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Abstract: We describe the synthesis, characterization, molecular modeling, and in vitro anticancer
activity of three benzothiazole aniline (BTA) ligands and their corresponding platinum (II) complexes.
We designed the compounds based on the selective antitumor properties of BTA, along with three
types of metallic centers, aiming to take advantage of the distinctive and synergistic activity of the
complexes to develop anticancer agents. The compounds were characterized using nuclear magnetic
resonance spectrometry, Fourier transform infrared spectroscopy, mass spectrometry, elemental
analysis, and tested for antiproliferative activity against multiple normal and cancerous cell lines.
L1, L2, and L1Pt had better cytotoxicity in the liver, breast, lung, prostate, kidney, and brain cells
than clinically used cisplatin. Especially, L1 and L1Pt demonstrated selective inhibitory activities
against liver cancer cells. Therefore, these compounds can be a promising alternative to the present
chemotherapy drugs.

Keywords: benzothiazole aniline (BTA); platinum (II); anticancer; DNA; liver; docking

1. Introduction

The success of cisplatin [cis-diamminedichloroplatinum-(II)] flagged the way for
second-and third-generation cancer drugs: carboplatin, oxaliplatin, nedaplatin, and lobaplatin
(Figure 1) [1–3]. The efficacy of cisplatin is governed by its ability to covalently bind with
DNA and change its helical structure, resulting in cell death [4]. However, new anticancer
agents have drawn attention for the reason that current platinum agents present drug
resistance and have several limitations, such as a lack of selectivity, poor pharmacoki-
netic profiles and inadequate water solubility [5–8]. Moreover, existing platinum-based
chemotherapy drugs are mostly correlated with general toxicity, which causes adverse
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side effects [9–13]. An additional change to cisplatin may regulate these toxic effects. For
instance, the substitution of the amine group in cisplatin using 1,2-ethylenediamine forms
a structure that is used in various structure–activity relationship (SAR) studies, and proper
substitution of the ethane bridge by aromatic groups may increase the cytotoxicity [14–17].
As well, pyridine moiety was also used in several Pt chemotherapeutics, which have shown
promising antiproliferative properties [18,19].
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Figure 1. Structure of the clinically approved platinum complexes. 

Benzothiazole aniline (BTA), which is chemically known as 2-(4-aminophenyl)-ben-
zothiazole, is a fused heterocyclic pharmacophore that exhibits antitumor activity [20]. 
Substituent exchange of the 3′-position with methyl or halogens (for instance Cl) contrib-
utes to the increased antitumor activity against various cancer cell lines (ovarian, colon, 
renal, etc.) [21,22]. Moreover, BTA showed selective anticancer activity by demonstrating 
a distinct cytotoxic response against some tumor cell lines, while no hormonal depend-
ency was recognized [23,24]. Therefore, several studies have been performed in the past 
years to develop novel BTA derivatives as anticancer agents [25–28]. For example, the 
ring-substituted BTA derivative 2-(4-amino-3-methylphenyl) benzothiazole—DF 203—
was developed as an antitumor agent, and phortress NSC 710,305 underwent phase 1 clin-
ical trials as a prodrug [24,25]. In addition, technium (99mTc) and rhenium (186Re, 188Re) 
complexes of BTA conjugate were developed as radiopharmaceuticals for targeted ther-
apy and imaging of breast cancer [29,30]. In our previous study, we developed a bifunc-
tional Gd–DO3A–BTA chelate and evaluated its antiproliferative activity, both in vivo and 
in vitro, as a theranostic agent [31]. Recently, Mavroidi et al. synthesized Pd (II) and Pt (II) 
chelates of BTA derivatives to target cancer cells, however, the studied compounds 
proved less cytotoxic than clinically permitted cisplatin [32]. The approach using different 
types of biologically active moieties is frequently used in the design of novel metal-based 
drugs [33–35]. For example, a series of biologically active organometallic compounds were 
synthesized bearing an acetylsalicylic acid (ASA) substructure to inhibit cyclooxygenase 
(COX) enzymes [36]. Also, the nonsteroidal anti-inflammatory drug was conjugated to Pt 
(II) with various intracellularly cleavable linkers, which disclosed potent cytotoxic activity 
against different cancer cell lines [37]. Similarly, few novel Pt (II) complexes were synthe-
sized bearing aliphatic amines and 1,8-naphthalimide moieties with DNA-targeting prop-
erties to achieve more potent and selective metallodrugs [38]. 

