskal–Wallis test at each condition
between 5 min and each time length (p> 0.05),
and Wilcoxon sign-ranked test between rest
and stress at different time length (p< 0.05)

Salahuddin, 2007 [41] MeanNN, RMSSD, pNN50, HRV
index, TINN, VLF, LF, HF,
LF/HF, LFnu, and HFnu

150–10 control 6 † Stat.: Kruskal–Wallis test (p> 0.05)

Schroeder, 2004 [38] MeanNN, StdNN, MeanHR,
RMSSD, HF, LF, LFnu, HFnu

360, 180,
10

control 63 † Cor.: ICC on log transformed features,
and multivariate repeated measures

Schubert, 2009 [24] MeanHR, StdNN, LF, HF, LF/HF
and D2

180 rest/stress 50 † none

Sun, 2010 [23] MeanNN, StdNN, MeanHR,
StdHR, RMSSD, pNN50, LF, HF,

LF/HF

60 rest/stress 20 † referred to the literature [20]

Thong, 2003 [32] SDNN, RMSSD and HF 300–10 control 25 † Stat.: two-way ANOVA (p> 0.05),
Wang, 2009 [28] MeanNN, RMSSD and HF 30 rest/stress 735 † referred to the literature [25, 38]
Wijsman, 2011 [18] MeanHR, StdNN, LF, HF and

LF/HF
120 rest/stress 30 † none

Xu, 2015 [13] MeanHR, pNN50, LF, HF, LF/HF 180, 30 rest/stress 44 † referred to the literature [20]

ICC: inter-class correlation analysis.
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statistical significance and correlation tests) but using statistical
significance tests improperly. Overall, none of the 29 studies has
proposed a valid method to identify reliable subsets of ultra-short
HRV features or surrogates of the short-term HRV features to
allow the detection of the event of interest (i.e. two different con-
ditions). Therefore, future studies in this area are required.

Independent of the methods used (e.g. statistical test and correl-
ation, only statistical or correlation analysis) and their rigor (e.g. the
parametric test used for non-normally distributed features, p> 0.05),
the reviewed studies presented other methodological ambiguities.
Twenty studies investigating ultra-short HRV analysis in two con-
ditions (e.g. rest versus stress), compared ultra-short HRV features
inter-group (e.g. ‘HRV features at 1 min during rest versus stress’
compared with ‘HRV features at 5 min during rest versus stress’)
without performing intra-group (e.g. ‘HRV 1 min at rest’ versus
‘HRV 5 min at rest’) comparisons. In fact, inter-group (i.e. compar-
ing HRV features between two conditions among different lengths)
and intra-group comparisons (i.e. comparing coherence of HRV
features at different lengths in the same condition) should be per-
formed using the proper statistical tests and correlation analyses.
This is fundamental in order to judge the inner validity of the
technique.

Overall, the reviewed literature highlighted that some valuable
methodologies are available and already in use, but in a very frag-
mented way, resulting in improper or inaccurate practices. This
body of evidence can be summarised and standardised in an algo-
rithm, as represented in Fig. 2.

The algorithm represented in Fig. 2 highlights that authors cannot
just use statistical or correlation tests to explore whether ultra-short
HRV features can be considered good surrogates of short-term
ones. Before performing statistical tests, authors should consider
if features are significantly correlated at different time scales. The
significant correlation suggests that there is a significant association.
Nonetheless, this association could be biased. The Bland–Altman
estimates this bias and how it diverges with the increase of the
short-term feature’s magnitude (i.e. benchmark). According to
this test, two features are considered not biased, if the dispersion
of their mean difference remains within a conventional threshold
[i.e. 95% line of agreement (LoA)] [45]. Once a correlation has
been proven and bias excluded, the statistical significance can be
explored. Munoz et al. [33] proposed the use of the Cohen’s d
Fig. 2 Standard algorithm to assess if ultra-short HRV features can be con-
sidered good surrogate for short-term ones when investigating one condi-
tion (e.g. only at rest). rho: correlation coefficient; p-val: p-value
associated with correlation analysis; LoA: line of agreement in Bland–
Altman plot
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statistics to quantify the agreement of HRV features at different
time scales relative to their within-group variation [46].
Therefore, according to the proposed algorithm, a feature can be
considered a good surrogate if correlated, non-biased and signifi-
cantly in agreement among them.

