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Abstract

Normative modeling is an increasingly popular method for characterizing the ways in which

clinical cohorts deviate from a reference population, with respect to one or more biological

features. In this paper, we extend the normative modeling framework with an approach for

measuring the amount of heterogeneity in a cohort. This heterogeneity measure is based

on the Representational Rényi Heterogeneity method, which generalizes diversity mea-

surement paradigms used across multiple scientific disciplines. We propose that heteroge-

neity in the normative modeling setting can be measured as the effective number of

deviation patterns; that is, the effective number of coherent patterns by which a sample of

data differ from a distribution of normative variation. We show that lower effective number

of deviation patterns is associated with the presence of systematic differences from a

(non-degenerate) normative distribution. This finding is shown to be consistent across (A)

application of a Gaussian process model to synthetic and real-world neuroimaging data,

and (B) application of a variational autoencoder to well-understood database of handwrit-

ten images.

Introduction

Psychiatric disorders are defined by their clinical presentations, which means that several dif-

ferent biological abnormalities could result in what we erroneously call a single condition.

This has important consequences for biological and treatment studies that assume subjects

form a single homogeneous population. Instead, in reality, a given psychiatric condition such

as bipolar disorder might differ from normal population variation in heterogeneous ways.

Normative modeling is a popular method for disentangling this heterogeneity in clinical

cohorts [1–10]. This method involves learning a distribution of normal variation, with the

assumption that clinically relevant phenotypes are identifiable by significant deviations from

this normative range. Unfortunately, it does not measure the amount of heterogeneity in a

cohort. To improve our understanding of psychiatric nosology, we must aim to understand

the factors that cause biological and other forms of heterogeneity in our diagnostic system, as
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well as the consequences of that heterogeneity on research and clinical practice. However, to

study heterogeneity rigorously, we must be able to measure it rigorously. To date, there is no

proposed method to rigorously measure heterogeneity in normative models.

Heterogeneity measurement has been studied for more than a century [11], but most indi-

ces, such as variance and entropies [12–14], have inconsistent units and can scale counterintui-

tively [15, 16]. Conversely, ecologists and others have adopted the Rényi heterogeneity family

of indices as a “true diversity” index [17–20]. The Rényi heterogeneity measures a system’s

effective number of configurations (numbers equivalent [21]). This measure scales linearly and

generalizes most commonly used diversity indices [15, 20, 22–24].

We therefore introduce a Rényi heterogeneity measurement for normative modeling stud-

ies, the effective number of deviation patterns (ENDevs), which estimates the number of distinct

ways in which a cohort deviates from the normative distribution. To our knowledge, this is the

first such explicitly defined heterogeneity measurement approach for the normative modeling

framework. We also demonstrate a useful property of ENDevs: that cohorts sampled from out-
side a non-trivial normative distribution will tend to have lower ENDevs than cohorts sampled

from the normative distribution proper.

Background

Normative modeling

Normative modeling involves four steps [1]. First, one defines the spaces of predictor

and response variables, X ¼ RK and Y ¼ RM, respectively. A dataset

Do ¼ fðxi; yiÞ : i 2 f1; 2; . . . ;Ngg is collected for a “normative” cohort comprising predic-

tor x 2 X and response variables y 2 Y. Often, the predictor variables are clinical covariates

such as behavioural traits, sex, and age, with the response variable being some biological

measurement such as the volume of some brain region on structural neuroimaging.

The second and third steps involve learning a model of the mapping X ! Y using the

normative cohort’s data Do, with out-of-sample model criticism. Ideally, the model should

map predictors onto a space of probability distributions on the response variable, that is

g : X ! PðYÞ [1].