Based on the concepts containing biologically active molecules and the cisplatin-like 
composite, we designed and synthesized novel benzothiazole aniline derivatives (L1, L2, 
and L3) and their corresponding Pt (II) complexes as selective agents for treating cancer. 
We have hypothesized that the conjugation of new ligands using BTA will result in com-
pounds that have distinct cytotoxic properties as BTA is well known for its antitumor ac-
tivity. In vitro screening was performed in different cancer and normal cell lines, and 
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Benzothiazole aniline (BTA), which is chemically known as 2-(4-aminophenyl)-benzothiazole,
is a fused heterocyclic pharmacophore that exhibits antitumor activity [20]. Substituent
exchange of the 3′-position with methyl or halogens (for instance Cl) contributes to
the increased antitumor activity against various cancer cell lines (ovarian, colon, renal,
etc.) [21,22]. Moreover, BTA showed selective anticancer activity by demonstrating a dis-
tinct cytotoxic response against some tumor cell lines, while no hormonal dependency was
recognized [23,24]. Therefore, several studies have been performed in the past years to de-
velop novel BTA derivatives as anticancer agents [25–28]. For example, the ring-substituted
BTA derivative 2-(4-amino-3-methylphenyl) benzothiazole—DF 203—was developed as
an antitumor agent, and phortress NSC 710,305 underwent phase 1 clinical trials as a pro-
drug [24,25]. In addition, technium (99mTc) and rhenium (186Re, 188Re) complexes of BTA
conjugate were developed as radiopharmaceuticals for targeted therapy and imaging of
breast cancer [29,30]. In our previous study, we developed a bifunctional Gd–DO3A–BTA
chelate and evaluated its antiproliferative activity, both in vivo and in vitro, as a theranostic
agent [31]. Recently, Mavroidi et al. synthesized Pd (II) and Pt (II) chelates of BTA deriva-
tives to target cancer cells, however, the studied compounds proved less cytotoxic than
clinically permitted cisplatin [32]. The approach using different types of biologically active
moieties is frequently used in the design of novel metal-based drugs [33–35]. For example,
a series of biologically active organometallic compounds were synthesized bearing an
acetylsalicylic acid (ASA) substructure to inhibit cyclooxygenase (COX) enzymes [36]. Also,
the nonsteroidal anti-inflammatory drug was conjugated to Pt (II) with various intracellu-
larly cleavable linkers, which disclosed potent cytotoxic activity against different cancer
cell lines [37]. Similarly, few novel Pt (II) complexes were synthesized bearing aliphatic
amines and 1,8-naphthalimide moieties with DNA-targeting properties to achieve more
potent and selective metallodrugs [38].

Based on the concepts containing biologically active molecules and the cisplatin-like
composite, we designed and synthesized novel benzothiazole aniline derivatives (L1, L2,
and L3) and their corresponding Pt (II) complexes as selective agents for treating cancer. We
have hypothesized that the conjugation of new ligands using BTA will result in compounds
that have distinct cytotoxic properties as BTA is well known for its antitumor activity.
In vitro screening was performed in different cancer and normal cell lines, and stability
of the lead compounds was measured in buffered aqueous solution. In addition, we
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conducted molecular modeling studies to predict the best binding poses of ligands in the
active site of DNA. We hypothesized that L1 and L1Pt can be promising candidates for
treating liver, colon, breast, prostate, cervical, and brain cancers.

2. Results and Discussion
2.1. Synthesis and Characterization

The syntheses of the BTA derivatives L1, L2, and L3 and their Pt (II) complexes L1Pt,
L2Pt, and L3Pt are depicted in Scheme 1. Compound L1 was derived based on our previ-
ously published procedure [39], which was then condensed with two salicylaldehyde equiv-
alents to give the L2 ligand (white solid). The reaction of L1 with 2-pyridinecarboxaldehyde
at room temperature in the presence of N-bromosuccinamide resulted in L3 (as a yellow
solid). Platinum complexes L1Pt, L2Pt, and L3Pt were prepared by reacting the respective
ligands L1, L2, and L3 with an equivalent of K2PtCl4 under inert conditions. Potassium
carbonate (K2CO3) was used to increase the reaction rate of complex L2Pt. The pure Pt (II)
chelates were isolated in moderate yield after washing repeatedly with water, methanol
and ether. The formation of the ligands and their Pt (II) complexes were confirmed using
various spectroscopic methods such as 1H nuclear magnetic resonance (NMR), 195Pt-NMR,
Fourier transform infrared spectroscopy (FTIR), high-resolution fast atom bombardment
mass spectrometry (HR–FAB–MS), matrix-assisted laser desorption/ionization time-of-
flight mass spectrometry (MALDI-TOF-MS), and elemental analysis (EA).
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1H-NMR spectra of the newly synthesized ligands L1, L2, and L3 and their Pt com-
plexes L1Pt, L2Pt, and L3Pt were recorded in different solvents, such as MeOH-d4, CHCl3,
DMSO-d6, and the details are presented in the experimental section. The 1H-NMR spectral
data are consistent with the expected structure of the compounds (Supporting Informa-
tion Figures S1, S4, S6, S9 and S12). In addition, complex L1Pt was characterized using
195Pt-NMR and the chemical shifts (δ = −2955 ppm, DMSO-d6), indicated no inter- or in-
tramolecular contacts between the Pt (II) center and BTA moieties (Supporting Information
Figure S7) [40]. The formation of L2 was confirmed by the presence of a C=N stretching
vibration at 1634 cm−1 and the coordination of the metal center was confirmed by the
downshift of C=N at 1600 cm−1 due to the development of Ar–O–Pt–N=CH–chelating
ring and loss of salicylic effect [41]. The FTIR spectrum of L2 compared well to that of the
corresponding L2Pt complex (Supporting Information Figures S3 and S10) Therefore, the
1H-NMR, 195Pt-NMR, and FTIR analysis data showed that the complexation of the ligand
L1 and L2 with Pt was accomplished by coordination using amine and/or Schiff-bases
nitrogen. In addition, high-resolution mass spectrometry in positive-ion mode was per-
formed for all synthesized compounds. Parent peaks were found at (m/z) 578, (m/z) 714,
and (m/z) 687 for complexes L1Pt, L2Pt, and L3Pt (Supporting Information Figures S8, S11
and S13). Ion peaks corresponding to the ligands have been observed at (m/z) 313, (m/z)
521, and (m/z) 400 for L1, L2, and L3 (Supporting Information Figures S2 and S5) [39]. The
purity of the newly synthesized compounds was confirmed by EA. L1 was soluble in water
and all other compounds when dissolved in DMSO.

