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Abstract

Background

We hypothesized that spatial heterogeneity exists between recurrent and non-recurrent

regions within a tumor. The aim of this study was to determine if there is a difference

between radiomics features derived from recurrent versus non recurrent regions within the

tumor based on pre-treatment MRI.

Methods

A total of 14 T4NxM0 NPC patients with histologically proven “in field” recurrence in the post

nasal space following curative intent IMRT were included in this study. Pretreatment MRI were

co-registered with MRI at the time of recurrence for the delineation of gross tumor volume at

diagnosis(GTV) and at recurrence(GTVr). A total of 7 histogram features and 40 texture fea-

tures were computed from the recurrent(GTVr) and non-recurrent region(GTV-GTVr). Paired t-

tests and Wilcoxon signed-rank tests were carried out on the 47 quantified radiomics features.

Results

A total of 7 features were significantly different between recurrent and non-recurrent

regions. Other than the variance from intensity-based histogram, the remaining six signifi-

cant features were either from the gray-level size zone matrix (GLSZM) or the neighbour-

hood gray-tone difference matrix (NGTDM).

Conclusions

The radiomic features extracted from pre-treatment MRI can potentially reflect the differ-

ence between recurrent and non-recurrent regions within a tumor and has a potential role in

pre-treatment identification of intra-tumoral radio-resistance for selective dose escalation.
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Background

[1–4] Approximately one third of patients with locally advanced nasopharyngeal cancer

(NPC) still developed local recurrence after curative dose of intensity modulated radiation

therapy (IMRT) and chemotherapy. The management of local recurrence remains a challeng-

ing issue for radiation oncologists as salvage treatment options for locally recurrent NPC offer

limited local control and survival benefits with high toxicities. [5,6] The majority of these local

recurrences were observed to be ‘in field’, occurring within the high radiation dose region, sug-

gesting the presence of sub-populations of cancer cells within the tumor which are radio-resis-

tant. [7–10] The development of subpopulations of cancer cells with divergent biological

behavior within a primary tumor is also known as intra-tumoral heterogeneity. [11–14] It is

now well established from a variety of studies that tumors with significant intra-tumoral het-

erogeneity are associated with more aggressive behavior, poorer prognosis and resistance to

radiotherapy.

[15–17] The past decade has seen rapid developments in medical imaging that provide bet-

ter spatial resolution and allow for assessment of tumor heterogeneity. [18–20] Emerging data

showed that these modalities hold the potential to identify regions within tumors which are

radio-resistant. [21] Escalating the dose to the entire gross tumor volume (GTV) may not

always be possible as the dose to the adjacent critical normal tissues will inevitably also

increase, leading to complications. It was therefore suggested that dose escalation should be

targeted to areas of increased radio-resistance in the tumor. [22–26] Radiomics is an emerging

field that extracts a large amount of quantitative features from imaging scans in order to char-

acterize intra-tumoural heterogeneity and to reveal important prognostic information about

the cancer. These radiomics features have the potential to unravel disease characteristics that

could be missed by the naked eye. The advances in functional and spatial imaging, coupled

with radiomics, allow for “dose painting” that consists of selective dose escalation to regions

within the tumor with relative radio-resistance. [27–29] As such, there is a growing interest in

“dose painting” which may be an effective way to reduce “in field” recurrence with acceptable

side effects.

[30, 31] Magnetic resonance imaging (MRI) is the imaging of choice in the diagnosis and

local staging in NPC due to its superior soft tissue contrast and allows for accurate delineation

of target volumes for purposes of radiotherapy. [32–37] Whilst some research has been carried

out on the application of radiomics in nasopharyngeal cancer, an approach that utilizes MRI

radiomics as a predictive signature for intra-tumoral radio-resistance has not yet been devel-

oped. Comprehensive image analysis using radiomics that can identify radio-resistant tumor

sub-volumes from pre-treatment MRI scans could guide individualized radiation therapy by

suggesting target volumes in which a higher dose of radiation is needed for better tumor con-

trol. We hypothesized that spatial heterogeneity exists between recurrent and non-recurrent

regions within a tumor. Therefore, the aim of this study was to determine if there is a differ-

ence between radiomics features derived from recurrent versus non recurrent regions within

the tumor based on pre-treatment MRI.

Methods and materials

This is a retrospective review of patients with AJCC 7th Edition T4, Nx and non metastatic

nasopharyngeal carcinoma treated with curative intent intensity modulated radiotherapy in

our Department of Radiation Oncology in National Cancer Centre Singapore between January

2010 and December 2012. Out of the 87 patients treated within this period, a total of 14

patients who developed histologically proven recurrence in the nasopharynx were included in
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this study. This study was approved by Singhealth institutional review board and the require-

ment for informed consent was waived.