Finally, one collects dataset D0 ¼ fðx0i; y
0
iÞ : i 2 f1; 2; . . . ;N 0gg from a target cohort of N0

subjects, such as clinical patients. One then computes the degree to which Y0 deviates from the

predictions given by g(X0). A common approach to quantifying this deviation when g is a

Gaussian process regression model is a Z-score that we henceforth call the “standardized devi-

ance.” For each subject i 2 {1, 2, . . ., N0} and response variable j 2 {1, 2, . . ., M} the standard-

ized deviance is

Zij ¼
y0ij � mjðx0iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
j ðx0iÞ þ Z2

j

q ð1Þ

where mjðx0iÞ and s2
j ðx

0
iÞ are the expected value and predicted variance, respectively, given

predictors x0i, and Z2
j is the variance in the response variable learned by the normative

model. Statistics summarizing deviance at the subject level can then be computed in various

ways, including summation or average deviance, thresholding of the Z-score [5], or by

application of extreme value statistics to model largest deviations [25]. However, there are

no existing approaches for quantifying the absolute amount of heterogeneity using norma-

tive modeling.
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Measuring heterogeneity

Heterogeneity is the degree to which a system deviates from perfect conformity, and is mea-

sured as the effective size of the system’s event space using the Rényi heterogeneity indices [18,

19, 22, 26]. Given a system with probability distribution p = (pi)i=1,2,. . .,n over n categorical

states, the Rényi heterogeneity of order q� 0 is defined as follows:

PqðpÞ ¼

Pn
i¼1

1½pi > 0� q ¼ 0

exp f�
Pn

i¼1
pi log pig q ¼ 1

ðmaxi piÞ
� 1 q ¼ 1

ð
Pn

i¼1
pq
i Þ

1
1� q Otherwise

8
>>>>>>><

>>>>>>>:

; ð2Þ

where 1½x� is an indicator function. At q =2 {0, 1,1}, the continuous analogue for some ran-

dom variable X with event space X and probability density function f is

Pq Xð Þ ¼
Z

X
f ðxÞdx

� � 1
1� q

; ð3Þ

which corresponds to the effective hypervolume of X . The parameter q defines the indices’

insensitivity to rare configurations (S1 Fig). A critical property of Rényi heterogeneity is satis-

faction of the replication principle [15], which guarantees that Eqs 2 and 3 scale linearly with

the system’s number of distinct configurations [22, 24]. In other words, unlike variance and

entropies, a 50% increase in Rényi heterogeneity corresponds to a 50% increase of variation in

the system (illustrated graphically in S2 Fig, but for a proof of the replication principle see

Nunes et al. [22]).

The effective number of deviation patterns

Let Z� ¼ jZj ¼ ðz�i Þi¼1;2;...;N be the N ×M absolute standardized deviance matrix, where z�i is

the absolute standardized deviance for subject i 2 {1, 2, . . ., N}. We set the bottom 100(1 − c)%
of values in z�i to 0 and rescale the remainder such that they sum to one, thereby generating a

probability distribution over the c-deviant features (i.e. those features with the top 100c% of

standardized deviance values):

~cðz�i ; cÞ ¼ f1½Ŝðz
�
ijÞ < c�z�ijgj¼1;2;...;M

cðz�i ; cÞ ¼
~c jðz�i ; cÞ

PM
k¼1

~ckðz�i ; cÞ

( )

j¼1;2;...;M

ð4Þ

where Ŝ : Rþ ! ½0; 1� is the empirical survival function over elements of z�i . However, note

that it is not necessary to use the absolute value of Z (one could use the 100c% highest or lowest

values if desired). By Eq 2, the effective number of c-deviant features for subject i is thus

Pq z�i ; c
� �

¼
XM

j¼1

c
q
j ðz
�

i ; cÞ

 ! 1
1� q

: ð5Þ

Since each subject is associated with his or her own pattern of c-deviant features, the effec-

tive number of deviation patterns (ENDevs) is essentially a measure of the effective number of

distinct subjects in the sample with respect to the representation generated by the normative
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model. The ENDevs is computed by solving the following decomposition for thePb

qðZ
�; cÞ

term [20]:

Pg

qðZ
�; cÞ

|fflfflfflfflffl{zfflfflfflfflffl}
Effective number of
c� deviant features in

pooled sample

¼ Pa

qðZ
�; cÞ

|fflfflfflfflffl{zfflfflfflfflffl}
Effective number of
c� deviant features

per subject

� Pb

qðZ
�; cÞ

|fflfflfflfflffl{zfflfflfflfflffl}
Effective number

of subject

: ð6Þ

Eq 6 is interpreted as follows: the effective number of deviation patterns Pb

qðZ
�; cÞ is equal to

the overall effective number of c-deviant features in the pooled sample, Pg

qðZ
�; cÞ, divided by the

effective number of c-deviant features per subject, Pa

qðZ
�; cÞ. This yields the effective number of

subjects. However, since we are representing each subject by his or her pattern of c-deviant fea-

tures, we use the more precise description of ENDevs.

