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Neointima formation is a serious complication caused by mechanical trauma to

the vessel. (R)-4,6-dimethoxy-3-(4-methoxy phenyl)-2,3-dihydro-1H-indanone [(R)-TML

104] is a synthesized analog of the natural product resveratrol sesquiterpenes

(±)-isopaucifloral F. The present study aimed to investigate the effects and

underlying mechanisms of (R)-TML104 on neointima formation. Our results showed

that (R)-TML104 prevented neointima formation based on a carotid artery injury

model in mice. Furthermore, (R)-TML104 inhibited platelet-derived growth factor-BB

(PDGF-BB)-induced vascular smooth muscle cells (VSMC) phenotypic transformation,

evidenced by increased α-smooth muscle actin, reduced VSMC proliferation, and

migration. Simultaneously, (R)-TML104 upregulated sirtuin-1 (SIRT1) expression in

VSMC. We further uncovered that SIRT1 expression is critical for the inhibitory

effects of (R)-TML104 on PDGF-BB-induced VSMC phenotypic transformation in

vitro and injury-induced neointima formation in vivo. Finally, (R)-TML104-upregulated

SIRT1 inhibited PDGF-BB-induced VSMC phenotypic transformation by downregulating

nicotinamide adenine dinucleotide phosphate oxidase 4 expression via decreasing

nuclear factor-κB acetylation. Taken together, these results revealed that (R)-TML104

upregulates SIRT1 expression and ameliorates neointima formation. Therefore,

the application of (R)-TML104 may constitute an effective strategy to ameliorate

neointima formation.

Keywords: (R)-TML104, neointima formation, nicotinamide adenine dinucleotide phosphate oxidase 4, nuclear

factor-κB, vascular smooth muscle cells, reactive oxygen species, SIRT1

INTRODUCTION

Cardiovascular diseases are the major cause of death worldwide (1). Although surgery is a
commonly used strategy to treat cardiovascular disease, the surgical process may cause vascular
inflammation, potentially leading to endothelial damage and subsequent neointima formation
(2, 3). Neointima formation may result in vascular restenosis (2–4). The underlying mechanisms of
neointima formation remain unclear. However, current medical therapies for inhibiting neointima
formation are still scarce, making the development of novel strategies a necessity.

Phenotypic transformation of the vascular smooth muscle cells (VSMC) plays a vital role in
neointima formation and can be triggered by oxidative stress, which stems from the excessive
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production of reactive oxygen species (ROS) (5, 6). The major
source of ROS in VSMC is the nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase (NOX) family (7). Additionally,
the NOX-derived ROS can be modulated by sirtuin-1 (SIRT1)
(8, 9). Platelet-derived growth factor-BB (PDGF-BB) is a major
driving factor of the VSMC phenotypic transformation involved
in neointima formation (10). During neointima formation,
vascular stabilizing factors are attenuated, including SIRT1, a
NAD (+)-dependent histone deacetylase (11, 12). Meanwhile,
accumulating evidence suggests that various transcription factors
are regulated by SIRT1, including nuclear factor-κB (NF-κB) (13,
14). Additionally, NF-κB activation is a pathological hallmark of
VSMC phenotypic transformation (15, 16). The NF-κB activity
can be mediated by sirtuin-1 (SIRT1)-mediated deacetylation
(11, 17). Therefore, upregulation of SIRT1 may be a potential
strategy for inhibiting VSMC phenotypic transformation.

Resveratrol, an active polyphenol compound, is found in red
wine, grapes, and peanuts, and exhibits antioxidant and anti-
inflammatory effects (18, 19). Resveratrol has attracted massive
attention for its health benefits, including its advantageous effects
on vascular diseases (20–22). It had also been shown that the
beneficial properties of resveratrol are involved in multiple
signaling pathways and oxygen species genes (23, 24). Several
studies have indicated that numerous resveratrol analogs have
better effects than resveratrol on improving disease (25, 26).
In this study, we evaluated the effect of (R)-4, 6-dimethoxy-3-
(4-methoxy phenyl)-2, 3-dihydro-1H-indanone [(R)-TML104], a
synthetic analog of resveratrol sesquiterpenes (±)-isopaucifloral
F (Supplementary Figure 1A), on neointima formation.