2.2. Anticancer Effects and Cytotoxicity

We have tested the effects of different concentrations of ligands L1, L2, and L3 and their
platinum complexes L1Pt, L2Pt, and L3Pt on the viability of various cancerous and normal
cell lines (Tables 1 and 2, Figure 2). The half-inhibitory concentration (IC50) values were
calculated based on these data. The data showed that each component inhibits the growth
of different cell lines at varying degrees. L1, L1Pt, and L2 exhibit similar cytotoxicity to that
of cisplatin and BTA used as a control group in HeLa cells (Table 1 and Figure 2A). However,
L1, L1Pt, and L2 exhibited excellent toxicity to most of the cancer cells, except for HeLa
cells. The L1 and L1Pt exerted the best efficacy in liver and colon cancer cells. In addition,
L2Pt revealed the anticancer effect only in liver cancer cells, and L3 had the possibility of
the anticancer effect in glioma and prostate cancer cells. Although L3 induced a better
anticancer effect than BTA in colon cancer cells, it did not reach the effect of cisplatin. L3Pt
did not show anticancer effects in the tested cell lines, and the reason needs clarification.
The structure–activity reveals that the conjugation of the 1,2-ethylenediamine with BTA (L1
and L1Pt) exhibited excellent inhibitory activity against numerous cancer cells. Moreover,
the exchange of the ethylene bridge with electron-donating hydroxyl group-containing
phenol rings (i.e., compounds L2 and L2Pt) displayed better anticancer activity than those
of pyridine-containing derivatives L3 and L2Pt. From toxicity comparison in normal cells
(Table 2 and Figure 2B), we confirmed that the toxicity of L1, L1Pt, and L2 was improved
more than the cisplatin in the liver and brain cells. Although L2Pt, L3, and L3Pt did not
exhibit toxicity in most of the normal cell lines, they did not display any anticancer effects,
therefore, these compounds are not considered for further study.
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Table 1. Half inhibition concentrations (IC50) of synthesized compounds in cancer cells. Various cancer cells treated with different concentrations of compounds were assayed for
cell viability by the CCK-8 method at 24 h and IC50 values were calculated using the GraphPad Prism 5 software. IC50 values for compound against each cell line are means of three
independent experiments [(n = 3, mean ± SEM (standard error of mean)]. Cisplatin and BTA, which are the backbones of the compounds, were compared as positive controls.

Tissue
Sources

Cell
Lines

IC50 (µM) for

Cisplatin BTA L1 L1Pt L2 L2Pt L3 L3Pt

Human lung cancer A549 >500 >500 100.16 ± 8.4 167.2 ± 11.2 182.4 ± 0.8 >500 >500 >500

Human brain glioma C6 226.6 ± 34.3 424.7 ± 47.7 77.8 ± 9.7 93.3 ± 22.7 143.2 ± 32.7 >500 142.4 ± 15.3 >500

Human renal cancer Caki-2 >500 462.8 ± 44.1 75.6 ± 3.4 105.7 ± 8.5 159.0 ± 4.3 >500 >500 >500

Human cervical cancer HeLa 26.2 ± 5.6 76.4 ± 23.4 41.9 ± 3.4 64.7 ± 0.3 47.0 ± 6.0 221.0 ± 15.8 98.9 ± 3.5 >500

Human hepatic carcinoma HepG2 54.2 ± 31.8 52.0 ± 5.7 5.9 ± 0.5 7.5 ± 0.1 14.2 ± 7.0 31.6 ± 3.6 >500 >500

Human colon cancer HT-29 39.1 ± 0.6 275.3 ± 5.0 29.9 ± 0.3 42.6 ± 5.6 135.0 ± 4.4 172.6 ± 3.2 70.5 ± 0.2 >500

Human breast cancer MCF-7 203.8 ± 27.3 103.9 ± 28.6 65.9 ± 12.3 59.0 ± 11.0 98.1 ± 7.9 >500 190.3 ± 16.5 >500

Human prostate cancer PC-3 >500 181.7 ± 7.8 94.9 ± 0.8 55.7 ± 7.5 116.3 ± 5.0 >500 130.2 ± 34.7 >500

Table 2. Half inhibition concentration (IC50) of synthesized compounds in normal cells. Various normal cells treated with different concentrations of compounds were assayed for
cell viability by the CCK-8 method at 24 h and IC50 values were calculated using the GraphPad Prism 5 software. IC50 values for compound against each cell line are means of three
independent experiments (n = 3, mean ± SEM). Cisplatin and BTA, which are the backbones of the compounds, were compared as positive controls.