We first compute the overall effective number of c-deviant features, Pg

qðZ
�; cÞ, also known

as the γ-heterogeneity in ecology,

Pg

q Z�; cð Þ ¼
XM

j¼1

�c
q
j ðZ

�; cÞ

 ! 1
1� q

: ð7Þ

where

�cðZ�; cÞ ¼
XN

i¼1

wi cðz
�

i ; cÞ ð8Þ

is a probability distribution over the c-deviant features in the pooled sample (i.e. across all sub-

jects), and where 0< wi< 1 is a weight assigned to the deviation pattern of subject i, such that
PN

i¼1
wi ¼ 1. In all examples in the present study, we set wi = 1/N for all individual observa-

tions or subjects.

We then compute the α-heterogeneity, Pa

qðZ
�; cÞ, which is effective number of c-deviant

features per deviation pattern (i.e. per subject) as follows:

Pa

q Z�; cð Þ ¼

PN
i¼1

wq
i
PM

j¼1
c

q
j ðz
�
i ; cÞ

PN
k¼1

wq
k

 ! 1
1� q

: ð9Þ

The ratio of γ- and α-heterogeneity yields β-heterogeneity, Pb

qðZ
�; cÞ, whose units are ENDevs:

Pb

q Z�; cð Þ ¼
Pg

qðZ
�; cÞ

Pa

qðZ
�; cÞ

: ð10Þ

In terms of representational Rényi heterogeneity [22], Eqs 7–10 measure the effective num-

ber of distinct observations in a cohort with respect to the representation Z� generated by the

normative model.

Methods

Data availability and ethics statements

Data and code for all analyses are provided as supplemental materials. Neuroimaging

data were anonymized from the Autism Brain Imaging Data Exchange database (ABIDE;

https://fcon_1000.projects.nitrc.org/indi/abide/), and preprocessed by Haar et al. [27]
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(http://dinshi.com/abide/). All ABIDE sites received local Institutional Review Board

approval for data acquisition.

Experiment using synthetic data

Our first experiment uses synthetic data from a simple system of M = 30 real-valued features,

yi—which may be considered analogous to 30 regions of interest in a neuroimaging study—

using the following function parameterized by five simulated “covariates” (Fig 1A–1E):

yi ¼ ðxi1 � 2Þ sin fxi2ptg cos fxi3ptg � cos fpðt � xi4Þg þ ~� i; ð11Þ

where

t ¼
ðj � 1Þðu � lÞ

M � 1
þ l : j 2 f1; 2; . . . ;Mg; l ¼ � 2; u ¼ 2

� �

ð12Þ

~�i ¼ ð~� ijÞj¼1;2;...;M ; ~� ij � N ðxi5; 0:1Þ ð13Þ

and where xi = (xij)j=1,2,. . .,5 are the covariates sampled from an isotropic multivariate Gaussian.

Specific model parameters are included in the reproducible supplementary notebooks. The

generative model specified by Eqs 11–13 was selected in order to generate nonlinear patterns

that remain easy to visualize, yet can result in non-trivial patterns of differences between simu-

lated groups. That is, two groups simulated under these data will not simply differ along one

feature dimension, but could show heterogeneous differences across multiple features.

We generated data from this system for N = 50 subjects in a “normative cohort” defined by

a specific parameterization of isotropic multivariate Gaussian distribution over covariates (Fig

1F). The sample size was chosen to be large enough to allow for clear visualization of differ-

ences, while remaining small enough that the analyses could be reasonably reproduced by

readers running typical personal computers. Interested readers may manipulate all parameters

of this analysis in the Supplementary code (S1 File). A Gaussian process normative model was

fit to these data (implemented in GPyTorch v.1.1 [28]) and evaluated for generalizability on an

independently sampled normative cohort (Fig 1G).

