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1. Introduction
Nowadays, climate change due to the increase in greenhouse gas emissions accumulated in the atmosphere is a major threat 
to the world. Carbon dioxide (CO2) is one of the gases that has a major share in global warming. The share of CO2 in the 
greenhouse effect factors is about 55% [1–2]. CO2 emissions, as a result of from industry, power plants and combustion of 
fossil fuels, which are worldwide problems [3]. Therefore, reducing the CO2 concentration in the atmosphere has recently 
been an important issue. For that reason, the development of CO2 capture and storage techniques is extremely important 
[4–5].

Recently, solid adsorption, liquid absorption and membrane separation can be mentioned as the main methods for 
CO2 capture [2,6]. Among these methods, CO2 adsorption is a prominent method due to its advantages such as low 
energy requirement, low cost, ease of application, and regeneration of the adsorbent [7–10]. In order for CO2 adsorption 
to be efficient, it is important to develop an adsorbent with a high adsorption capacity, selectivity, kinetics and stability 
[7,11]. Commonly used solid adsorbents for CO2 capture are zeolites [12–13], silica [14], clay minerals [15], metal-organic 
frameworks [16–19], porous polymer materials [20–22], and carbon materials [23–29].

Because the carbon materials have properties such as large surface areas and pore volumes, hydrophobicity of the 
surface, relatively easy regeneration, good thermal and mechanical stability, and inexpensive preparation costs, they stand 
out for CO2 adsorption among other adsorbents [1–5,30]. Activated carbons are the most widely used carbon materials in 
this area [30–35]. However, since activated carbons are produced from various raw materials and by various methods, they 
offer an uncontrollable pore structure and surface properties. The carbon adsorbents with controlled porous structure were 
prepared by using different synthesis ways like template method. The hard or soft template carbonization methods have 
attracted much attention to prepare porous carbon materials with desirable properties [4,36]. In particular, the ordered 
porous carbons which have quite narrow and uniform pore size distribution can be prepared with this method and they 
are considered to be very suitable CO2 adsorbents [37].

The template synthesis of ordered mesoporous carbons was first reported by Ryoo and coworkers [38,39] using 
mesoporous silica materials such as MCM-48 and SBA-15 as hard templates and sucrose as the carbon source. Although 
the ordered mesoporous carbons obtained by this method have large surface areas, large pore volumes, and narrow pore 
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size distributions, the process of preparing these carbons by the hard template method is time-consuming and includes 
multiple steps such as the need to prepare the hard template first and then impregnation. Later, a one-pot method that 
eliminates the pre-synthesis step of silica and allows the simultaneous formation of carbon and silica was presented. Ting 
and co-workers [40] reported a simple one-pot method for preparing of hexagonally ordered mesoporous carbon. In 
their method, a composite was formed in a one-pot using sucrose, tetraethyl ortosilicate (TEOS), and Pluronic P123 
via organic-inorganic self-assembly under acidic conditions, and then mesoporous carbons were obtained by removing 
silica following carbonization. They showed that the structural properties of ordered mesoporous carbons can be adjusted 
simply by changing the reaction parameters and compositions [40]. Prabhu et al. [41] presented a work that involves the 
simultaneous production of KIT-6 silica and carbon by one-pot method. In this method, P123/n-butanol/sucrose/silica 
composite directly catalyzed by H2SO4 in the synthesis mixture was generated, and the mesoporous carbon was prepared 
after carbonization followed by silica removal. Thus, the mesoporous carbon with three-dimensional cubic symmetry was 
obtained [41]. In their report, the synthesis of this carbon was carried out under a specific condition only; some important 
points such as the effects of the synthesis parameters and of the amounts of components in the synthesis mixture on 
the structure of the resulting carbons were not addressed. In addition, it was emphasized that the synthesis conditions 
and compositions still need to be optimized. However, to the best of our knowledge, no reports have been found in the 
published literature regarding the effects of synthesis conditions of mesoporous carbon with three-dimensional cubic 
symmetry produced by the one-pot method. To overcome this gap, the synthesis parameters and compositions were 
investigated in this study by employing one-pot technique for these carbons development. To ensure the widespread use of 
porous carbons, it is important to develop simple synthesis methods that directly lead to their formation and to optimize 
these synthesis methods. 

In particular, the studies based on high performance adsorbents for carbon dioxide retention have attracted great 
attention. Currently, the researches focus on using low-cost resources to develop efficient and economical synthesis 
pathways for ideal performance sorbents. The present study is thought to be the first attempt to introduce CO2 adsorption 
potentials of the templated porous carbons which produced using one-pot method a simplified technique, from sucrose as 
an economical and abundant source.