Tissue
Sources

Cell
Lines

IC50 (µM) for

Cisplatin BTA L1 L1Pt L2 L2Pt L3 L3Pt

Mouse liver
hepatocyte AML12 32.1 ± 4.4 >500 137.6 ± 24.1 139.0 ± 0.8 >500 >500 >500 >500

Human colon
epithelial FHC >500 >500 72.7 ± 2.0 64.3 ± 2.4 189.2 ± 10.3 >500 >500 >500

Human embryonic kidney HEK-293 65.5 ± 4.1 >500 68.1 ± 2.8 54.9 ± 2.8 138.9 ± 20.1 211.5 ± 14.9 >500 205.9 ± 7.4

Human breast
epithelial MCF-10A 95.9 ± 6.7 401.4 ± 136.3 65.1 ± 1.9 46.9 ± 5.1 79.3 ± 25.4 >500 >500 >500

Mouse brain
neural stem cell NE-4C 9.0 ± 0.3 60.9 ± 2.9 36.8 ± 3.7 25.7 ± 1.7 28.2 ± 0.1 47.0 ± 4.1 22.4 ± 2.4 32.4 ± 6.0
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strate there is specificity for the liver cancer cells. In addition to liver cancer, L1, L2, L3, 
and L1Pt showed a more significant anticancer effect than cisplatin or BTA in brain glioma 
(Table 1). In the toxicity in normal cells, they have significantly improved toxicity than 
cisplatin in NE-4C cells (Table 2). We observed that compounds L1, L2, L1Pt, and L2Pt 
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Figure 2. Toxicity profiles of anti-cancer agents. The graphs show the Log IC50 for each cytostatic
agent in various cell lines. Log IC50 of at three independent experiments per cell line were averaged
and summarized as a mean graph for better comparison of the different activities. (A) It shows the
toxicity of synthesized compounds in various cancer cells. (B) It shows the toxicity of synthesized
compounds in normal cell lines of various tissues. The red dotted line represents the cisplatin value,
and the blue dotted line represents the BTA value. * p < 0.05, ** p < 0.01, *** p < 0.001, significant
difference from the cisplatin. # p < 0.05, ## p < 0.01, ### p < 0.001, significant difference from the BTA.
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2.3. Selective Antitumor Activity

A non-malignant mouse liver cell line (AML-12), human colon epithelial cells (FHC),
human embryonic kidney cells (HEK-293), human breast epithelial cells (MCF-10A), and
mouse brain neural stem-cell line (NE-4C) were used as models of the healthy cells to
estimate the selectivity of these compounds in cancer cells regarding normal cells (Table 2,
Figure 2B). To correctly term cytotoxicity as “selective” actually, there should be a great
difference between tumor and non-tumor cells and it is challenging to compare cytotoxicity
from different works. Interestingly, no cytotoxicity was observed for L1, L2, L1Pt, and
L2Pt in normal mouse liver hepatocyte cells (AML12) up to 137 µM (Table 2). Moreover,
compounds L1, L2, L1Pt, and L2Pt displayed an IC50 in liver cancer cells (HepG2) that
are 23, 35, 18.5, and 15.8 folds higher in comparison with its IC50 value in normal liver
cells (AML12) respectively [42]. In contrast, clinically used cisplatin exhibited an IC50
value in normal liver cells (AML12) 32 µM. In the case of liver cancer cells, L1, L2, L1Pt,
and L2Pt showed strong toxicity, while revealed deteriorated toxicity in normal liver cells,
demonstrate there is specificity for the liver cancer cells. In addition to liver cancer, L1,
L2, L3, and L1Pt showed a more significant anticancer effect than cisplatin or BTA in
brain glioma (Table 1). In the toxicity in normal cells, they have significantly improved
toxicity than cisplatin in NE-4C cells (Table 2). We observed that compounds L1, L2, L1Pt,
and L2Pt exhibited anticancer activity against colon cancer cells. In addition, compound
L3 displayed preferential anticancer activity against colon and breast cancer cells. This
characteristic anticancer outcome may be attributed to the presence of the BTA moiety,
which is well known for its tumor selectivity [23,24]. The superior selective toxicity toward
cancer cells over noncancer cells proposes a strong potential of these compounds toward
their antitumor application in liver cancer.

2.4. Stability of the Compounds in an Aqueous Solution

An indispensable feature of any promising anticancer agent is its thermodynamic
stability in aqueous media. All prospective agents should be able to reach their target
under the conditions encountered in living organisms. Therefore, the stability of the
compounds was measured at 1 mM in phosphate-buffered saline (PBS) solution using UV–
Vis spectroscopy. Due to poor solubility in aqueous media, compound L1Pt was dissolved
in 2% DMSO in PBS solution. The stability of the metal complexes is often dependent
on the pH value and the pH 4.5–5.0 is crucial since endosomal uptake of the complexes
by lysosomes can occur [43]. Therefore, the UV–Vis spectrum was recorded in the range
of 200–450 nm at t = 0, 7, and 24 h in different pH-values [(e.g., strong acidic (pH = 2),
weakly acidic (pH = 5), neutral (pH = 7.4), alkaline (pH = 12)]. Only the most promising
compounds were studied, and Figure 3 represents the time-dependent UV–Vis spectrum of
the compound L1 and L1Pt in physiological pH (7.4). The compounds expressed distinct
peaks in the 200–450 nm region and did not display any significant changes throughout
24 h. Lack of substantial interactions in the absorptions peak and spectral characteristics
for testing compounds over time propose that no structural alterations occurred in the
aqueous solution [44,45]. Also, there were no obvious changes in the absorptions peak in
other pH-values (such as acidic, weakly acidic, and alkaline) for complexes L1 and L1Pt
over time are shown in the Supporting Information (Figure S14).