MATERIALS AND METHODS

Animal Model
Male C57BL/6J mice (25–30 g, 12 weeks, JOINN Lab, Suzhou,
China) were maintained in a pathogen-free environment. Food
and water were freely available under a controlled temperature
(24 ± 1◦C) with a 12/12 h dark/light cycle. We used a carotid
artery injury mouse model, according to previously described
protocols (2). Briefly, after mice were anesthetized with sodium
pentobarbital (80 mg/kg, intraperitoneally), a midline neck
incision was made, and the left carotid artery was exposed
by blunt dissection. We then used blood vessel clamps to
interrupt blood flow to the carotid arteries and made a lateral
incision near the point of bifurcation of the external and
internal carotid arteries. A guide wire (0.38mm in diameter,
NO.C-SF-15-15; Cook, Bloomington, USA) was inserted into
the arterial lumen facing the aortic arch and rotated back and
forth three times. After carefully removing the guide wire, the
blood vessel was ligated at the lateral incision and the clamp
was removed to restore blood flow. After vascular injury was
induced, freshly prepared (R)-TML104 (10, 20 mg/kg) and
atorvastatin (20mg/kg) were administered daily by gastric gavage
to the model group mice. (R)-TML104 and atorvastatin were
both dissolved with saline. Mice were euthanized 28 days post-
surgery by an overdose of sodium pentobarbital (150 mg/kg) via
intraperitoneal injection.

Antibodies and Reagents
Antibodies against α-smooth muscle actin (α-SMA, A11111)
and β-Actin (AC026) were purchased from Abclonal (Wuhan,
China). Antibodies against Ac-p65 (ab19870), NF-κB (ab16502),
NOX1 (ab131088), NOX2 (ab129068), NOX4 (ab133303),
proliferating cell nuclear antigen (PCNA, ab92552), cyclin
D1 (ab134175), and SIRT1 (ab110304) were obtained from
Abcam (Cambridge, UK). PDGF-BB was purchased from R&D
(Minneapolis, USA). Goat anti-Mouse IgG (H+L) Cross-
Adsorbed Secondary Antibody-Alexa Fluor 647 (A21235)
and Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary
Antibody-Alexa Fluor 555 (A21428) were purchased from
Thermo Fisher Scientific (MA, USA). (R)-TML104 was
synthesized and provided by Dr. Xun Sun’s laboratory at the
School of Pharmacy (Fudan University, China). Atorvastatin
(MB1021) and resveratrol (MB1199) were purchased from
Meilun Bio (Dalian, China). BAY 11-7082 (S1523) and N-acetyl-
L-cysteine (S0077) was purchased from Beyotime (Shanghai,

China). 4
′

,6-diamidino-2-phenylindole (DAPI) was purchased
from Solarbio (Beijing, China).

Histological and Morphometric Analysis
Fresh arteries samples were fixed in a 4% paraformaldehyde
solution for 24 h and embedded in paraffin. The vascular
tissue was cut into 5µm sections, which were stained with
hematoxylin and eosin (H&E) (G1120; Solarbio, China) for
morphological analysis. Image-Pro Plus software (version 6.0,
Media Cybernetics, MD, USA) was used to determine neointima
formation. A mean value was generated from five independent
sections of each artery sample.

Immunofluorescence Staining
The 5µm slices were cut from paraffin-embedded blocks
and placed on microscope slides. Briefly, the sections were
microwaved in the citric acid buffer to retrieve antigens for
30min. Sections were then permeabilized with 0.1% Triton X-
100 for 15min and blocked with 1% bovine serum albumin
for 30min, incubated with primary antibody at 4◦C overnight.
The following antibodies were used: PCNA (1:100), cyclin D1
(1:100), α-SMA (1:100), SIRT1 (1:100). Afterward, sections were
washed with PBS and incubated with appropriate secondary
antibody (1:100 dilution; Alexa Fluor Plus 555) for 1 h at
room temperature. Nuclei were then stained with DAPI. The
images were obtained using a Zeiss LSM880 microscope (Zeiss,
Gottingen, Germany). The integrated optical density values
were obtained using the ImageJ Pro Plus software (version 6.0,
Media Cybernetics).

