
F1000Research

Open Peer Review

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000

. In order to make these reviews asFaculty
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are
not formally published.

, University of Ottawa CanadaLeo Renaud

, University of WesternJohn Ciriello

Ontario Canada

Discuss this article

 (0)Comments

2

1

REVIEW

Recent advances in central cardiovascular control: sex, ROS,
 gas and inflammation [version 1; referees: 2 approved]

Pauline M. Smith, Alastair V. Ferguson
Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L3N6, Canada

Abstract
The central nervous system (CNS) in concert with the heart and vasculature is
essential to maintaining cardiovascular (CV) homeostasis. In recent years, our
understanding of CNS control of blood pressure regulation (and dysregulation
leading to hypertension) has evolved substantially to include (i) the actions of
signaling molecules that are not classically viewed as CV signaling molecules,
some of which exert effects at CNS targets in a non-traditional manner, and (ii)
CNS locations not traditionally viewed as central autonomic cardiovascular
centers. This review summarizes recent work implicating immune signals and
reproductive hormones, as well as gasotransmitters and reactive oxygen
species in the pathogenesis of hypertension at traditional CV control centers.
Additionally, recent work implicating non-conventional CNS structures in CV
regulation is discussed.
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Introduction
According to the World Health Organization (WHO), cardiovascular 
(CV) disease accounts for approximately 17 million deaths a year 
worldwide1, of which more than half (9.4 million) are attributable to 
complications of hypertension2. In 2008, a staggering 40% of adults 
over the age of 25 had been diagnosed with hypertension3.

The central nervous system (CNS) is essential to maintaining CV 
homeostasis. Traditional central autonomic CV control centers 
include the nucleus tractus solitarius (NTS), the rostral ventral lat-
eral medulla (RVLM), and the caudal ventral lateral medulla in the 
brainstem; the parabrachial nucleus in the pons; and the paraven-
tricular nucleus (PVN) in the hypothalamus. In addition, the area 
postrema (AP) in the hindbrain, and the organum vasculosum of 
the lamina terminalis (OVLT) and subfornical organ (SFO) in the 
forebrain, are sensory circumventricular organs (CVOs) character-
ized by the presence of a wide variety of receptors and the lack of 
the normal blood-brain barrier, which have also been implicated 
in central CV regulation. The renin-angiotensin aldosterone system 
(RAAS) has also been extensively implicated as a critical signaling 
system, components of which play central roles both as circulating 
hormones and as CNS neurotransmitters in the regulation of blood 
pressure (BP). There is growing evidence that the development 
and progression of hypertension involves dysregulation of the sym-
pathetic nervous system (SNS) (SNS over-activity) (for review, 
see 4–6) and activation of the RAAS7,8.

Over the past 20 years, our understanding of CNS control of BP 
regulation (and dysregulation leading to hypertension) has evolved 
substantially. This review will summarize some of these para-
digm shifts, focussing primarily on signaling molecules that either 
(i) are not classically viewed as CV signaling molecules (i.e. 
immune signals and reproductive hormones) or (ii) exert effects 
at CNS targets in a non-traditional manner, acting via membrane 
receptor-independent signaling mechanisms (i.e. gasotransmit-
ters and reactive oxygen species [ROS]), all of which have been 
shown to have profound effects on the central control of BP. CNS 
structures, not conventionally thought of as CV control centers but 
that more recently have been shown to influence CV regulation, are 
also discussed.

Inflammation and immune regulators as modulators 
of cardiovascular regulation and contributors to 
hypertension
Although it had been speculated decades ago that there was a 
relationship between the immune system and hypertension9, the 
demonstration of systemic markers of inflammation in patients 
with essential hypertension in the early 2000s10,11 was a catalyst for 
renewed interest in the relationship between hypertension and the 
immune system. Emerging evidence suggests that both the innate 
and acquired immune systems are activated in hypertension, as 
inflammations in the kidney, vasculature (arteries), and CNS have 
all been shown to be involved in the pathogenesis of hypertension.

As an immediate first-line defence mechanism to infections or 
tissue injury, the innate immune system initiates a generalized 
inflammatory response involving dendritic cells, macrophages, 
natural killer (NK) T cells, and Toll-like receptors (TLRs), all of 
which have been shown to be activated in hypertension.