2.5. Protein-Ligand Docking Simulation

The anticancer mechanism of platinum drugs involves their intercalation with DNA
base pairs [46,47]. Thus, molecular docking studies were conducted to predict the binding
poses of ligands in the active site of the DNA. Table 3 shows the docking binding energies
of L1, L1Pt, and BTA with various DNA structures. The top-ranked binding energies
(kcal/mol) in the Auto Dock output file were considered a response in every single run. The
best docking result was considered with the lowest binding energy of the conformation. The
predicted binding energies of compound L1 and L1Pt were −6.697 and −7.150 kcal/mol,
respectively, for binding to the 1BNA, whereas it was −6.658 kcal/mol for the parent
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compound BTA. Therefore, this negative binding energy suggests that those compounds
rationally bind to DNA as their anticancer target. In addition, compounds L1 and L1Pt with
high cytotoxic activity also showed elevated binding energies,−5.839 and−5.695 kcal/mol,
in binding to 3CO3, respectively. Compounds L1 and L1Pt showed lower docking binding
energy to DNA in binding to 1LU5 compared with parent BTA.
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Table 3. Predicted binding energies of L1, L1Pt, and BTA on different DNA structures.

Docking Binding Energy (kcal/mol)

Name 1BNA 3CO3 1LU5

L1 −6.697 −5.839 −4.636
L1Pt −7.150 −5.695 −4.164
BTA −6.658 −6.495 −5.037

DNA intercalation and major or minor groove binding with DNA are the most fre-
quently observed modes of interaction for small molecule drugs [48]. The molecular
modeling results suggest that compounds L1 and L1Pt interacted with the minor groove
of the DNA (PDB ID: IBNA) (Figure 4). The BTA fragment of these compounds fits into
the minor groove of the DNA and interacts through its sulfur group by forming hydrogen
bonds with the base pairs. In addition, the –NH group showed a hydrogen bond interaction
with the DNA. The docked poses of the compound L1 and L1Pt (Figure 4) revealed that it
binds to the minor groove of the DNA (PDB ID: 1BNA) using −6.697 and −7.150 kcal/mol
binding energy. Cisplatin requires hydration to form diaqua species, which are considered
active agents. However, in this study, L1Pt remains stable over 24 h and probably does
not palatinate the DNA (Figure 3), nevertheless it acts by intercalation. In contrast, ligand
L1 showed groove binding intercalation with DNA and this can be one of the possible
reasons for the higher cytotoxic effects than their corresponding Pt (II) complexes. The
interactions of compound L1 and L1Pt with the 3CO3 and 1LU5 structures of the DNA are
shown in the Supporting Information [Figures S15 and S16]. However, we must mention
that the docking study alone is not sufficient to probe mechanism of action of compounds.
To probe it, at least in vitro binding assays such as ITC and SPR should be carried out on
DNA- model systems, as well as on protein models. Therefore, further study using in vitro
binding assays is warranted to probe mechanism of action of compounds.
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3. Materials and Methods
3.1. Reagents and Instruments

Solvents were dried using standard methods. 2,3-Diaminopropionic acid, di-tert-butyl
dicarbonate (Boc2O), and triphenylphosphite [P(OC6H5)3] were purchased from Tokyo
Chemical Industry (Tokyo, Japan). Sodium bicarbonate (NaHCO3) and potassium carbon-
ate (K2CO3) were purchased from Daejung Chem. (Siheung-si, Korea). Magnesium sulfate
anhydrous (MgSO4) and sodium sulfate anhydrous (Na2SO4) were obtained from Duksan
Scientific Corp. (Ansan-si, Korea). Salicylaldehyde was acquired from Junsei Chemical
Co. Ltd. (Tokyo, Japan). 2-Pyridinecarboxaldehyde, 2-(4-aminophenyl)-benzothiazole,
potassium tetra chloroplatinate (II) (K2PtCl4), and other commercial-grade reagents were
purchased from Sigma-Aldrich (St. Louis, MO, USA), and used as received, unless other-
wise stated. Deionized water (DI water) was used for the experiments. Progress of chemical
reactions was observed using TLC (silica gel plates 60 F254) and visualized using a UV–Vis
spectrometer. 1H-NMR experiments were performed using an Advance 500 spectrometer
(Bruker, Billerica, MA, USA) at the instrumental analysis center of Kyungpook National
University (KNU, Daegu, Korea). Chemical shifts (δ) are reported in ppm and coupling
constants (J) in Hz. FTIR spectra were recorded using KBr pellets on a model 883 double
beam infrared spectrophotometer (PerkinElmer, Waltham, MA, USA) in 200–4000 cm−1.
Microanalysis was performed using a CHNS elemental analyzer (Thermo Fisher Scientific,
Waltham, MA, USA) at the KNU instrumental analysis center. HR–FAB–MS spectra were
recorded using a model JMS-700 spectrophotometer (JEOL, Tokyo, Japan) at the Korea Basic
Science Institute. Complexation reactions were conducted under an inert atmosphere using
standard Schlenk techniques. The purity of the synthesized compounds was confirmed by
EA and the tested compounds had at least 95% purity.