We then sampled an independent clinical cohort, with NUnaffected = 50 subjects from the

normative distribution (i.e. “unaffected” subjects), and NAffected = 50 sampled from an

“affected” group characterized by different covariate distributions (Fig 2A and 2B). The trained

normative model was then used to compute absolute values of standardized deviance (Eq 1)

for each subject in the clinical cohort.

If a set of individuals forms a single coherent group based on their clinical condition, the

extreme values should be found in similar features (i.e. subjects will have a similar deviation
pattern). Conversely, the within-subject extreme values in the normative group will tend to be

more randomly distributed across the feature space. To evaluate this quantitatively, we com-

puted ENDevs using the procedure in Eqs 4–10. Means and 95% confidence intervals for

ENDevs were estimated using bootstrap sampling at various extreme value thresholds (0 <

c� 1), and compared between the affected and unaffected groups.

Experiment using the MNIST dataset

Our first experiment used synthetic data to provide a simple illustration of how a “clinical” or

“target” cohort will have a lower ENDevs than a sample of individuals drawn from the distri-

bution of normative variation. Our second experiment seeks to evaluate whether this same

phenomenon will occur with more complex and high-dimensonal data, such as natural images
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of objects from different categorical classes. For such a dataset to be appropriate, we must be

able to guarantee that there are meaningful differences between groups in the raw data, and

that these differences can be easily visualized for illustrative purposes. We therefore use the

MNIST dataset, which includes 70,000 images of handwritten digits, roughly evenly balanced

over classes {0, 1, . . ., 9} [29]. The MNIST dataset is among the simplest non-trivial examples

in which consistent deviation patterns exist between robustly-defined classes. That is, (A) digit

classes are valid partitions, and (B) their use for written communication mandates the exis-

tence of consistent and circumscribed deviation patterns between classes.

We defined a “normative cohort” as a set of images belonging to one of the digit classes {0,

1, . . ., 9}. Normative variation in this cohort was modeled using a convolutional variational

autoencoder (cVAE) [30, 31]. For some input data (here a 28-by-28 pixel image), a cVAE

uses an encoder module to learn a compressed latent representation that carries sufficient

information to reconstruct the input image via a decoder module. Both the encoder and

decoders are convolutional neural networks. The objective function is a lower bound on the

model evidence (the evidence lower bound or ELBO) whose maximization is equivalent to

minimizing the Kullback-Leibler divergence between the approximate and unknown posteri-

ors over latent representations. Further theoretical details can be found elsewhere [30, 31].

Our cVAE was implemented in PyTorch (v. 1.5 for Python v. 3.7) with an 8-dimensional

latent space.

Fig 1. Illustration of simulated data and normative model. Panels A-E: Simulated distribution of five covariates. Panel F: Example of simulated data for M = 30

features and N = 50 subjects in a normative cohort. Panel G: Criticism of a normative model fit to the data in Panel A for 6 new subjects from the normative

distribution (different color per subject).

https://doi.org/10.1371/journal.pone.0242320.g001
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Normative variation of each digit class was modeled by fitting a cVAE to that digit’s images

under 10-fold cross-validation. Within each fold of this partitioning scheme, 90% of the

respective digit’s images were used to train the cVAE (200 epochs; S3 Fig). After training, we

computed standardized deviance scores for the held out 10% of samples. When concatenated,

Fig 2. Application of normative model to independent cohorts from synthetic normative and clinical distributions. Panel A: Simulated covariates for N0 = 100

subjects in a clinical cohort (50 “affected” and 50 “unaffected”). Panel B: Plot of the M = 30 response variables. Panel C: Predictions of a normative model trained

on the normative cohort data. Panel D: Standardized deviance (Eq 1) of each subject, at each of the 30 features.

https://doi.org/10.1371/journal.pone.0242320.g002
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the scores of the held out partitions represent the standardized deviance for cohorts sampled

within the distribution of normative variation. Standardized deviance was computed using

Eq 1, although we substituted the variance (squared Euclidean distance) with the squared

Fisher-Hotelling-Rao distance (which is the Riemannian metric length distance between mul-

tinomial distributions) [32, 33], since the output of the cVAE is a 28 × 28 matrix of Bernoulli

parameters on pixel values.