Cell Culture
Rat VSMC were enzymatically isolated from the Sprague-Dawley
rats according to the protocols previously described (2). For
functional studies, the cells were used between passages 3 and 5.
VSMC were maintained in Dulbecco’s Modified Eagle’s Medium
(DMEM, Hyclone, USA) supplemented with 10% fetal bovine
serum (FBS, Hyclone, USA). Primary VSMC were maintained at
37◦C under humidified 5% CO2/95% air atmosphere and their
identity were confirmed using α-smooth muscle actin antibody.
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MTT Assay
The viability of VSMC was determined with 3-(4,5-Dimethyl-
2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium (MTT) bromide assay
kit (C0009S; Beyotime Institute of Biotechnology, Shanghai,
China). Briefly, the VSMC were plated in a 96-well microplate
(5,000 cells/well). After the VSMC were incubated with different
concentrations of (R)-TML104 for 24 h. Then, MTT reagent was
added into the medium for a further 4 h. Next, the supernatant
was then discarded, and dimethyl sulfoxide (DMSO) was added
to solubilize the formazan crystals. The absorbance wasmeasured
at 570 nm with a microtiter plate reader (BIO-TEK, Winooski,
VT, USA).

EdU Assay
We used a 5-Ethynyl-2′-Deoxyuridine (EdU) incorporation
assay (C0071S; Beyotime Institute of Biotechnology, Shanghai,
China) to detect the proliferation of VSMC. Briefly, VSMC
were seeded in 96-well plates. After growing to 60% confluence,
the cells were serum-starved for 24 h. After the VSMC were
incubated with different concentrations of (R)-TML104 for 4 h
and subsequently treated with PDGF-BB for 24 h, and then
incubated with EdU for 2 h. Next, the cells were fixed with 4%
paraformaldehyde (P0099; Beyotime Institute of Biotechnology,
Shanghai, China) for 30min, permeabilized with 0.1% Triton
X-100 for 10min, and the cells were stained with Hoechst
33342 (50 µL/well) for 10min. The images were captured using
fluorescence microscopy (Nikon Eclipse Ti-S, Tokyo, Japan). The
ratio of EdU-positive cells (EdU-stained cells/Hoechst-stained
cells×100%) was determined using a fluorescence microscope
(Nikon Eclipse Ti-S, Tokyo, Japan).

Cell Wound Assay
VSMC were seeded in a 6-well plate and scraped with a sterile tip
in a straight line. The cells were immediately washed with cold
phosphate buffer saline (PBS). After growing to 60% confluence,
the cells were serum-starved for 24 h. After the VSMC were
incubated with different concentrations of (R)-TML104 for 4 h
and subsequently treated with PDGF-BB for 24 h. The images
were taken by light microscopy (Olympus Optical Co, Tokyo,
Japan). Wound healing images were analyzed using ImageJ Pro
Plus software.

Transwell Assay
The migration assay was performed using a transwell chamber
(8µm pore size, Corning costar, 3422, USA). Briefly, VSMC
were seeded into each well of the upper chamber, and PBS or
PDGF-BB were loaded into the bottom chamber. After growing
to 60% confluence, the cells were serum-starved for 24 h. After
the VSMC were incubated with different concentrations of (R)-
TML104 for 4 h and subsequently treated with PDGF-BB for 18 h,
the transwell membranes were fixed with 4% paraformaldehyde
for 15min. The membranes were stained with a 0.1% crystal
violet solution for 10min. The non-migrating cells on the top
surface of themembrane were scrapedwith a cotton swab. Images
were captured using light microscopy to quantify the average
number of migrated cells. Five randomly chosen high-power
fields (×200) in three independent experiments were used to

calculate the average number of migrated cells. The migratory
cells were evaluated by ImageJ Pro Plus software.

Western Blot Analysis
VSMC were homogenized in lysis RIPA buffer on ice for 30min
and then centrifuged at 12,000 g for 15min at 4◦C. Protein
concentrations were determined by using a BCA Protein Assay
Kit (Cat.P0010; Beyotime Biotechnology, Shanghai, China).
Equal amounts of protein were then separated in sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
electrophoresis and then transferred onto polyvinylidene fluoride
(PVDF) membranes. After being blocked with 5% skimmilk plus
tris-buffered saline for 1 h, the membrane was incubated with
a primary antibody. The following antibodies were used: Ac-
p65 (1:1000), NF-κB (1:2000), NOX1 (1:2000), NOX2 (1:2000),
NOX4 (1:2000), PCNA (1:1000), cyclin D1 (1:1000), α-SMA
(1:500), SIRT1 (1:1000), and β-Actin (1:10000) at 4◦C overnight.
The next day, the membrane was washed three times and
then incubated with secondary antibodies (1:5000) for 1 h.
Finally, the immunoreactive proteins were visualized using a
chemiluminescence reagent (Millipore, Billerica, MA, USA).
Signals were detected using a chemiluminescence system (Bio-
Rad, Hercules, CA, USA). The β-Actin loading control was used
for quantifying protein expression levels.