Dendritic cell activation has been shown to promote hyperten-
sion by stimulating T-cell proliferation which infiltrates both the 
kidney and arterial walls12,13. Similarly, macrophage infiltration of 
the kidney and arteries has been documented in experimental mod-
els of hypertension, and a decrease in macrophage infiltration is 
associated with an improvement of hypertension in these models of 
hypertension14–17. Recently, NK T-cell activation and TLRs (TLR4, 
in particular) have been suggested to play a role in hypertension-
related inflammation18,19.

The adaptive immune system responds to specific antigens and 
involves antigen presentation, lymphocyte activation, and anti-
body production. T cells have been shown to play a role in angi-
otensin II (ANG II)-induced hypertension20 whereas endogenously 
produced ANG II increases T-cell activation21. Pro-inflammatory 
T-cell activation and the subsequent release of pro-inflammatory 
cytokines are associated with hypertension22–24 whereas inhibition 
or genetic ablation of the B7/CD28 T cell costimulatory pathway 
has been shown to prevent experimental hypertension12. RAG-1−/− 
mice and SCID mice, which lack both T and B cells, exhibited a 
blunted hypertensive response to ANG II infusion20,25, a response 
that returned when T cells were transferred into RAG-1−/− mice20. 
T cell-produced cytokines (such as tumor necrosis factor alpha, 
or TNFα) and many of the interleukins (such as IL-6) have been 
shown to play a role in hypertension. TNFα antagonism20,26 
or genetic knockout of IL-627 has been shown to blunt ANG 
II-induced hypertension. The presence of agonist antibodies to 
ANG II receptors has been identified in a number of conditions 
that are characterized by elevated BP, such as preeclampsia28,29, 
refractory hypertension30,31, and malignant hypertension32.

Many studies have suggested that arterial inflammation within 
specific CNS locations is involved in the pathogenesis of hyper-
tension. A role for inflammation in the NTS, a pivotal region for 
regulating arterial pressure baroreceptor reflex sensitivity, has 
been suggested in the development of hypertension, as stud-
ies have shown not only leukocyte accumulation within the NTS 
microvasculature33 but also changes in gene expression of a vari-
ety of inflammatory molecules34,35 and neurotrophic factors36 in the 
NTS of spontaneously hypertensive rats (SHRs).

In addition, many of the cytokines, released as a consequence 
of immune system activation, have been shown to directly influ-
ence cardiovascular control centers in the CNS. Microinjection 
of IL-6 into the NTS attenuates baroreceptor function37 and leads 
to speculation that abnormal gene expression of IL-6 in the NTS 
may be associated with hypertension. Augmentation of IL-1β, 
IL-6, or TNF-α expression and increased ROS observed in the 
RVLM following chronic intraperitoneal lipopolysaccharide 
administration have been suggested to be contributing factors to 
neurogenic hypertension induced by systemic inflammation38.

Early studies identified the anteroventral third ventricle (AV3V), 
a broad-based region located along the wall of the third ventri-
cle which includes the OVLT, as a critical CNS structure in the 
pathogenesis of hypertension39. A more recent study not only con-
firmed that lesions of the AV3V region attenuate ANG II-induced 
hypertension but also implicated immune system involvement 
as AV3V lesions eliminated circulating T-cell activation and 
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vascular infiltration normally observed in response to ANG II 
administration40. IL-1β has been shown to influence the excit-
ability of SFO neurons41, and recent studies have demonstrated 
that microinjection of IL-1β (and of TNFα) into SFO increases 
BP and renal sympathetic nerve activity (SNA)42.

The PVN, a hypothalamic autonomic control center with well-
documented roles in CV regulation, has been implicated as a 
CNS structure in which immune signals may act to cause hyper-
tension. Chronic ANG II infusion causes the expression of pro- 
inflammatory cytokines and markers of oxidative stress in the 
PVN, effects blocked by central administration of TNFα blocker26. 
Angiotensin-converting enzyme 2 (ACE2) overexpression in 
the PVN has also been shown to attenuate both ANG II-induced 
hypertension and expression of the pro-inflammatory cytokines 
TNFα, IL-1β, and IL-6 in the PVN43. Blockade of nuclear factor- 
kappa-B (NFκB), a prominent transcription factor that governs 
inflammatory responses, in the PVN of rats resulted in decreased 
BP, pro-inflammatory cytokines, and ROS, as well as upregu-
lation of key protective anti-hypertensive RAAS components, 
suggesting an important role for NFκB in PVN in the hyperten-
sive response44. Finally, rats fed a high-salt diet demonstrated 
increased expression of IL-1β and decreased expression of the 
anti-inflammatory cytokine IL-10, in the PVN. These expression 
levels were augmented by stimulation of ROS production within 
the PVN45.