In this study, templated carbons were prepared using sucrose as a carbon precursor and tetraethyl orthosilicate (TEOS) 
as silica precursor by one-pot method. In this method, the organic-inorganic self-assembly of sucrose, TEOS, Pluronic 
P123, and n-butanol in acidic medium was performed, thus the pre-synthesis of hard template was eliminated. In addition, 
the porous carbons produced from sucrose can be advantageous since sucrose is a low-cost, environmentally friendly, and 
abundantly available chemical. The CO2 adsorption potentials of the templated porous carbons were determined. The 
effects of synthesis parameters such as carbonization temperature, molar ratio of TEOS and amount of sucrose on the 
properties of carbons were also investigated. This examination was supported by different characterization tests including 
field emission scanning electron microscopic (FESEM) imaging, transmission electron microscopic (TEM) imaging, 
thermogravimetric analysis (TGA), Raman spectroscopy, X-ray diffraction (XRD), surface area, and porosity analysis.

2. Materials and methods
2.1. Chemicals
In the synthesis of carbons, sucrose (Carlo Erba), tetraethyl orthosilicate (TEOS) (Acros Organics), triblock copolymer 
(Pluronic P123 MW = 5800, Sigma Aldrich), n-butanol (VWR Chemicals), and sulfuric acid (H2SO4) (Fluka) were used 
as the carbon source, silica source, structure directing agent, cosolvent, and catalyst, respectively. Hydrochloric acid (HCl) 
(Merck) was used to provide the acidic medium and hydrofluoric acid (HF) (Fisher Chemical) was used to remove silica. 
All of the chemicals used in the study were analytical grade and they were used as received.
2.2. Synthesis of templated porous carbons
The templated porous carbons were synthesized via the one-pot method with some modifications according to the method 
found in the related literature [41]. In a typical synthesis, 4 g of P123 was added to the acidic solution containing 7.9 g of 
HCl and 144 g of water and the mixture was stirred at room temperature for 3 h. Then, 4 g of n-butanol was added to the 
same solution and stirred for a further 2 h. To the resulting homogeneous solution was added 1 g of H2SO4 and a certain 
amount of sucrose (0.6, 0.73, and 0.85 g) and again stirred for 2 h. A certain molar ratio (0.52, 1.70, and 2.88) of TEOS was 
added to this solution and the mixture was allowed to stand at 35 °C for 24 h under vigorous stirring. This solution was 
aged hydrothermally at 100 °C for 24 h in polypropylene bottles. Subsequently, it was kept in the oven at 100 °C for 6 h 
and then at 160 °C for 6 h. The resulting composite powder was subjected to carbonization under nitrogen flow at various 
temperatures (766, 850, and 934 °C) for 3 h. A 10% HF solution was used to remove the silica from the resulting solid and 
the carbonized solid was allowed to stand in this solution for 24 h. It was then filtered, washed with ethanol, and dried at 
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100 °C. Since it was aimed to investigate the effects of sucrose content, TEOS molar ratio and carbonization temperature 
on the properties of the formed carbons, these conditions were changed at the values indicated in brackets and synthesis 
was applied. The porous carbons are named as S-x/T-y/C-z, where x is the amount of sucrose and y is the molar ratio of 
TEOS and z is the carbonization temperature. All notations of the prepared carbon adsorbents along with their synthesis 
conditions are given in Table 1.
2.3. Characterization
The pore volumes and specific surface areas of the porous carbons were determined by analyzing the nitrogen adsorption-
desorption isotherms which found at 77 K using an Autosorb 1-C (Quantachrome, USA) analyzer. Before the analysis, the 
carbon samples were degassed at 300 °C for 3 h under vacuum. The Brunauer–Emmett–Teller (BET) method was used 
to determine the specific surface areas of carbons and Barret-Joyner-Halenda (BJH) method was applied to adsorption 
isotherm to determine the pore size distributions of carbons. The total pore volume (Vtotal) was obtained from the 
adsorbed volume of N2 at relative pressure of 0.99. The micropore volumes (Vmicro) were determined by using the Dubinin–
Radushkevich (DR) method. The X-ray diffraction (XRD) patterns were collected by Panalytical Empyrean at a scanning 
speed of 5 °/min and a scanning angle of 10–70 ° for analyzing the structures of carbons. In addition, Raman spectroscopy 
(Renishaw inVia) was also used with a laser wavelength of 532 nm and in a scanning range of 100–4000 cm–1. Field emission 
scanning electron microscopy (FESEM) (Hitachi Regulus 8230) and transmission electron microscopy (TEM) (Hitachi 
HT7800) were used to characterize the surface morphology and microstructure of carbons. Elemental composition was 
demonstrated by energy dispersive X-ray spectroscopy (EDS). Thermal behavior of carbon was performed on a thermal 
analyzer (Perkin Elmer STA 8000) at 10 °C/min. The CO2 adsorption isotherms of the porous carbons were determined 
at a temperature of 273 K and in a pressure range of 0–1 bar by using a volumetric adsorption apparatus (Quantachrome 
Autosorb 1-C).