Follow up After treatment, patients were followed up every 2 months in the first year, every

4 months in the second year and every 6 months from the third to fifth year, then yearly after-

wards. Locoregional imaging with contrast-enhanced CT, or MRI or PET-CT scans were

requested routinely on a yearly basis and/or earlier if clinically indicated.

MRI imaging protocol

Pre-treatment and recurrent MRI scan of the skull base and neck were performed with a 1.5

Tesla scanner (GE Signa Echospeed; GE Medical Systems, Milwaukee, USA). Gadopentetate

dimeglumine (Magnevist; Schering Diagnostics AG, Berlin, Germany) at 0.1 mmol/kg of body

weight was administered and images of the patients in their customized radiotherapy immobi-

lization shell were acquired. The reconstructed voxel size was 0.7 x 0.7 x 5 mm3. Out of the var-

ious MRI sequences, we have selected the contrast-enhanced fat-suppressed T1-weighted spin

echo sequences in axial planes (CE FS axial T1) for analysis. [38,39] CE FS axial T1 has been

consistently reported as the most informative individual sequence in delineating the local

extent of NPC.

Image acquisition, segmentation and radiomic feature extraction

Fig 1 showed the radiomics workflow. All patients had MRI scans at pre-treatment and at the

time of local recurrence. The fusion of pre-treatment MRI with CT simulation images was

routinely performed using rigid registration for all patients for accurate delineation of gross

tumor volumes (GTV) and critical structures. All GTVs were contoured at the time of diagno-

sis. These fused pre-treatment MRI and CT images together with the GTV contours and 95%

isodose lines were retrieved from Eclipse Treatment Planning System. MRI images at the time

of local recurrence were then fused with the CT simulation images. The recurrent gross tumor

Fig 1. Radiomics workflow.

https://doi.org/10.1371/journal.pone.0240043.g001
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volume (GTVr) was identified and contoured in retrospect on MRI images at the time of local

recurrence by a single expert radiation oncologist. The structures GTVr, GTV and 95% isodose

lines were copied from the CT simulation images onto the pretreatment CE FS axial T1 MRI

(S1 Appendix). [40] We adopted the definition of “in field” recurrence from previously pub-

lished reports as 95% of recurrent gross tumor volume (GTVr) was within the 95% isodose.

Each pre-treatment CE FS axial T1 MRI contained two regions of interest (ROI), which were

the recurrent region (GTVr) and the non-recurrent region (GTVnr), which was obtained by

subtracting the overlapping GTVr from the GTV (GTV-GTVr) (S2 Appendix). X and Y

dimensions of the input MRI images are 512x512 while the number of slices, i.e., Z dimension

is varying for all patients (ranges from 44 to 100). Radiomics features were then extracted from

these two ROI:

a. Intensity Based Histogram

Intensity-based histograms were computed for both recurrent and non-recurrent regions.

The histograms of both regions were then normalized on the same intensity scale for a

fair comparison between their distributions. On the basis of the first-order statistic, 7

histogram features were computed for both recurrent and non-recurrent tumor volumes:

mean, variance, skewness, kurtosis, mean absolute deviation (MAD), hyperskewness and

hyperflatness.

b. Texture Analysis

An open source radiomics library (https://github.com/mvallieres/radiomics/tree/master/

TextureToolbox) was used to compute different texture features for both recurrent and

non-recurrent regions, such as gray-level co-occurrence matrix (GLCM), gray-level run

length matrix (GLRLM), gray-level size zone matrix (GLSZM) and neighborhood gray-

tone difference matrix (NGTDM) texture matrices. [41] The recurrent (GTVr) and non-

recurrent tumor regions (GTV-GTVr) were prepared by using Lloyd-Max quantization

algorithm with the quantization level of 256 as the intensity gray-level in the pretreatment

MRI is 256. A total of 40 texture features were computed from 4 texture metrics: GLCM,

GLRLM, GLSZM, and NGTDM, where the texture metrics contained 9, 13, 13 and 5 fea-

tures, respectively (Table 1).

Table 1. 47 texture features from intensity histogram and texture metrics: GLCM, GLRLM, GLSZM and

NGTDM.