3.2. Synthesis and Characterization

The syntheses of the benzothiazole aniline derivatives and their corresponding Pt (II)
complexes are as follows:

3.2.1. 2,3-Diamino-N-(4-benzothiazol-2-yl-phenyl)-propionamide (L1)

Compound L1 was synthesized according to the previously reported method [39].
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3.2.2. N-(4-Benzothiazol-2-yl-phenyl)-2,3-bis-[(2-hydroxy-benzylidene)amino]
propionamide (L2)

Salicylaldehyde (0.42 g, 3.5 mmol) was added dropwise to compound L1 (0.54 g,
1.7 mmol) dissolved in ethanol (20 mL). The resulting mixture was refluxed around 3 h
until the starting materials disappeared. Solids that appeared were filtered and rinsed
with a small portion of cold ethanol, and pure product was harvested as a white solid
after resuspending in hexane. Yield: 0.42 g (48%). 1H-NMR (500 MHz, CDCl3): δ = 12.8 (s,
2H, Ar-OH), 12.01 (s, 1H, NH), 8.45 (s, 1H, CH), 8.36 (s, 1H, CH), 8.07–8.01 (m, 3H, BTA),
7.90–7.86 (d, 1H, BTA), 7.71–7.66 (d, 2H, BTA), 7.49–7.44 (t, 1H, BTA), 7.41–7.38 (t, 1H, BTA),
7.36–7.25 (m, 3H, Ar-CH), 7.22–7.18 (d, 1H, Ar-CH), 7.04–6.81 (m, 4H, Ar-CH), 4.42–4.36 (m,
2H, CH2), 4.09–3.03 (m, 1H, CH). FTIR: v (cm−1) = 3299 w, 1665 s, 1634 (C=N) s, 1524 s,
1407 m, 1275 m, 967 m, and 749 m. HR–FAB–MS (m/z) for C30H24N4O3S: calcd, 521.1647
[M + H]+; found, 521.1649 [M + H]+. Anal. calcd for (C30H24N4O3S· 12 H2O): C, 68.06; H,
4.76; N, 10.58; S, 6.06; found: C, 68.08; H, 4.59; N, 10.62; S, 6.24.

3.2.3. 2-Pyridin-2-yl-4,5-dihydro-1H-imidazole-4-carboxylic acid
(4-benzothiazol-2-yl-phenyl)amide (L3)

2-Pyridinecarboxaldehyde (0.54 mL, 5.06 mmol) was added to a solution of com-
pound L1 (1.58 g, 5.06 mmol) in dry tetrahydrofuran (40 mL) using an ice bath. N-
Bromosuccinimide (0.52 g, 2.94 mmol) in THF was added dropwise and stirred overnight
at room temperature (RT). The resulting mixture was extracted using saturated NaHCO3
solution and washed with CH2Cl2. The collected organic layer was rinsed using saturated
NaCl and dried over Na2SO4. After precipitation pure product was collected as a pale-
yellow solid. Yield: 0.7 g (36%). 1H-NMR (500 MHz, CDCl3): δ = 9.82 (s, 1H, NH), 9.46 (s,
1H, NH), 8.54 (s, 1H, CH-Py), 8.33 (dd, 1H, CH-Py), 8.23 (s, 1H, C–Py), 7.81 (m, 2H, BTA),
7.62 (s, 1H, BTA), 7.54 (t, 3H, BTA), 7.29–7.20 (dd, 2H, BTA), 7.06 (t, 1H, CH-Py), 4.86 (s, 1H,
CH), 4.16–3.74 (d, 2H, CH2). Anal. Calcd for (C22H17N5OS.1.5 H2O): C, 61.98; H, 4.71; N,
16.42; S, 7.52; found: C, 62.32; H, 3.98; N, 15.64; S, 7.54. HR–FAB–MS (m/z) for C23H17N5OS:
Calcd, 400.1232 [M + H]+; found: 400.1233 [M + H]+.

3.2.4. Synthesis of Complex L1Pt

A solution of K2PtCl4 (0.14 g, 0.35 mmol) in distilled water (10 mL) was prepared
under an inert atmosphere and added to compound L1 (0.11 g, 0.35 mmol). The resultant
mixture was stirred overnight in the dark at RT. The precipitate obtained was filtered and
rinsed using water, methanol, and ethyl ether. Vacuum drying produced a pale-yellow
solid. A characteristic peak was observed at−2754 ppm corresponding to the Pt (II) species.
Yield: 0.10 g (53%). 1H-NMR (500 MHz, DMSO-d6): δ = 11.03 (w, 1H, NH), 8.77–8.51 (w,
2H, NH), 8.17–7.99 (m, 4H, BTA), 7.92–7.80 (d, 2H, BTA), 7.55 (t, 1H, BTA), 7.46 (t, 1H, BTA),
6.62–6.20 (dd, 2H, NH2), 3.83 (dd, 1H, CH), 3.02–2.72 (dd, 2H, CH2). 195Pt-NMR (DMSO-d6):
δ = −2754. Anal. calcd for (C16H16Cl2N4OPtS·2.5H2O): C, 30.84; H, 3.39; N, 8.99; S, 5.15;
found: C, 30.62; H, 2.81; N, 8.74; S, 5.20. HR–FAB–MS (m/z) for C16H16Cl2N4OPtS: calcd,
578.0148 [M + H]+; found, 578.0144 [M + H]+.