3. Results and discussion 
The characterization results obtained for carbons produced under the conditions specified in Table 1 and the results for 
CO2 adsorption are presented in the following sections.
3.1. Characterization of porous carbons
The molecular morphology characterization of carbon materials was performed by Raman spectroscopy. The Raman 
spectra for all carbon samples are given in Figure 1. The Raman analysis of the carbon samples showed two main peaks 
at around 1335 and 1590 cm–1. The G band at 1590 cm–1 indicates that the carbon samples contain sp2 bonded carbon 
in planar sheets. This represents the presence of ordered carbon structure. The broad band at 1335 cm–1 is known as 
the D band and this is due to a hybridized vibrational mode associated with graphene edges in disordered carbon with 
structural defects and disorders [8,26,42–43]. The intensity ratio of D to G band, ID/IG, is usually used to characterize 
the graphitization degree of carbon materials. The ID/IG ratios for the carbon samples are given in Table 2. A higher ID/IG 
ratio indicates a lower degree of graphitization. The results show that the S-0.73/T-1.70/C-850 carbon has the highest and 
S-0.73/T-1.70/C-934 carbon has the lowest graphitic degree. For all porous carbon samples, the ID/IG ratios are close to 1 
and found to be well compatible with similar mesoporous carbon materials [44–46].

The XRD patterns of templated porous carbons are presented in Figure 2. Two broad peaks at around 25 ° and around 
44 ° shown in the XRD patterns can be attributed to (0 0 2) and (1 0 0) plane for all porous carbons [8,42–43]. These peaks 

Table 1. Carbon samples and their synthesis conditions.

Carbon Sucrose amount 
(g)

TEOS molar
ratio

Carbonization 
temperature (°C)

S-0.60/T-1.70/C-850 0.60 1.70 850
S-0.73/T-1.70/C-850 0.73 1.70 850
S-0.85/T-1.70/C-850 0.85 1.70 850
S-0.73/T-0.52/C-850 0.73 0.52 850
S-0.73/T-2.88/C-850 0.73 2.88 850
S-0.73/T-1.70/C-766 0.73 1.70 766
S-0.73/T-1.70/C-934 0.73 1.70 934
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Table 2. Structural parameters of porous carbons.

Carbon ID/IG d002 (nm)

S-0.60/T-1.70/C-850 0.89 0.3543
S-0.73/T-1.70/C-850 0.64 0.3600
S-0.85/T-1.70/C-850 0.83 0.3687
S-0.73/T-0.52/C-850 0.88 0.3628
S-0.73/T-2.88/C-850 0.87 0.3737
S-0.73/T-1.70/C-766 0.72 0.3535
S-0.73/T-1.70/C-934 0.98 0.3657
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Figure 1. Raman spectra for porous carbons.

Figure 2. XRD patterns of porous carbons.
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are typical for amorphous carbons [23]. The (0 0 2) peak for carbons indicates inter-planar stacking structures of graphitic 
carbon [42]. The (1 0 0) diffraction peak is caused by the disordered structure of carbons [1]. The values of d-spacing (d002) 
from XRD measurement are given in Table 2. The d002 of porous carbons increased from 0.3535 nm to 0.3657 nm as the 
carbonization temperature increases. A similar situation is observed with an increase in the amount of sucrose. Again, the 
increase of the TEOS molar ratio to 2.88 also caused an increase in the d-spacing.