Reproductive hormones and cardiovascular 
regulation
The interest in the role of sex hormones in hypertension has been 
driven by a number of observations regarding sexual dimorphism 
in BP regulation in humans and animals. Epidemiological findings 
that prior to menopause the prevalence of essential hypertension 
is lower in women than in men of the same age46 and that young 
women have lower resting SNA than men47, differences that dis-
appear after menopause, suggest that estradiol is important in BP 
regulation and, in fact, may protect against hypertension. Find-
ings that estradiol administration attenuates increases in BP nor-
mally exhibited by intact males and ovariectomized females, and 
prevents development of hypertension in experimental models of 
hypertension48,49, suggest a role for estradiol in the regulation of BP.

Studies in humans and animals suggest that exogenous 
testosterone may also play a crucial role in BP regulation. In 
humans, low testosterone levels have been correlated with 
higher BP50,51 whereas testosterone replacement has been shown 
to cause significant reductions in BP52,53, suggesting a role for 
testosterone in BP regulation. Moreover, in experimental models 
of hypertension high BP develops more rapidly and becomes more 
severe in the male than in the female, effects which were shown 
to be androgen-dependent48,54,55. Further support for a role of 
testosterone in the etiology of hypertension is derived from studies 
showing that castration prevents the development of hypertension 
in SHR rats56.

Evidence for a role for central actions of estradiol on BP regulation 
is derived from a variety of sources. Firstly, many of the CNS sites 
with well-documented roles in CV regulation have been shown 

to possess estrogen receptors (ERα and ERβ)57–61. Moreover, 
intracerebroventicular (icv) administration of estradiol in ovariec-
tomized mice and in male mice attenuated the increase in BP 
normally elicited by ANG II62. In rats, aldosterone/salt-induced 
hypertension is exhibited by intact males and ovariectomized 
females, effects attenuated by activation of central ER recep-
tors. Central ER blockade63 or icv injections of small interfering 
RNA-ERα (siRNA-ERα) or siRNA-ERβ64, on the other hand, aug-
mented aldosterone-induced hypertension in intact females.

Further to these findings, estradiol has been shown to act via ERα 
or ERβ (or both) at specific brain regions in both males and females 
to influence sympathetic outflow and baroreflex function. The AP 
and SFO predominantly express ERα57–62, and estradiol has been 
shown to decrease the activity of AP65 and SFO neurons66, and 
inhibits ANG II activation of AP67 and SFO neurons66, whereas 
genetic knockdown of ERα in the SFO enhances ANG II-induced 
hypertension in female mice68.

Estrogen actions at ERβ in PVN inhibit hypertensive effects of 
glutamate activation69. In the RVLM, estradiol actions at ERβ 
receptors have been shown to cause decreases in BP in normoten-
sive rats70 and to attenuate aldosterone-induced increases in SNA 
and BP64 whereas ERβ knockdown in RVLM or PVN results in the 
augmentation of aldosterone-induced increases in SNA and BP64, 
effects that are not seen in intact females64.

Relaxin, a member of the insulin family best known for its role 
in pregnancy, has also been shown to influence BP. Early studies 
revealed that chronic intravenous (iv) administration of relaxin elic-
ited a decrease in BP in SHRs71. Relaxin binding sites and relaxin 
receptors have been shown to be widely distributed throughout the 
brain, including the SFO, NTS, and PVN72, suggesting that relaxin 
may be involved in the central control of BP. Hypertensive effects 
of central administration of relaxin into the dorsal third ventricle are 
totally abolished by lesions of the SFO73, identifying this CVO as one 
central target mediating these cardiovascular effects. A recent study 
demonstrating that acute microinjection of relaxin-2 into the PVN 
increased sympathetic outflow and BP in SHR, whereas chronic 
PVN administration caused a profound increase in BP in normo-
tensive rats74, supports the conclusion that there are multiple central 
targets for this reproductive hormone/neurotransmitter. Moreover, 
this same study revealed that neutralization of endogenous relaxin 
reduced BP in SHR but had no significant effect in WKY74, suggest-
ing a role for relaxin in the pathogenesis of hypertension.