ROS Detection and H2O2 Measurement
The dye, 2, 7-dichlorofluorescein diacetate (DCFH-DA, S0033S;
Beyotime Institute of Biotechnology, China) was served as a
fluorescence probe to detect intracellular ROS. Briefly, VSMC
were incubated with DCFH-DA in a dark container at 37◦C for
30min. The cells were washed three times with PBS and finally
analyzed using the FACSCalibu flow cytometry system (BD
Biosciences, San Jose, CA, USA). The relative mean fluorescence
intensity of each sample was analyzed using Flow Jo software
version 10 (Tree Star Inc., Ashland, OR, USA). Intracellular
H2O2 levels were detected using a Hydrogen Peroxide Assay
Kit (S0038, Beyotime Institute of Biotechnology, Shanghai,
China) according to the manufacturer’s instructions. Briefly,
scrape the lysed VSMC with a pipette tip and transfer cell
lysate to a microcentrifuge tube. The cells were sufficiently
homogenized and then centrifuged at 12 000 g for 5min at 4◦C.
The supernatant was then incubated with a detection reagent for
30min. The H2O2 production was assessed by using a microtiter
plate reader.

RNA Isolation and Quantitative Real-Time
PCR
To determine the mRNA expression levels of genes, total
RNA was isolated from VSMC using TRIzol reagent (Life
Technologies, MA, USA), and cDNA was synthesized using a
Prime Script RT reagent Kit according to the manufacturer’s
instructions. SYBR Green PCR reagents (Yeasen, Shanghai,
China) were used to determine the relative expression of all
gene transcripts by a Real-Time PCR Detection System (Applied
Biosystems, Foster City, CA, USA). The expression of sample
genes was quantified by the level of the β-Actin gene. The specific
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primers of NOX1, NOX2, NOX4, and β-Actin were available in
Supplementary Table 1.

Lentivirus Production and siRNA
Transfection
The SIRT1 short hairpin was linearized plasmid and ligated into
the pLVX vector. Lentivirus was produced by co-transfection of
the SIRT1 lentiviral construct, the packaging plasmid psPAX2,
and the envelope plasmid pMD2.G into HEK-293 T cells using
Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA). The virus
supernatant was harvested at 24 h and 48 h after transfection
and stored at 4◦C until the concentration step. The supernatant
was filtered through a 0.45µM filter and then centrifuged at
100,000 g for 2 h. The collected virus pellet was stored at −80◦C.
The mature antisense sequences of sh-SIRT1-1 and sh-SIRT1-
2 were available in Supplementary Table 2. NOX4 or SIRT1
knockdown in VSMC was carried out by transfecting NOX4 or
SIRT1 small interfering RNA (siRNA). The siRNA (20 nM) was
transfected into VSMC using Lipofectamine 3000. All sequences
of siRNAs were synthesized by Gene Pharma (Shanghai, China)
and available in Supplementary Table 3.

Statistics Analysis
Data were expressed as mean ± SD. Differences among three
or more groups were determined using analysis of variance
(ANOVA) followed by Tukey’s post-hoc test. All statistical
analyses were performed using GraphPad Prism (version 7.04;
GraphPad Software Inc., San Francisco, CA, USA). Statistical
significance was defined as ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

RESULTS

(R)-TML104 Mitigates Injury-Induced
Neointima Formation in vivo
To investigate whether (R)-TML104 affected injury-induced
neointima formation, we treated the mice with two doses
of (R)-TML104 (10, 20 mg/kg) after injury. (R)-TML104
treatment significantly decreased injury-induced neointimal
area (Figure 1A). Meanwhile, (R)-TML104 treatment mitigated
injury-induced downregulating α-SMA protein expression and
upregulating PCNA and cyclin D1 expression (Figure 1B).
Among the doses examined, (R)-TML104 at 20 mg/kg exhibited
optimal protective effects and we used this dose for subsequent
studies. To further confirm the function of (R)-TML104
on neointima formation, we used atorvastatin as a positive
control. Interestingly, (R)-TML104 exhibits more prominent
beneficial effects on neointima formation than atorvastatin at
the same dosage (Figures 1A,B). Collectively, these findings
demonstrate that (R)-TML104 could mitigate neointima
formation in vivo.