The algorithm reported in Fig. 2 can be further articulated in
the case in which the ultra-short HRV features are non-normally
distributed (Fig. 3). As far as correlation tests, there are several non-
parametric tests, which have been proposed. Alternatively, HRV
features can be log-transformed before using a parametric test.
The Bland–Altman test is parametric too, as it calculates the 95%
LoA around the mean. In the case of non-normally distributed
features, authors should use the same test, but investigate the dis-
persion around the median, and not the mean, when computing
the 95% LoA. Finally, Cohen’s d statistics assumes the normal
distribution of input features, therefore it is strongly recommended
to apply a log-transformation to HRV features before applying
this test. Alternatively, Cliff’s delta statistics should be used for
non-normally distributed data as it is a non-parametric effect size
measure that quantifies the amount of difference between two
groups of observations beyond p-values interpretation [47].

In case two different conditions are explored (e.g. stress versus
rest), both Figs. 2 and 3 require a further adjustment. In fact, in an-
alogy to the best available medical practice [48], scholars should
follow the algorithm proposed in Fig. 4, proving that:

† ultra-short HRV features behave as short-term ones in the same
conditions (i.e. at rest or during stress), intra-group assessment;
† ultra-short HRV features maintain different behaviours in
the two conditions at different lengths (i.e. if StdNN diminishes
during stress, this change should be observed both at short and
ultra-short term) and inter-group assessment.

As the first step, surrogate features have to be correlated with
benchmark ones (i.e. short-term HRV) both in a control condition
(e.g. rest phase) and during the event to be detected (e.g. stress
phase). This can be verified using intra-group correlation analysis
at different time lengths, i.e. in the same condition. For instance,
StdNN (as well as any other HRV feature) extracted from 5 min
excerpts during rest (or stress), has to be significantly correlated
with StdNN extracted from any shorter 5 min excerpts during rest
(or stress).
Fig. 3 Recommendations in case of ultra-short HRV features are investi-
gated in one condition (e.g. only at rest). All the analysis should be run
between benchmark and each time scale investigated
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Fig. 4 Recommendations in case of two conditions
1All the analysis should be run between the benchmark and each time scale
investigated during both control and experimental conditions. 2Repeated at
each time scale under investigation
As a second step, visual investigation of bias between means (or
medians for non-normally distributed features) has to be performed
via Bland–Altman plots in each condition.
As the third step, the set of surrogate features has to preserve

a large portion of information of the event to be detected (i.e. sig-
nificance test at each time scale and/or trend analysis). This can
be verified using inter-group statistical tests at each time length
but in the different conditions. Therefore, scholars should verify,
using a non-parametric test (unless HRV features are log trans-
formed or normally distributed), which ultra-short HRV feature
maintains statistical evidence that the median significantly
differs in the two different conditions (p< 0.05) across time
period windows. Pereira et al. [21] attempted to investigate which
HRV features could discriminate between rest and stress using
ANOVA for each selected time period window.
The fourth and last step, the trends of the HRV features (i.e. if

HRV features decrease or increase during stress) should remain
consistent across time lengths. In fact, a HRV feature can be
assumed to maintain the same behaviour across different time
lengths if the statistical significance test has p-value <0.05 between
the control and the experimental conditions at each time scale and
if the ultra-short HRV features trend consistently changes between
the control and the experimental conditions with the equivalent
short HRV feature (e.g., if MeanNN decreases significantly during
stress at 5 min [10] this significant trend has to be consistently main-
tained at shorter time lengths). Once these four steps have been per-
formed, it can be assumed that an ultra-short HRV feature is a good
surrogate for the equivalent short one, if:

† the ultra-short HRV feature maintained the same behaviour
between control and experimental conditions as the benchmark;
† the ultra-short HRV feature was highly and significantly cor-
related (e.g. correlation coefficient greater than a given threshold
(e.g. 0.7) and p-value <0.05), with the corresponding short
feature in both control and experimental conditions.
4. Conclusion: This review demonstrates that there is a clear lack
of rigorous methods to assess the validity of ultra-short HRV
features in a control situation and to identify reliable ultra-short
HRV features. One of the reasons could be the lack of
Healthcare Technology Letters, 2018, Vol. 5, Iss. 3, pp. 94–100
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clear algorithm guiding scholars in proving how to identify good
surrogates. Therefore, this Letter proposed, in analogy with
evidence-based medicine, three algorithms, which scholars
may follow to assess whether ultra-short HRV features can be
considered good surrogates of short-term ones. Recommendations
are given in this regard: which method should be used in each
step, when intra-group or inter-group correlation and statistical
tests are required, and whether those tests should be parametric or
non-parametric.
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