Texture metrics Features

Intensity

Histogram

Mean, variance, skewness, kurtosis, mean absolute deviation (MAD), hyperskewness,

hyperflatness

GLCM Energy, contrast, entropy, homogeneity, correlation, sum average, variation, dissimilarity, auto

correlation

GLRLM Short run emphasis (SRE), long run emphasis (LRE), gray level non-uniformity (GLN), run

length non-uniformity (RLN), run percentage (RP), low gray-level run emphasis (LGRE), high

gray-level run emphasis (HGRE), short run low gray-level emphasis (SRLGE), short run high

gray-level emphasis (SRHGE), long run low gray-level emphasis (LRLGE), long run high gray-

level emphasis (LRHGE), gray level variance (GLV), run length variance (RLV)

GLSZM Small zone emphasis (SZE), large zone emphasis (LZE), gray-level non-uniformity (GLN), Zone

size non-uniformity (ZSN), zone percentage (ZP), low gray-level zone emphasis (LGZE), high

gray-level zone emphasis(HGZE), small zone low gray-level emphasis (SZLGE), small zone low

gray-level emphasis (SZHGE), large zone low gray-level emphasis (LZLGE), large zone high

gray-level emphasis (LZHGE), gray level variance (GLV), zone size variance (ZSV)

NGTDM Coarseness, contrast, busyness, complexity, strength

https://doi.org/10.1371/journal.pone.0240043.t001
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Statistical analysis

Shapiro-Wilk normality tests were carried out on the differences between GTVr and

GTV-GTVr pairs for the 47 features, and p-values < 0.05 were considered significantly differ-

ent. Paired t-tests were performed on the features and Wilcoxon signed-rank tests were carried

out on the features that violated the normality assumption. Applying Bonferroni correction, p-

values less than 0.05/47 = 0.001 were considered as statistically significant. Pearson Correlation

Coefficient (PCC) values with p-values were computed for the paired differences of the recur-

rent and non-recurrent regions for the significant features. Principal component analysis

(PCA) was performed on significant features to reduce dimensionality. All statistical analyses

were performed using R software (version 3.6.0).

Results

Out of the 87 T4NxM0 NPC patients treated in National Cancer Centre Singapore between

January 2010 and December 2012, 14 patients had developed histologically proven recurrence

and had both the pre-treatment and recurrent MRI scans available. The 14 recurrent MRI

scans were fused with the corresponding pre-treatment MRI scan to segregate the initial

tumor into two regions of interest, the recurrent and non-recurrent regions. A total of 7 histo-

gram features and 40 texture features were computed for the regions of interest. Paired t-tests

and Wilcoxon signed-rank tests were carried out on the 47 quantified radiomics features, and

7 features were statistically significant at p-values < 0.001 as shown in Table 2. Other than var-

iance from the intensity-based histogram, the remaining six significant features were either

from the gray-level size zone matrix (GLSZM) or the neighbourhood gray-tone difference

matrix (NGTDM).

Fig 2 showed the intensity histograms generated from the recurrent and non-recurrent

regions within each tumor volume for each patient. Visually, 11 (all patients except REC004,

REC008 and REC011) out of 14 histograms had bigger peaks on the high intensity bins for

recurrent tumor regions compared to the non-recurrent tumor regions. Fig 3 displayed the

Pearson correlation coefficients for the paired differences between the recurrent and non-

recurrent regions. Correlation coefficients with p-values < 0.05 were considered significant

and colored according to the color bar, while insignificant correlation coefficients were not

coloured. As shown in Fig 3, none of the negative Pearson correlation coefficients were signifi-

cant, and positive correlation with p-values < 0.05 were observed among GLSZM_GLM,

GLSZM_ZSV, NGTDM_Coarseness and NGTDM_Strength.

Table 2. Features show statistical difference between GTVr and GTV-GTVr regions.

Features(n = 47) Mean of the differences (TR vs TMTR) SD of the differences (TR vs TMTR) P-value

GLSZM_GLV 4.06E-02 3.00E-02 0.0002

GLSZM_ZSV 1.98E-06 1.49E-06 0.0003

GLSZM_LZE -3.63E-01 5.17E-01 0.0009^

Intensity_Variance -5.38E+02 4.38E+02 0.0005

NGTDM_Busyness -5.31E-02 2.94E-02 <0.0001

NGTDM_Coarseness 3.39E-03 2.59E-03 0.0003

NGTDM_Strength 5.15E+01 4.10E+01 0.0004

p-value calculated using paired t-test unless otherwise stated.