After computing out-of-sample standardized deviation scores for the normative class, we

trained a cVAE on all samples from the normative digit class. This model was used to estimate

standardized deviation scores for other digit class’ images, respectively. With respect to (nor-

mative) digit class i, all other digit classes can be considered the “clinical” or “affected” cohorts

under the medical analogy.

Let Z�ij denote the Nj × 784 matrix of pixel-wise absolute standardized deviation values com-

puted for the Nj samples in the “clinical” digit class j 2 {0, 1, . . ., 9} under the model of varia-

tion in “normative” digit class i 2 {0, 1, . . ., 9}. Given Z�ij and an extreme value threshold 0<

c� 1, the ENDevs in digit class j under a normative model of class i can be computed using

Eqs 4–10 with 95% confidence intervals estimated using bootstrap sampling. We hypothesized

that the ENDevs (β−heterogeneity; Eq 10) will be greatest when i = j; that is, when the “clinical”

cohort is sampled from the normative distribution.

Experiment using autism neuroimaging data

Finally, we apply our heterogeneity measure to structural neuroimaging data from ABIDE

(preprocessed regions of interest from Haar et al. [27]). Since our purpose here is primarily

methodological illustration, we included only those subjects for whom complete covariate data

were provided for site, sex, handedness, and age (S1 Table; NControl = NAutism = 199).

Normative and clinical cohorts were defined as the control and autism-diagnosed subjects,

respectively. The normative model was a Gaussian process implemented in the GPyTorch

package (v.1.1) [28], with hyperparameter optimization done using gradient descent on the

log model evidence. Generalizability was evaluated under 10-fold cross validation. Only fea-

tures for which the model could explain an average > 20% of variance over folds were kept

(132 features, listed in S2 Table). On each held out validation partition, we computed the

standardized deviance using Eq 1, and concatenated the results to represent the deviation

profiles for the normative cohort. The normative model was then trained on these 132 fea-

tures using the entire normative sample to obtain standardized deviance scores for the clini-

cal group.

We estimated ENDevs using boostrap sampling across multiple extreme value thresholds

(c 2 {0.01, 0.02, 0.03, 0.05, 0.07}, for the top 100c% values of |Z|, as well as the bottom 100c%
and top 100c% of values of Z) as per Eqs 4–10. Means and 95% confidence intervals were com-

pared between the autism and control subsamples. We hypothesized that ENDevs for the con-

trol group would exceed those of the autism subsample.

Small samples may result in underestimation of the ENDevs, particularly if the number of

ENDevs are large. In other words, one must observe many individuals if we are to count their

large number of deviation patterns. To evaluate the degree to which our sample size is suffi-

cient to capture ENDevs in control and autism groups, we plotted heterogeneity accumulation

curves. These curves are constructed by re-estimating the ENDevs in each group using boot-

strap subsampling at progressively larger sample sizes (we evaluated samples between N = 5

and N = 199 in increments of 10). If a clinical cohort deviates consistently from the normative

distribution, one should observe the clinical group’s accumulation curve plateau earlier than

that of the normative cohort.
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Results

Experiment using synthetic data

The normative model’s predictions of the response variables for each subject in the clinical

sample—given his or her covariates—are shown in Fig 2C. Fig 2D plots standardized deviance

values for all subjects in the clinical cohort (i.e. unaffected and affected).

Fig 3A demonstrates the subject-wise probability distributions over the deviant features

(i.e. cðz�i ; cÞ) for various extreme value thresholds c 2 {1, 0.3, 0.05, 0.01}, stratified by group.