3.2.5. Synthesis of Complex L2Pt

Potassium carbonate (0.19 g, 1.35 mmol) was added to a solution of ligand L2 (0.35 g,
0.67 mmol) in DMF (10 mL). Next a solution of potassium tetrachloroplatinate (0.28 g,
0.67 mmol) in water (10 mL) was prepared under a stream of nitrogen and added to the
mixture, which was then stirred overnight at a reaction temperature lower than 60 ◦C. The
reaction mixture was left to cool at RT and the solid was filtered. Pure compound was
gathered as a pale-yellow solid following repeated flushing with water, methanol, and
ethyl ether. Yield: 0.24 g (49%). 1H-NMR (500 MHz, DMSO-d6): δ = 10.75 (s, 1H, NH),
8.76 (s, 1H, Ar-CH), 8.60 (s, 1H, Ar-CH), 8.17–7.78 (m, 6H, BTA), 7.69–7.37 (d, 6H, Ar-CH),
6.95 (t, 1H, BTA), 6.65 (t, 1H, BTA), 4.75 (m, 1H, CH), 4.32 (d, 1H, CH2), 4.15 (d, 1H, CH2),
2.09 (s, 2H, NH2). FTIR: v (cm−1) = 3054 w, 1693 s, 1600 s (C=N), 1532 s, 1437 m, 1302 m.
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Anal. calcd for (C30H22N4O3PtS·2H2O): C, 48.06; H, 3.50; N, 7.47; S, 4.28; found: C, 48.10;
H, 3.59; N, 7.29; S, 6.87. HR–FAB–MS (m/z) for C30H22N4O3PtS: calcd, 714.1139 [M + H]+;
found, 714.1142 [M + H]+.

3.2.6. Synthesis of Complex L3Pt

A solution of K2PtCl4 (0.45 g, 1.10 mmol) in distilled water (15 mL) was prepared
under a stream of nitrogen and added to a solution of ligand L3 (0.4 g, 1.10 mmol) in ethanol
(15 mL). The resultant mixture was stirred in the dark under a nitrogen atmosphere at 50 ◦C,
overnight. Solid that appeared was filtered and the pale-yellow product harvested after
repeated washing using water, ethanol, and Et2O. Yield: 0.27 g (39%). 1H- NMR (500 MHz,
DMSO-d6): δ = 8.17–7.98 (m, 6H, BTA), 7.86 (t, 1H, BTA), 7.82 (t, 1H, BTA), 7.57–7.42 (m, 4H,
Py), 5.04 (t, 1H, CH), 4.56–3.98 (m, 2H, CH2). Anal. calcd for (C22H17Cl2N5OPtS·2H2O): C,
37.67; H, 3.02; N, 9.98; S, 4.57; found: C, 37.81; H, 2.71; N, 8.97; S, 3.57. HR-MS (m/z) for
C22H17Cl2N5OPtS: calcd, 687.0076 [M + Na]+; found, 687.2321 [M + Na]+.

3.3. Stability of the Compounds in Aqueous Solution

The stability of the most active compounds, L1 and L1Pt, was studied. The com-
pounds, L1 and L1Pt, at a concentration of 1 mM in phosphate-buffered saline (PBS)
solution at different pH-values [(e.g., strong acidic (pH = 2), weakly acidic (pH = 5), neutral
(pH = 7.4), alkaline (pH = 12)] were evaluated using UV–Vis spectroscopy. In the case of
L1Pt, 2% DMSO in PBS was used as solvent due to the poor water solubility. The spectra
were recorded in the range of 200–450 nm at t = 0, 7, and 24 h, and compared to each other.

3.4. Cell Culture

Human colorectal adenocarcinoma cells (HT-29, ATCC® HTB-38), adenocarcinomic
human alveolar basal epithelial cells (A549, ATCC® CCL-185), and prostate cancer (PC-3,
ATCC® CRL-1435) were cultured in the growth medium, containing Roswell Park Memo-
rial Institute Medium (RPMI1640) WelGENE, Daegu, Korea supplemented with 10% (v/v)
fetal bovine serum (FBS, Gibco, Grand Island, NY, USA) and 1% antibiotics-antimycotics
(Gibco). Human breast adenocarcinoma cells (MCF-7, ATCC® HTB-22™), hepatocellular
carcinoma (HepG2, ATCC® HB-8065™), Rattus brain glioma (C6, ATCC ® CRL-2303™),
and human renal carcinoma (Caki-2, ATCC® HTB-47™) cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM, WelGENE, Daegu, Korea) supplemented with 10% (v/v)
FBS (Gibco) and 1% antibiotics-antimycotics (Gibco). Mouse brain neural (NE-4C, ATCC®