(R)-TML104 Inhibits PDGF-BB-Induced
VSMC Phenotypic Transformation in vitro
Phenotypic transformation of VSMC plays a vital role in
neointima formation (27, 28). To investigate whether (R)-
TML104 affects PDGF-BB-induced VSMC phenotypic

transformation, we first detected the cytotoxicity of (R)-
TML104 on VSMC. The MTT assay showed that (R)-TML104
(1-10µM) had no significant effect on the viability of
VSMC (Supplementary Figure 1B). As shown in Figure 2A,
(R)-TML104 concentration-dependently reversed PDGF-BB-
induced the expression of α-SMA, PCNA, and cyclin D1. Among
the doses examined, (R)-TML104 at 10µM exhibited optimal
inhibitory effects yet no cytotoxic effect and we used this dose for
subsequent studies. Meanwhile, the EdU assay showed that (R)-
TML104 could inhibit PDGF-BB-mediated VSMC proliferation
(Figure 2C). Followingly, the cell wound assay and transwell
assay showed that (R)-TML104 could abolish PDGF-BB-induced
VSMC migration (Figure 2D and Supplementary Figure 1C).

To further explore the effects of (R)-TML104 on VSMC
phenotypic transformation, we chose atorvastatin and resveratrol
as positive controls (29, 30). Notably, the protective effect of
(R)-TML104 was similar to that of atorvastatin (Figures 2B–D
and Supplementary Figure 1C). Moreover, we observed that
resveratrol abolished PDGF-BB-induced the expression of PCNA
and α-SMA (Supplementary Figure 1D). Interestingly, (R)-
TML104 at the same dosage exhibited greater protective effects
on these changes than resveratrol. Collectively, these results
indicate that (R)-TML104 could inhibit PDGF-BB-induced
VSMC phenotype transformation in vitro.

(R)-TML104 Inhibits PDGF-BB-Induced
VSMC Phenotypic Transformation by
Upregulating SIRT1 in vitro
Resveratrol has beneficial effects on vascular disease by
activating SIRT1 (31). SIRT1 has emerged as a critical
target for VSMC phenotypic transformation (2, 12, 17). We
hypothesized that (R)-TML104 inhibits PDGF-BB-mediated
VSMC phenotypic transformation by modulating SIRT1. We
then detected the expression of SIRT1 in VSMC in response
to PDGF-BB. We found that SIRT1 expression was time-
dependently and dose-dependently upregulated by (R)-TML104
treatment (Supplementary Figures 2A,B). Interestingly, (R)-
TML104 exerted more significant effects on SIRT1 expression
than resveratrol at the same dosage (Figure 2B).

Our results showed that PDGF-BB decreased SIRT1
expression in VSMC, which is restored by (R)-TML104
treatment (Figure 3A). Next, we knocked down the expression
of SIRT1 in VSMC by siRNA transfection. SIRT1 siRNA, but
not control siRNA, markedly decreased (R)-TML104-mediated
SIRT1 expression and abolished the inhibitory effects of (R)-
TML104 on VSMC phenotypic transformation, as evidenced
by increased PCNA expression (Figure 3A), decreased α-SMA
expression (Figure 3A), increased EdU-positive (Figure 3B)
and migrating cells (Figure 3C). Thus, our findings indicate
that (R)-TML104 inhibits PDGF-BB-induced VSMC phenotypic
transformation via upregulating SIRT1 in vitro.