Sparsity of the c-deviant feature distributions increases inversely proportional to c. Fig 3B

shows that the distribution over c-deviant features in the pooled cohort (Eq 8) becomes more

“peaked” with lower values of c. Together, Fig 3A and 3B suggest—and Fig 3C and 3D con-

firms—that the effective number of c-deviant features per subject (Pa

q; Eq 9) and overall (Pg

q;

Eq 7) should increase with c.
Fig 3A also shows that the c-deviation patterns are consistent within the “affected” subsam-

ple. That is, the most c-deviant features tend to be the same across subjects, suggesting that

they deviate from the normative distribution in similar ways. Conversely, the distribution of c-
deviant features in the unaffected subsample spans a larger number of features, inconsistently

Fig 3. Measurement of heterogeneity in the synthetic clinical cohort. Panel A: Subject-level probability distributions over the most c-deviant (i.e. top 100c%)

features. Each row within a heatmap is a probability distribution computed using Eq 4, and columns show distributions across thresholds c 2 {0.01, 0.1, 0.3, 1}.

Panel B: Pooled distribution over c-deviant features (�cðZ�; cÞ; Eq 8), shown column-wise, across values of c (on x-axis). Panels C-E: The γ (Eq 7), α (Eq 9), and β
heterogeneity (Eq 10), respectively, in the unaffected (blue), affected (red), and pooled (green) cohorts. Solid lines are means, and shaded ribbons are 95%

confidence intervals.

https://doi.org/10.1371/journal.pone.0242320.g003
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across subjects. Indeed, Fig 3E confirms that the affected group’s ENDevs (Pb

q ; Eq 10) is lower

than that of the unaffected subsample.

Experiment using the MNIST dataset

Across multiple extreme value thresholds (c 2 {0.01, 0.02, 0.05, 0.1}), Fig 4 confirms our

hypothesis that the peak ENDevs occur when the clinical and normative cohorts are of the

same digit class. The supplemental materials includee a plot of the cVAE training loss across

each digit class (S3 Fig), and visualization of deviation profile distributions for each norma-

tive-clinical digit class combination (Fig 4).

Experiment using autism neuroimaging data

There were no univariate differences between groups across covariates (S1 Table). Comparison

of ENDevs between control and autism subgroups are shown in Fig 5 and Table 1 (across c 2
{0.01, 0.02, 0.03, 0.05, 0.07}). At c = 0.01, ENDevs estimated for the autism group was lower

than that of the control group for the top 100c% absolute standardized deviances (41.1 95% CI

[38.8,43.4] vs. 46.4 [44.4,48.4]) and for the top 100c% standardized deviances (39.9 [37.8,42.1]

vs. 46.8 [43.6,49.4]), albeit only slightly. There was no difference in ENDevs between autism

and control samples computed with the bottom 100c% standardized deviance values (41.7

[38.0,44.2] vs. 43.9 [40.8, 46.0]). As with our experiments on synthetic and MNIST data (Figs 3

and 4, respectively), differences in ENDevs between groups were attenuated as the extreme

value threshold c was increased.

Heterogeneity accumulation curves in Fig 5 show that (A) ENDevs in the autism group

never exceeds that of the control group, (B) ENDevs in the autism group begin to plateau ear-

lier than ENDevs in the control group, and (C) neither group achieves a consistent plateau

value for ENDevs, suggesting that further sampling will likely discover further novel

variation.

Fig 4. Results of the MNIST experiment. Each plot corresponds to a normative model (cVAE [30, 31]) trained on images from the “normative” digit class

identified in the title. The x-axes index “clinical” or “target” digit classes. The y-axes plot the β-heterogeneity at q = 1 (Pb

1
, Eq 10), across thresholds c 2 {0.01, 0.02,

0.05, 0.1}. Dashed vertical lines highlight maximal values of Pb

1
.

https://doi.org/10.1371/journal.pone.0242320.g004
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Discussion

This paper has identified a method of measuring heterogeneity in clinical cohorts under the

normative modeling paradigm. Using Rényi heterogeneity, we quantified the effective number

of distinct and equiprobable patterns of deviation from a normative distribution, guaranteeing

Fig 5. Results of experiment on ABIDE dataset. Top Row: The effective number of deviation patterns (ENDevs; y-axes) across thresholds c for control (blue) and

autism (red) subgroups. Bottom Row: Heterogeneity accumulation curves (ENDevs against sample size; at c = 0.01). The leftmost column shows results for the top

100c% of absolute standardized deviance values, while centre and right columns show results for the lowest and highest 100c% of standardized deviance values,

respectively. Solid lines are means and ribbons are 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0242320.g005

Table 1. Tabular representation of experimental results with ABIDE dataset.