^p-value calculated using Wilcoxon signed-rank test.

https://doi.org/10.1371/journal.pone.0240043.t002
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Fig 2. Intensity-based histogram comparison between recurrent (GTV) and non-recurrent regions (GTV-GTVr)

in all patients (n = 14, REC001-REC014).

https://doi.org/10.1371/journal.pone.0240043.g002
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Fig 4 displayed the distribution of the selected features. As shown by the box plots in Fig 4,

busyness, coarseness and strength from NGTDM were performing well in differentiating the

recurrent and non-recurrent regions. And given NGTDM busyness was not significantly cor-

related with any other feature in Fig 3, it could potentially serve as an independent parameter

in predicting the recurrent and non-recurrent region.

To reduce dimensionality, the principal component analysis was applied on the 7 signifi-

cant features. Among the 7 computed principal components (PC), PC1 explained 71% of

the variance and PC2 explained 12% of the variance. The 14 recurrent regions and 14 non-

Fig 3. Pearson correlation coefficient matrix on the paired differences of the seven significant features.

https://doi.org/10.1371/journal.pone.0240043.g003
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recurrent regions were then plotted as dots in the 2-dimensional PCA plot, where PC1 and

PC2 yield x and y axes, respectively, as shown in Fig 5. In Fig 5, the recurrent regions and the

non-recurrent regions do tend to form 2 clusters. Most of the non-recurrent regions were

clustered closely with each other, while the recurrent regions were more spread out. This

observation suggested that the recurrent regions contained more variations and were more

heterogeneous than the non-recurrent regions. Except for patients 4, 11, 13 and 14, the rest of

Fig 4. Box plots of the significant features, differentiating the recurrent and the non-recurrent regions.

https://doi.org/10.1371/journal.pone.0240043.g004
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the recurrent regions could be well separated from the non-recurrent regions along PC1. Fig 2

showed the recurrent regions for patients 4, 11, 13 and 14 were large and taking up a big vol-

ume in the original tumor. This suggested that the MRI scans for patients 4, 11, 13 and 14 were

performed after significant progression of the local recurrence and might be the reason why

we could not separate them in the PCA plot.

Discussion

To our knowledge, this is the first study of its kind to assess intra-tumoral radio-resistance

using MRI radiomics features in patients with in-field recurrence after IMRT. The novelty of

Fig 5. Two-dimensional scatter plot of the recurrent and non-recurrent regions based on the first two principal components derived

from the seven significant features.

https://doi.org/10.1371/journal.pone.0240043.g005
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our study is that we performed intra-tumoral partitioning on the MRI at the time of diagnosis

using information from MRI at the time of recurrence to characterize spatial heterogeneity. In

this proof of concept study, we found a difference in the radiomics pattern between recurrent

and non-recurrent regions within the NPC tumor. Notably, the results from the PCA showed

that the recurrent regions contained more textural variations and were more heterogeneous

than the non-recurrent regions. These results are hypothesis-generating and have potential

clinical implications as we are currently unable to reliably predict the region of in-field recur-

rence from pre-treatment MRI. At present, a homogenous dose of radiotherapy is generally

prescribed with the assumption that the whole tumor is homogenous. Recent technological

advances in the field of radiation oncology have made it possible to escalate the dose safely.

High risk tumor sub-regions associated with radio-resistance can then be targeted with a radi-

ation boost or “dose painting” to potentially improve local control and patient survival.

There has been tremendous interest in radiomics research in NPC in the last few years. Pre-

viously, the majority of the radiomics studies in NPC have been focused on the analysis of the

entire primary tumor as a whole to prognosticate disease outcomes or predict response to

treatment. While the results from this approach supported the potential of radiomics in

improving patient stratification for therapy, it assumes that the tumor is heterogenous but well

mixed and ignores the regional variations within a tumor. [32,35,36] Studies from Ouyang

et al and Zhang et al described their radiomics model based on pre-treatment contrast

enhanced T1- and T2-weighted MRI which could predict disease progression in patients with

NPC. [42] Zhang et al found textural features correlate not just to local failure but also to dis-

tant treatment failure. [37] Another study by Li et al showed that 8 radiomics features could

differentiate in field recurrence from pre-treatment spectral attenuated inversion-recovery

T2-weighted (SPAIR T2W) MRI. [34] Zhang et al produced a radiomics signature built with

11 features that outperformed conventional clinical variables in predicting local recurrence-

free survival in patients with non-metastatic T4 NPC. [33] In a study of 120 NPC patients,

Wang et al showed that the radiomics model could predict early response to induction

chemotherapy.

However, the enthusiasm for the implementation of radiomics in routine practice should

be tempered by a realization of its unique challenges. One of the main challenges includes the

lack of standardization of image acquisition protocols. [43–45] Several studies have investi-

gated the dependence of radiomics features on MRI field strength, imaging protocols, adminis-

tration of contrast and scanner manufacturers in both living subjects and physical phantoms.