(R)-TML104 Mitigates Injury-Induced
Neointima Formation by Upregulating
SIRT1 in vivo
To investigate whether the inhibitory effects of (R)-TML104
on neointima formation were mediated by SIRT1 in vivo,
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FIGURE 1 | (R)-TML104 mitigates injury-induced neointima formation in vivo. (A) Hematoxylin and Eosin (H&E) staining of sections at 28 days after injury (Scale bar:

50µm). (B) Immunofluorescence staining of α-SMA, PCNA, and cyclin D1 on sections of carotid arteries from mice. Scale bar: 50µm, Data shown are means ± S.D

(n = 6). *p < 0.05, **p < 0.01, ***p < 0.001.

we then investigated the expression of SIRT1 in mice. We
found that SIRT1 expression was decreased in vascular tissue
after injury, which was reversed by (R)-TML104 treatment
(Figure 4B). Next, we delivered lentiviral shRNA to specific
SIRT1 knockdown in mice. Lentiviral SIRT1 shRNA, but
not control shRNA, markedly decreased (R)-TML104-
mediated SIRT1 expression and significantly abolished the

protective effect of (R)-TML104 on neointima formation
(Figure 4A). Moreover, immunofluorescence staining showed
that (R)-TML104-mediated PCNA, cyclin D1 and α-SMA
expression was abolished by genetic SIRT1 knockdown
(Figure 4B). These data demonstrate that (R)-TML104 inhibits
neointima formation by upregulating the expression of
SIRT1 in vivo.
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FIGURE 2 | (R)-TML104 inhibits PDGF-BB-induced VSMC phenotypic transformation in vitro. (A) VSMC were pretreated with (R)-TML104 for 4 h and then stimulated

with PDGF-BB (20 ng/mL) for 24 h. The protein levels of α-SMA, PCNA, and cyclin D1 were determined by western blotting. (B) The protein levels of α-SMA, PCNA,

and cyclin D1 were determined by western blotting. (C) DNA synthesis in VSMC determined with EdU incorporation assay. Blue fluorescence (Hoechst 33342)

showed cell nuclei and green fluorescence (EdU) stands for cells with DNA synthesis. (D) Transwell assay was performed to determine the migration of VSMC. Scale

bar: 50µm, Data shown are means ± S.D (n = 6). *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 3 | (R)-TML104 inhibits PDGF-BB-induced VSMC phenotypic transformation by upregulating SIRT1 in vitro. (A) VSMC were pre-treated with (R)-TML104 (10

µM) for 4 h and then stimulated with PDGF-BB (20 ng/mL) for 24 h. The SIRT1, α-SMA, and PCNA protein levels were determined by western blotting. (B) DNA

synthesis was determined by the EdU incorporation assay. (C) VSMC migration was determined by transwell assay. Scale bar: 50µm, Data shown are means ± S.D

(n = 6). *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 4 | (R)-TML104 mitigates injury-induced neointima formation by upregulating SIRT1 in vivo. (A) After vascular injury, (R)-TML104 (20 mg/kg) was administered

by gastric gavage to mice for 4 weeks. H&E staining of the sections of arterial neointima area. (B) Immunofluorescence staining of SIRT1, α-SMA, PCNA, and cyclin

D1 on sections of carotid arteries from mice. Scale bar: 50µm, Data shown are means ± S.D (n = 6) **p < 0.01, ***p < 0.001.
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FIGURE 5 | (R)-TML104 inhibits PDGF-BB-mediated VSMC phenotypic transformation by modulating NOX4. (A) VSMC were pretreated with (R)-TML104 (10 µM) for

4 h and then stimulated with PDGF-BB (20 ng/mL) for 6 h. Using real-time PCR, we measured NOX1, NOX2, NOX4 mRNA levels. (B) The NOX1, NOX2, and NOX4

protein levels were determined by western blotting. (C) ROS were quantitated by flow cytometry. (D) H2O2 concentrations were determined with a hydrogen peroxide

assay. Data shown are means ± S.D (n = 6). *p < 0.05, **p < 0.01, ***p < 0.001.

(R)-TML104 Inhibits PDGF-BB-Mediated
VSMC Phenotypic Transformation by
Modulating NOX4
It is reported that NOX-derived ROS plays a critical role in VSMC
phenotypic transformation (32–34). In addition, SIRT1 can
modulate the generation of ROS via regulating NOX expression
(9, 35). To examine whether (R)-TML104 couldmodulate PDGF-
BB-induced NOX expression in VSMC, the expression of NOX1,
NOX2, and NOX4 in VSMC was measured. NOX1, NOX2,
and NOX4 were all significantly higher both at the protein
and mRNA level in VSMC in response to PDGF-BB when
compared with control groups (Figures 5A,B). Intriguingly, (R)-
TML104 treatment specifically inhibited the PDGF-BB-induced
NOX4 expression, but not NOX1 or NOX2 expression both at
the protein and mRNA level (Figures 5A,B). In addition, (R)-
TML104 treatment also markedly reduced PDGF-BB-induced
production of ROS (Figure 5C) and H2O2 (Figure 5D).