Threshold c Top 100%c (Absolute) Bottom 100%c Top 100%c

Normative Pb

1
Clinical Pb

1
Normative Pb

1
Clinical Pb

1
Normative Pb

1
Clinical Pb

1

0.01 46.4 [44.4,48.4] 41.1 [38.8,43.4] 43.9 [40.8,46.0] 41.7 [38.0,44.2] 46.8 [43.6,49.4] 39.9 [37.8,42.1]

0.02 35.5 [34.0,36.8] 31.5 [30.2,32.6] 33.9 [32.1,35.1] 31.6 [30.4,32.9] 34.6 [33.2,37.0] 30.3 [29.1,31.7]

0.03 28.1 [27.3,28.9] 25.9 [25.2,26.9] 27.5 [26.2,28.3] 25.4 [24.8,26.7] 27.5 [26.2,28.2] 25.1 [24.0,26.1]

0.05 17.4 [16.9,17.7] 16.6 [16.2,17.0] 17.4 [17.1,17.7] 16.6 [16.2,16.9] 17.3 [17.0,17.7] 16.0 [15.6,16.5]

0.07 12.6 [12.5,12.8] 12.1 [11.9,12.3] 12.7 [12.4,12.8] 12.3 [12.1,12.5] 12.6 [12.4,12.8] 11.8 [11.6,12.1]

The effective number of typical deviation profiles (Pb

1
) for control (Normative) and autism-diagnosed (Clinical) subjects across various extreme value thresholds (first

column).

https://doi.org/10.1371/journal.pone.0242320.t001
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that heterogeneity is being measured in an axiomatically sound fashion consistent with other

scientific disciplines [11, 15].

Our method exploits a potential synergy between normative modeling [1] and representa-

tional Rényi heterogeneity (RRH) [22]. The RRH theory was developed after previous work

showed that there were no existing heterogeneity measures capable of application to the types

of data used in modern psychiatric research [11, 34]. Furthermore, RRH was shown to general-

ize heterogeneity measures used across multiple disciplines, such as ecology [15, 18], econom-

ics [19], and statistical physics [24]. Representational Rényi heterogeneity involves measuring

the size of a system’s event space, which can be generated (along with a probability distribution

over it) by a normative model. In the present study, this was the space of c-deviation patterns,

where c was an extreme value threshold. If this set of deviation patterns constitutes a relevant

representation for the condition of scientific interest, then Rényi heterogeneity will provide an

axiomatically sound measure of diversity in that set [11, 15, 16, 20, 26].

In all applications within our study, the ENDevs was lower for groups hypothesized to lie

outside of some normative range. In the fully synthetic and MNIST experiments, samples

drawn from outside the normative range showed smaller ENDevs than samples drawn from

within the normative distribution. This behaviour was also shown in our experiment with the

ABIDE data (Fig 5), albeit less markedly. This may be due to several factors. Namely, the het-

erogeneity accumulation curves did not show complete plateau, which suggests that the sample

sizes are inadequate. It is also possible that diagnostic labels by which the clinical cohort was

identified may define an inherently heterogeneous group, or the features/model may not

suffice to capture the specific representation along which the diagnostic label is most homoge-

neous. Indeed, the ultimate goal of biological psychiatric research is to find feature representa-

tions—whether at genetic, molecular, structural, or other levels of analysis—that facilitate

coherent definition of homogeneous clinical groups.

Representational Rényi heterogeneity is a general theory of heterogeneity that can be

applied to any dataset, given a suitable probabilistic representation [22]. Since normative mod-

els can generate probability distributions over patterns of deviation from normal variation,

RRH (here with units of ENDevs) can therefore be measured in any normative modeling

study, although the normative modeling framework at present has been largely isolated to neu-

roimaging applications [1]. Future work should extend normative modeling, and consequently

our heterogeneity measure, to genetic, connectomic, and behavioural data. In principle, one

may also derive various other RRH-derived indices for the normative modeling approach.