Figure 3 shows the FESEM images of the carbon samples prepared at different TEOS molar ratio. The pores and folds 
are observed on the carbon surfaces. The FESEM image of S-0.73/T-2.88/C-850 carbon prepared with the highest TEOS 
molar ratio shows a smoother surface with less porous structure. The surface appears to become rougher as the TEOS 
molar ratio decreases. The porous characteristics of the carbons can be viewed directly in the TEM images in Figure 4. 
In this figure, the mesopores of 2–4 nm in diameter can be distinguished on the carbon surfaces. The TEM image of the 
S-0.73/T-1.70/C-850 carbon sample also shows cubic arrays of structure. There are relatively regular distributed pores 
which is a typical characteristic of ordered porous carbons. Some disordered pores are also shown at edge positions. 
S-0.73/T-0.52/C-850 carbon exhibits a structure with more uniform pore size compared to other samples. This result is in 
good agreement with pore size distribution described later in this article (Figures 5a-d). The EDS analysis determined with 
FESEM indicated that the carbon content of the samples is at about 94 wt%, O content is at about 5 wt% and Si content is 
at about 0.23 wt%. This result proves that the silica is almost completely removed from the structure.

The nitrogen adsorption-desorption isotherms of porous carbons and pore size distributions are shown in Figure 5. The 
specific surface areas and pore properties of the porous carbons are given in Table 3. The adsorption-desorption isotherms 
of all carbons can be ascribed to type IV according to the IUPAC classification. This type of the isotherm is typical for 
materials containing mesopores, besides micropores. This is also seen in pore size distributions. All porous carbons show 

Figure 3. FESEM images of the porous carbons.
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well developed pore size distribution below 10 nm, indicating the presence of both micropores and mesopores. Almost 
all isotherms show type H2 hysteresis loops. Such loops are characterized by a long and nearly flat adsorption branch 
and a steep desorption branch. It is said that the pore structures of materials showing such isotherms are complex and 
interconnected. As the molar ratio of TEOS increased, the amount of nitrogen adsorbed decreased and the shape of the 
hysteresis loop was similar to the H4 type (Figure 5c). It can be concluded that the molar ratio of TEOS changes the pore 
properties of the formed carbons. This result can be seen from Table 3. When the TEOS molar ratio increased from 0.52 to 
2.88, the specific surface areas and pore volumes sharply decreased from 1289 to 495 m2/g and from 1.196 to 0.557 cm3/g, 
respectively. The effects of sucrose amount and carbonization temperature on the pore properties of carbons were not as 
significant as the molar ratio of TEOS.

The thermal stability of the obtained porous carbons was examined by TGA analysis. Thermal behaviors of the S-0.73/
T-1.70/C-850 carbon under N2 and air atmosphere are shown in Figure 6. The curve obtained under N2 flow exhibits 
three weight loss steps. The initial step weight loss is about 1.8% at below 100 °C, which is mainly attributed to the loss of 
moisture outside the surface and adsorbed water in the structure. The second step shows the weight loss of 3.7% at about 
500 °C. The largest weight loss of 10.45% is in the third stage from 500 to 800 °C. As compared with that in N2 atmosphere, 
the template porous carbon under air flow shows a significant weight loss which represents the oxidation of carbon in 
the temperature range of 500–700 °C. The mass content in TGA curve of carbon under air atmosphere is close to zero at 
temperature above 700 °C. The weight of residue was only 4.5% indicating that most components were burnt in air. In 
addition, little residue showed that the dissolution of silica was nearly complete. The results confirmed that the template 
porous carbon materials have high thermal stability in N2 and air.
3.2. CO2 adsorption 
Figure 7 shows CO2 adsorption isotherms of porous carbons at 273 K. The corresponding uptakes at 1 bar are presented 
in Table 3. The effects of sucrose amount on the CO2 adsorption is shown in Figure 7a. The CO2 adsorption isotherms for 
carbons prepared at different amount of sucrose are very close to each other. The effects of TEOS molar ratio are displayed 

Figure 4. TEM images of the porous carbons. 
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in Figure 7b. Increasing of the TEOS molar ratio from 0.52 to 2.88 gives rise to negative impacts on CO2 uptake. In Figure 
7c, carbon samples carbonized at 766 and 850 °C have very close CO2 adsorption capacities, however CO2 adsorption 
amount decreases when the carbonization temperature reaches to 934 °C. 

Figure 8 shows the relationship of the adsorbed amount of CO2 at 1 bar with the pore properties of the templated porous 
carbons. As can be seen in Figure 8, there is a nearly linear relationship between the CO2 uptakes and pore properties. 
A very similar trend is observed for the adsorbed CO2 amount in relation to the specific surface area and the micropore 
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volume (Figures 8a and b). These pore properties have more linear relationship with CO2 uptake as compared with total 
pore volume (Figure 8c). As the micropore volume and surface area presented by porous carbons increased, the CO2 
adsorption amount increased. 