Next, we investigated the effect of NOX4 on VSMC
phenotypic transformation, a NOX4-targeted siRNA was used
to knock down the NOX4 expression. As expected, NOX4
siRNA, but not control siRNA, markedly decreased PDGF-BB-
induced Nox4 expression in VSMC (Supplementary Figure 3A).
PDGF-BB-induced the production of H2O2 (Figure 5C)
and ROS (Figure 5D) was reduced by NOX4 siRNA.
Moreover, NOX4 knockdown mimicked the inhibitory
effects of (R)-TML104 on VSMC phenotypic transformation,
as evidenced by decreased PCNA expression, increased

α-SMA expression (Supplementary Figure 3A), reduced
EdU-positive (Supplementary Figure 3B) and migrating cells
(Supplementary Figures 3C,D).

To detect the role of ROS in PDGF-BB-induced VSMC
phenotypic transformation, VSMC were treated with a
ROS scavenger, N-acetyl-L-cysteine (NAC, 2mM). Our
results showed that NAC treatment significantly alleviated
the PDGF-BB-increased ROS (Figure 5C) and H2O2 levels
(Figure 5D). Meanwhile, NAC mimicked the inhibitory
effects of (R)-TML104 on PDGF-BB-induced VSMC
phenotypic transformation (Supplementary Figure 3A),
proliferation (Supplementary Figure 3B) and migration
(Supplementary Figures 3C,D). Collectively, these results
suggest that (R)-TML104 inhibits PDGF-BB-induced
VSMC phenotypic transformation through the NOX4-ROS
signaling pathway.

(R)-TML104 Regulates NOX4 by
Modulating NF-κB Activation
Previous studies have shown that SIRT1 can regulate NOX4
expression (9, 36). We hypothesized that (R)-TML104-mediated
NOX4 expression is regulated by SIRT1 in VSMC. Next, we
measured the expression of NOX4 in VSMC by Western blot. It
showed that SIRT1 knockdown by siRNA reversed (R)-TML104-
mediated NOX4 expression in VSMC (Figure 6A). It is well-
established that NF-κB activation is a crucial modulator of
NOX4 expression (16, 37). In addition, NF-κB activation can
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FIGURE 6 | (R)-TML104 regulates NOX4 by modulating NF-κB activation. (A) VSMC were pretreated with (R)-TML104 (10 µM) for 4 h and then stimulated with

PDGF-BB (20 ng/mL) for 4 h. The NOX4 and Ac-p65 protein levels were determined by western blotting. (B) The NOX4 protein levels were determined by western

blotting. Data shown are means ± S.D (n = 6). **p < 0.01, ***p < 0.001.
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FIGURE 7 | A schematic representation of modulatory effects of (R)-TML104 on neointima formation after injury. Our results showed that (R)-TML104 ameliorates

neointima formation in a SIRT1-dependent mechanism. SIRT1 is decreased in VSMC by arterial injury in vivo or PDGF-BB in vitro. (R)-TML104 upregulates SIRT1

expression, and SIRT1 subsequently suppresses NOX4 expression by reducing NF-κB acetylation, thereby mitigates neointima formation. By this means, the

treatment with (R)-TML104 could inhibit neointima formation in mice.
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be regulated by SIRT1-mediated deacetylation (38). Next, we
investigated the status of NF-κB acetylation in VSMC. We found
that NF-κB acetylation was increased in response to PDGF-
BB, which is abolished by (R)-TML104 treatment. We then
examined whether (R)-TML104-increased SIRT1modulated NF-
κB acetylation in VSMC. Next, we knocked down the expression
of SIRT1 in VSMC by siRNA transfection. Our results showed
that SIRT1 knockdown abolished the inhibitory effect of (R)-
TML104 on the acetylation of NF-κB (Figure 6A).