CRL-2925™) and human cervix adenocarcinoma cells (HeLa, ATCC® CCL-2™) were cul-
tured in Eagle’s minimum essential medium (EMEM, ATCC® 30-2003™) supplemented
with 10% FBS (Gibco) and 1% antibiotics-antimycotics (Gibco). Mouse liver normal cells
(AML12, ATCC® CRL-2254™) were cultured in DMEM/F-12 (WelGENE) supplemented
with 10% FBS (Gibco), 1 × ITS (10 µg/mL insulin, 5.5 µg/mL transferrin, 6.7 ng/mL
selenium, Gibco), 40 ng minimum essential medium Eagle (WelGENE) supplemented with
10% FBS (Gibco, USA) and 1% antibiotics-antimycotics (Gibco). Human breast epithelial
cells (MCF 10A, ATCC® CRL-10317™) were cultured in DMEM/F-12 (WelGENE) supple-
mented with 5% horse serum (Gibco), 20 ng/mL epidermal growth factor (EGF, Peprotech
Inc., Rocky Hill, NJ, USA), 500 µg/mL hydrocortisone (Sigma-Aldrich, St. Louis, MO,
USA), 100 ng/mL colera toxin (Sigma-Aldrich), 10 µg/mL insulin (Sigma-Aldrich) and
1% antibiotics- (Gibco). Human colon normal epithelial cells (FHC, ATCC® CRL-18317™)
were cultured in DMEM/F-12 (WelGENE) supplemented with 10% FBS (Gibco), 10 ng/mL
cholera toxin (Sigma-Aldrich), 20 ng/mL EGF (Peprotech Inc.), 100 µg/mL hydrocortisone
(Sigma-Aldrich), 1 × ITS (10 µg/mL insulin, 5.5 µg/mL transferrin, 6.7 ng/mL selenium,
Gibco) and 1% antibiotics-antimycotics (with 100 units penicillin, 100 µg streptomycin
and 250 ng amphotericin B per mL, Gibco). Cells were incubated in a humidified 5% CO2
atmosphere at 37 ◦C.
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3.5. Cell Viability Assay

To evaluate cytotoxicity, cells were seeded in a 96-well plate (FHC, 0.5× 104 cells/well;
Caki-2 and MCF 10A, 1× 104 cells/well; AML12, 1.2× 104 cells/well; HeLa, HEK-293, A549,
and PC-3, 1.5 × 104 cells/well; HT-29, MCF-7, C6, HepG2, and NE-4C, 2 × 104 cells/well).
After attaching and stabilizing cells for 24 h, the medium was switched to various con-
centrations (0, 2.5, 5, 10, 20, 30, 40, 50, 100, and 200 µM) of cisplatin (Sigma-Aldrich), BTA
(Sigma-Aldrich), L1, L1Pt, L2, L2Pt, L3, and L3Pt, and cells were incubated for 22 h. In
addition, cell counting kit-8 (CCK-8, Dojindo Laboratories, Kumamoto, Japan) solution
was added to each well, and the plate was incubated for 2 h. The absorbance was then
measured at 450 nm using a microplate reader (SpectraMax i3, Molecular Devices, San Jose,
CA, USA). The IC50 and logIC50 values were calculated in GraphPad Prism (GraphPad
Prism Software Inc. Version 5.02, San Diego, CA, USA). All experiments were performed,
independently, three times. The graph of logIC50 values represents the average value.

3.6. Molecular Docking

Binding poses and energies of L1, L1Pt, and BTA for DNA structures were predicted
using a protein-ligand docking simulation application called Glide [49]. Glide searches
for possible binding poses of given ligands on DNA structure surface and finds the best
binding poses and energy using the empirical scoring function called GlideScore [49]. For
docking simulation, the OPLS3 force field was used to describe the atomic forces of ligand
and DNA molecules. Flexible ligand sampling of ligand was allowed and the standard
precision mode of Glide was used.

3.7. Statistical Analysis

Data were evaluated using a one-way analysis of variance with Tukey’s multiple
comparison tests. Analyses were performed using GraphPad Prism (GraphPad Prism
Software Inc., version 5.02). Data are expressed as mean ± SD (standard deviation) or
standard error of the mean values, and p < 0.05 was considered significant, statistically.

4. Conclusions

In this study, three novel benzothiazole aniline derivatives L1, L2, and L3 and their
corresponding Pt (II) complexes L1Pt, L2Pt, and L3Pt have been designed and synthesized.
The targeted compounds were investigated for their in vitro cytotoxic activity using the
CCK-8 assay against various cancer and normal cells lines. Compared to the parental BTA
and clinically used cisplatin, compounds L1, and L1Pt demonstrated selective inhibitory
activities against liver cancer cells. In addition, docking results indicate that compounds L1
and L1Pt interact with the minor groove of the DNA, and remain stable in aqueous media.
Therefore, these compounds may be considered as prospective alternatives to the present
chemotherapy drugs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph14080832/s1, Content: Figure S1: 1H-NMR spectrum of compound L2, Figure S2: High
resolution-FAB- mass spectrum of compound L2, Figure S3: FTIR spectrum of compound L2,
Figure S4: 1H-NMR spectrum of compound L3, Figure S5: High resolution-FAB- mass spectrum of
compound L3, Figure S6: 1H-NMR spectrum of compound L1Pt, Figure S7: 195Pt-NMR spectrum of
compound L1Pt, Figure S8: High resolution-FAB- mass spectrum of compound L1Pt, Figure S9: 1H-
NMR spectrum of compound L2Pt, Figure S10: FTIR spectrum of compound L2Pt, Figure S11: High
resolution-FAB- mass spectrum of compound L2Pt, Figure S12: 1H-NMR spectrum of compound
L3Pt, Figure S13: MALDI-TOF mass spectrum of compound L3Pt, Figure S14. Time-dependent
UV-Vis absorption spectra of L1 and L1Pt. Figure S15: Molecular docking of BTA, L1, and L1Pt with
DNA, Figure S16: Molecular docking of BTA, L1, and L1Pt with DNA.
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