New measures could be identified by defining other representations of deviation from the nor-

mative range; so long as one can also specify a probability distribution over such a representa-

tion, Rényi heterogeneity will be applicable, and the heterogeneity index will inherit its well

understood properties [15, 20, 22].

Future work must formally identify the conditions under which clinical cohorts will have

smaller effective numbers of deviation patterns than cohorts drawn from the normative distri-

bution. For example, it is trivial to show that if the normative distribution is degenerate, then

the clinical cohorts will almost certainly have a larger number of deviation patterns. This sce-

nario of degeneracy is unlikely to be observed in real-world scenarios in which one would con-

sider normative modeling to be useful. However, a complete understanding of heterogeneity

measurement and normative modeling requires that we understand all possible cases. Achiev-

ing this will require further formal analysis.

In conclusion, we have extended the popular and useful normative modeling approach with

a heterogeneity measure identifying the ENDevs. Our measure is based on RRH and thus

inherits its well understood properties, while ensuring that our definition of heterogeneity

remains consistent with how heterogeneity is defined across other scientific disciplines
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[11, 23, 24, 26]. Future work should (A) explore other useful Rényi heterogeneity measures

derived from normative models, (B) apply normative modeling-based heterogeneity measures

to other data modalities, and (C) provide further formal analyses of the behaviour of Rényi het-

erogeneity measures under normative models of different architectures.

Supporting information

S1 Fig. Rényi heterogeneity of Gaussian distributions. Several univariate Gaussian distribu-

tions with mean 0 and standard deviations σ1, σ2, . . ., σ5 (probability densities shown in the left

plot), and the corresponding Rényi heterogeneity values (right plot). On a continuous domain,

such as that of a Gaussian distribution, the Rényi heterogeneity has units of “effective volume”

(or length, or area, depending on the dimension).

(TIF)

S2 Fig. Linear scaling of Rényi heterogeneity. Demonstration of linear scaling of Rényi het-

erogeneity, in comparison to the variance and entropy on a unidimensional uniform distribu-

tion with domain size u (i.e. the domain begins at the origin). Vertical and horizontal gridlines

are set at 1.5 to illustrate that the Rényi heterogeneity increases by 50% when the domain size

increases by 50%.

(TIF)

S3 Fig. Variational loss under the MNIST data. Variational loss for 10-folds of cross-valida-

tion within each digit class.

(TIF)

S4 Fig. Deviation patterns in MNIST target cohorts. Marginal distributions of most

extremely deviant pixels (at the extreme value threshold c = 0.01) for MNIST digit classes.

Marginalization was done over the images of the “clinical” digit class. The digits listed along

rows are the “normative” classes. The digits listed along the columns are the “clinical” cohorts.

For example, the image in the top-right corner (row 0, column 9) depicts the pattern by which

images of “Nines” tend to deviate from a normative distribution of “Zeros,” as modeled by a

convolutional variational autoencoder [30, 31].

(TIF)

S1 Table. Distribution of covariates across the normative (Control) and clinical (Autism)

cohorts. Covariates include site of origin (SITE), sex, handedness (HAND), age at scan (in

years). Student’s t-test was applied to evaluate difference in the mean of continuous variables

between groups. The χ2 test was applied to evaluate differences in categorical variables between

groups.

(CSV)

S2 Table. Features from ABIDE dataset included after cross-validation. These were features

for which the normative model could explain more than 20 percent of variance across folds.

(XLSX)

S1 File. Python code reproducing the synthetic data experiment.

(IPYNB)

S2 File. Python code reproducing the MNIST experiment.

(IPYNB)

S3 File. Python code reproducing the experiment on autism neuroimaging data.

(IPYNB)
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S4 File. Demographic and clinical variables for the autism neuroimaging experiment.

(CSV)

S5 File. Neuroimaging variables for the autism neuroimaging experiment.

(CSV)
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