To assess the role of NF-κB in NOX4 expression in VSMC, we
used BAY 11-7082 (NF-κB inhibitor) to inhibit NF-κB activation.
BAY 11-7082 treatment, similarly to (R)-TML104, suppressed
PDGF-BB-induced NOX4 expression (Figure 6B). Collectively,
these observations suggest that (R)-TML104-upregulated SIRT1
inhibits PDGF-BB-induced VSMC phenotypic transformation
by downregulating NOX4 expression via decreasing NF-
κB acetylation.

DISCUSSION

In the current study, we demonstrated that (R)-TML104 could
prevent neointima formation in vivo. Furthermore, (R)-TML104
inhibited PDGF-BB-induced VSMC phenotypic transformation
in vitro. We also found that SIRT1 expression is critical for
(R)-TML104 to exert its protective effects. Finally, (R)-TML104
inhibited PDGF-BB-induced VSMC phenotypic transformation
through NOX4 modulation via decreasing NF-κB acetylation.
In summary, we found that (R)-TML104 against neointima
formation and upregulates SIRT1 expression (Figure 7).

Previous work has demonstrated that resveratrol can protect
from vascular disease (39). We hypothesized that (R)-TML104
could prevent vascular diseases, which was confirmed by our
results showing that (R)-TML104 inhibited PDGF-BB-induced
VSMC phenotypic transformation and injury-induced neointima
formation. Next, we used atorvastatin as a positive control in vivo
(40). Interestingly, the protective effects of (R)-TML104 against
neointima formation were better than atorvastatin at the same
dosage. We speculate that this superior effect of (R)-TML104 in
vivomay be due to the key role of SIRT1, a well-known regulatory
target of resveratrol, in the process of neointima formation
(41). The expression of SIRT1 has been reported to decrease in
neointima formation (2). In line with this observation, our data
showed that SIRT1 decreases in VSMC in response to PDGF-BB,
increased by (R)-TML104.

Increasing evidence has suggested that NOX4-derived ROS
is crucial to the proliferation of several cell types (42, 43).
A previous study showed that NOX4-derived ROS promote
neointima formation (15, 44, 45). Consistently, our results
showed that PDGF-BB increased NOX4-derived ROS levels,
which was abolished by treatment with NOX4 siRNA or
(R)-TML104. Consequently, we concluded that NOX4 down-
regulation is responsible for the anti-oxidative effects of (R)-
TML104 that confer vascular protection. In contrast, Chandrika
showed that NOX4-derived ROS play an inhibitory role in
the differentiation phenotypic of diabetic atherosclerosis (46).
The diversity in NOX4-derived ROS functions may depend

on specific environmental stimuli. Future work is needed
to elucidate the complex role of NOX4-derived ROS in the
development of vascular disease.

SIRT1 has been reported to regulate NOX4 expression in
various biological processes (47, 48). Similarly, we found that (R)-
TML104-increased SIRT1 inhibited PDGF-BB-induced NOX4
expression in VSMC, whereas SIRT1 knockdown abolished
(R)-TML104-mediated inhibitory effects on NOX4 expression.
Therefore, the fact that (R)-TML104 inhibits the PDGF-BB-
induced expression of NOX4 likely depends on SIRT1 expression
in VSMC. Previous studies have highlighted the influence of
NF-κB-induced oxidative stress on the modulation of VSMC
phenotypic transformation (30). In addition, NOX4 expression
can be regulated by NF-κB activation (16). Hence, we evaluated
whether (R)-TML104-reduced oxidative stress was associated
with NF-κB activation. We found that (R)-TML104-increased
SIRT1 inhibited NOX4 expression by reducing the acetylation
status of NF-κB. This result is consistent with a previous report
that SIRT1 regulated NOX4 expression by attenuating NF-κB
acetylation in pancreatic cancer cachexia (9).

PDGF-BB is not the only factor that drives the injury-induced
neointima formation (49, 50). A limitation in our study is that
only PDGF-BB was used in vitro mechanistic study. The effect
of (R)-TML104 on other factors-induced VSMC proliferation
would be investigated as a follow-up study.

In summary, our data revealed that (R)-TML104-increased
SIRT1 expression led to a reduction in NF-κB acetylation, thereby
inhibit PPDGF-BB-induced VSMC phenotypic transformation
by down-regulating NOX4 expression. Taken together, our
findings suggest that (R)-TML104 may be an important
therapeutic drug to prevent neointima formation.
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