These variations in acquisition parameters can introduce changes that are not due to underly-

ing biologic effects on the images. Our study was not spared from such limitation. We

acknowledge that the scans at diagnosis and at recurrence were performed in a different scan-

ner at different time points with different scanning protocols. This was in part mitigated by

including patients in a cohort with the same scanning protocol (between 2010–2012) to mini-

mize the inconsistency within the pre-treatment MRI dataset. As such, radiomics data

obtained from MRI acquired at a single institution using different image acquisition protocols,

or acquired at different institutions with different scanners, may be affected by the heterogene-

ity of image acquisition, rather than reflecting the true difference in biological properties of the

tumor, which constitute the biggest challenge for multicentric studies. Thus, the generalizabil-

ity and reproducibility of radiomics modeling can be easily challenged and hamper its poten-

tial transfer to clinical practice. [46,47] In recent years, there have been many efforts in this

direction by the Quantitative Imaging Network (QIN), sponsored by the National Cancer

Institute (NCI), and the Quantitative Imaging Biomarker Alliance (QIBA), sponsored by the

Radiological Society of North America (RSNA) to standardize imaging protocol for data shar-

ing and advance the field of quantitative imaging.
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Segmentation is a crucial step in the radiomics workflow as the radiomics features are

extracted from the segmented volumes. In our study, the MRI images at the time of recurrence

(without immobilization mask) were not perfectly matched to the MRI images at the time of

diagnosis (with immobilization mask) given the difference in patient positioning. To minimize

the geometrical uncertainties related to image fusion, we focused the region of image registra-

tion to a small volume of interest (VOI) centering at the recurrence area in the nasopharynx

by using the pterygoid process and skull base as bony landmarks for matching in rigid registra-

tion and further fine-tuning. Accurate and robust tumor delineation is essential to ensure the

reliability and reproducibility of the radiomics data. This is challenging since many NPC

tumors have indistinct boundaries and are primarily treated with radiotherapy, thus neither

the histological ground truth nor the robustness of the segmentation can be confirmed. None-

theless, most authors would consider manual segmentation by experts the ground truth despite

the lack of a standard for delineation and [48] being prone to inter-observer variability. To

limit this problem in our study, all GTVr were contoured by a single experienced radiation

oncologist. However, manual segmentation is a time-consuming task and not always feasible

as radiomics analysis often requires very large datasets. There is an ongoing debate as to how

much to rely on manual (solely by a human), automatic (solely by artificial intelligence, AI) or

semi-automatic (human correction based on AI segmentation) segmentation. [49,50] Using

machine learning techniques for auto-segmentation of malignant structures is an active area of

research.

Our study has several other limitations. Most notably, the sample size was small, and hence

the results of this exploratory study are hypothesis-generating, not confirming. Nonetheless,

we hope that these preliminary results could encourage multi-institutional collaborative efforts

for further verification with larger datasets. Secondly, the retrospective nature of data collec-

tion and retrieval of MRI at the time of local recurrence is an intrinsic limitation. Furthermore,

the follow up MRI scans of four patients were performed after significant progression of the

local recurrence as the recurrent regions occupied a big volume within the original tumor.

Nonetheless, the treatment and follow up care schedule of NPC is protocolized given the high

prevalence of NPC in our tertiary center and patients were followed up in a standardized man-

ner. Although a prospective cohort study design is preferred, the protracted follow up periods

required for recurrence to occur can require large resources. Third, we have only considered

the MRI images from a single sequence (CE FS axial T1) in this study. Our results would likely

improve when additional information from other sequences is integrated.

Conclusions

In conclusion, our study showed that the radiomics features extracted from pre-treatment

MRI could potentially reflect the difference between recurrent and non-recurrent regions

within a tumor. The results from this study showed encouraging potential of MRI based

radiomics for pre-treatment identification of intra-tumoral radio-resistance for selective dose

escalation.

Supporting information

S1 Appendix. In-field recurrence. Axial slice pre-treatment MRI showing GTVr (gross tumor

volume at recurrence) largely within the 95% isodose line.

(JPG)

S2 Appendix. Image fusion. Left showing side by side overlay of MRI pre-treatment and MRI

at recurrence showing GTV (light green): gross tumor volume at diagnosis (contoured on
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MRI pre-treatment); GTVr (red): gross tumor volume at recurrence (contoured on MRI at

recurrence). Right showing all three GTV on MRI pre-treatment, GTVnr (yellow): non recur-

rent regions within GTV, obtained by subtracting the overlapping GTVr from the GTV

(GTV-GTVr).

(JPG)
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