Another reproductive peptide that warrants further investigation 
into its potential contribution to the pathogenesis of hypertension 
is prolactin, a hormone best known for its involvement in lacta-
tion and reproduction. Very few studies have investigated the role 
of prolactin in the central control of CV regulation despite epi-
demiological evidence suggesting correlations between circulat-
ing prolactin levels and increased BP. Plasma prolactin has been 
shown to be elevated in patients with essential hypertension75 and 
preeclampsia76,77. Furthermore, higher plasma prolactin levels have 
been shown to be associated with increased risk of hypertension in 
menopausal78 and post-menopausal79 women and in preeclampsia54. 
Prolactin receptors are widely distributed throughout the body80 
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and brain81. mRNA for the prolactin receptor has been reported in 
the PVN81,82, and we have identified the presence of the prolactin 
receptor at levels similar to the AT1 receptor in the SFO83. 
However, to our knowledge, studies investigating the CV conse-
quences of central administration of prolactin (icv or microinjec-
tion into discrete brain nuclei) on BP, or the effects of prolactin on 
neuronal excitability in central CV control centers, are lacking.

Gasotransmitters and cardiovascular regulation: 
hydrogen sulfide
Gasotransmitters are endogenously produced membrane permeable 
gas molecules which act at specific, targeted cells via membrane 
receptor-independent signaling mechanisms to exert well-defined 
physiological effects. The action(s) of nitric oxide (NO) and carbon 
monoxide (CO) at peripheral tissues and in the CNS to influence 
cardiovascular regulation are well documented84,85. More recently, 
a third gasotransmitter, hydrogen sulfide (H

2
S), an environmen-

tal air pollutant with well-known deleterious health effects, has 
been identified and suggested to play a role in the pathogenesis 
of hypertension. H

2
S is endogenously produced from catalysis of 

L-cysteine by using four enzymes: cystathionine β-synthase (CBS), 
cystathionine γ-lysase (CSE), or 3-mercaptopyruvate sulfur trans-
ferase (3MST) in tandem with cysteine aminotransferase (CAT). 
CBS is highly expressed in the CNS where it produces H

2
S from 

L-cysteine86, whereas CSE is the predominant enzyme expressed 
in the myocardium and vasculature smooth muscle cells87. Though 
predominantly found in the mitochondria where they work in 
tandem to produce H

2
S, 3MST and CAT are also expressed in the 

brain and vascular endothelium88. In addition, H
2
S can be produced 

in red blood cells by the conversion of polysulfides which are 
obtained from dietary sources89.

Evidence for a role of H
2
S in the pathogenesis of hypertension 

is suggested by the observation that plasma H
2
S concentrations 

are lower in patients with grade 2 or grade 3 hypertension, portal 
hypertension, and pulmonary hypertension90–92 and in preeclampsia 
where plasma H

2
S levels and placental CBS mRNA expression are 

decreased93,94.

H
2
S has been shown to be endogenously produced in peripheral 

vascular tissues and has been demonstrated to be a potent vasodila-
tor, causing vasorelaxation in mesenteric arteries95, aortic rings96,97, 
the ductus arteriosis96, and pulmonary arteries98 via actions on vas-
cular smooth muscle cells. Unlike its gasotransmitter counterparts, 
NO and CO, vascular smooth muscle relaxation occurs independ-
ently of cGMP pathway activation. Activations of Ca2+-activated 
potassium channels (BKCa)99, ATP-sensitive potassium channels 
(K

ATP
)100, Kv7 voltage-gated potassium channels97, and cytochrome 

P-450 2C (Cyp2C)99 have all been implicated as mechanisms of the 
H

2
S vasorelaxation.

A bolus iv injection of H
2
S elicited an immediate depressor 

response in normotensive rats100 whereas chronic intraperitoneal 
administration of H

2
S decreases BP in hypertensive rats101–104. 

These findings, along with the fact that mice lacking CSE exhibit 
hypertension and reduced endothelium-dependent vasorelaxation105, 
provide evidence of a direct role for H

2
S in BP regulation.

A role for H
2
S in the central control of BP stems from studies dem-

onstrating that icv administration of H
2
S has been shown to dose-

dependently decrease BP, effects which are followed by potent 
long-lasting hypertension actions attributed to modulation of H

2
S 

on K
ATP 

channels and α adrenergic stimulation, respectively106.  
Furthermore, microinjection of H

2
S into discrete brain nuclei 

known for their involvement in CV regulation has also been shown 
to affect BP. H

2
S administration into the RVLM elicits decreases 

in BP, effects again mediated by K
ATP

 channels107, whereas simi-
lar microinjections into the PVN108 and SFO109 have been shown 
to dose-dependently increase BP. Moreover, H

2
S has been shown 

to influence the excitability of neurons in the NTS110, PVN111, and 
SFO109, CNS areas involved in CV regulation.

Reactive oxygen species and cardiovascular control
When produced at appropriate concentrations, ROS have been 
implicated in the regulation of many critical physiological proc-
esses, including cell signaling, maintenance of appropriate vascular 
tone, inflammation, and immune responses. ROS overproduction, 
on the other hand, is a feature common to a number of pathological 
conditions, including hypertension.

A role for ROS in hypertension is suggested in humans as a posi-
tive correlation between BP and biomarkers of oxidative stress 
in patients with essential hypertension has been reported112,113.  
Furthermore, mice lacking nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidases, key enzymes in the production of 
ROS, are protected against experimental hypertension114, whereas 
overexpression potentiates ANG II-induced hypertension115.

ROS production in specific CNS cardiovascular control centers, 
including both brain stem (NTS, RVLM) and hypothalamic (PVN) 
nuclei, and within the CVOs (SFO) has been shown to play a role 
in neurogenic hypertension116–118. Superoxide dismutase (SOD), an 
enzyme that metabolizes superoxide, overexpression in the brain 
abolished the hypertensive response normally observed in response 
to icv ANG II administration119, whereas specific SOD3 deletion 
in the SFO increased baseline BP and potentiated ANG II-induced 
increases in BP120. Interestingly, this same study showed that ROS 
in the SFO leads to infiltration by activated lymphocytes in the 
peripheral vasculature120, linking oxidative stress in the CNS with 
immune activation in the periphery, which in concert would serve 
to intensify hypertension.

A high-salt diet increases NADPH oxidase (NOX-2 and NOX-4) 
expression in the PVN, whereas microinjection of amino-triazole 
(ATZ), a catalase inhibitor which increases ROS, into the PVN aug-
ments renovascular hypertension as well as increasing BP in normal 
rats45.

A role for ‘other’ central nervous system structures in 
the central control of blood pressure
This review has focussed on actions of non-traditional CV sign-
aling molecules at CNS structures with well-documented roles in 
CV regulation. Another emerging area that warrants mention is 
the role of CNS regions not classically viewed as CV control cent-
ers that have been suggested to play a role in the pathogenesis of 
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hypertension, secondarily or as a co-morbidity to other disease 
states. For example, the explosion of obesity research further to 
the discovery of leptin in the 1990s121 has highlighted the involve-
ment of a number of CNS autonomic control centers not typically 
viewed as CV control centers, such as the arcuate nucleus and the 
anterior hypothalamus, in the pathogenesis of hypertension as a 
consequence of direct actions of metabolic signals in these areas 
(for review, see 122,123). Furthermore, many metabolic signals 
associated with obesity have been demonstrated to influence BP 
regulation via actions at the ‘classical’ CNS CV control centers. 
Further study of the actions of traditional CV signals (such as 
ANG II) within these non-traditional CV CNS centers may elu-
cidate previously unknown roles of these regions in normal CV 
regulation.

Conclusions
In this brief review, we have highlighted some emerging new 
perspectives which over the past 20 years contributed new and 
important information to the evolution of our understanding of 
CNS mechanisms involved in central CV control. The areas we 

have chosen to discuss are far from an exhaustive list of what is 
new and interesting, but do emphasize that this is a continually 
developing area of research with an inherent complexity associ-
ated with the requirement for integration of diverse autonomic 
systems. This points us in the direction of understanding that we 
perhaps should not expect to consider either single brain areas or 
single signalling molecules as “cardiovascular” at the expense of 
also describing their roles in other systems. Such conclusions point 
us to the broader perspective that all of these brain areas, signal-
ing molecules, and autonomic systems contribute to the complex 
homeostatic regulation which maintains our “milieu interior” in a 
state of optimal health.
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