The effect of the synthesis parameters on the CO2 adsorption capacities of the templated carbons is presented in Figure 
9. The results show that the TEOS molar ratio has more influence on the CO2 adsorption amount. While the S-0.73/T-
0.52/C-850 carbon prepared with the lowest TEOS molar ratio exhibits the highest capacity of 2.28 mmol/g, the S-0.73/T-
2.88/C-850 carbon synthesized with the highest TEOS molar ratio has the lowest CO2 uptake of 1.27 mmol/g. The higher 
CO2 adsorption capacity of S-0.73/T-0.52/C-850 carbon can be attributed to the higher surface area and micropore volume 
of this carbon compared to other samples. As mentioned earlier, the CO2 capacity is directly related to the micropore 
volumes and surface areas of the carbons. Since TEOS is used as a source of silica in the synthesis of these carbons, 
it is thought that increasing the amount of TEOS leads to an increase in the pore wall thickness of the silica formed 
simultaneously with the carbon structure. It was concluded that when the TEOS molar ratio is high, the porous carbon 
formed after the silica was removed from the structure had larger pores and therefore the surface area of carbon decreased. 
When the TEOS molar ratio was 2.88, the average pore size of the formed carbon S-0.73/T-2.88/C-850 had the largest 
value of 4.57 nm among the synthesized carbons and the surface area had the lowest value of 495 m2/g. Increasing the 
amount of sucrose did not have a significant effect on the CO2 adsorption capacities of the carbons while increasing the 
carbonization temperature led to a slight decrease in the amount of CO2 adsorption. The high carbonization temperature 
caused much more micropores to collapse and form larger micropores and mesopores. In addition, average pore size 
enlarged from 3.56 nm to 3.87 nm when temperature was increased from 766 °C

 

to 934 °C. It can be said that the most 
effective parameter on the surface areas and micropore volumes of the carbons synthesized in this study is the TEOS molar 
ratio. Therefore, the TEOS molar ratio was the most effective parameter, on the CO2 adsorption capacity of carbons, among 
the synthesis parameters examined.

The measured CO2 uptake values for the templated carbons synthesized in this study are close to the results presented 
in some previous studies in the literature while they are lower than others. Kim et al. synthesized three-dimensional 

Table 3. Specific surface areas and pore properties of porous carbons and CO2 uptakes.

Carbon SBET 
(m2/g)

Vtotal 
(cm3/g)

Vmicro 
(cm3/g)

Vmeso
(cm3/g)

Dp 
(nm)

CO2 uptake at 273 K,
1 bar (mmol/g)

S-0.60/T-1.70/C-850 900 0.886 0.340 0.546 3.98 1.85
S-0.73/T-1.70/C-850 1052 0.998 0.398 0.600 3.80 1.87
S-0.85/T-1.70/C-850 827 0.873 0.310 0.563 4.24 1.77
S-0.73/T-0.52/C-850 1289 1.196 0.467 0.729 3.71 2.28
S-0.73/T-2.88/C-850 495 0.557 0.191 0.366 4.57 1.27
S-0.73/T-1.70/C-766 977 0.858 0.372 0.486 3.56 1.95
S-0.73/T-1.70/C-934 845 0.806 0.324 0.482 3.87 1.63
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Figure 6. Thermogravimetric analysis for the S-0.73/T-
1.70/C-850 carbon sample.
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hierarchical porous carbon materials by using furfuryl alcohol (PCM-F) or phloroglucinol (PCM-P) as carbon precursor 
and acid-labile mesoporous ZnO/Zn(OH)2 spheres as hard template. The CO2 uptakes of PCM-F and PCM-P are 1.83 and 
2.55 mmol/g at 273 K, respectively [47]. Saha and Deng synthesized ordered mesoporous carbon from phloroglucinol by 
soft-template approach and measured adsorption properties of CO2, methane, nitrous oxide, and ammonia. The adsorption 
equilibrium capacity of the ordered mesoporous carbon synthesized of the CO2 is 1.49 mmol/g at 800 Torr and 298 K 
[48]. Tiwari et al. synthesized oxygen-enriched nanostructured carbon derived from resorcinol-formaldehyde by using 
mesoporous silica as template and reported the CO2 uptake of 1.5 mmol/g at 30 °C [27]. Shi et al. prepared hierarchically 
porous carbon frameworks with the combination of hard template and NaOH activation. For this carbon, the CO2 uptake 
at 273 K and 1 bar was reported as 3.80 mmol/g [49]. The nitrogen and sulfur dual-doped ordered mesoporous carbon 
spheres were prepared by Konnola and Anirudhan [50] and the capacity of 4.25 mmol/g at 273 and 1 bar was reported for 
CO2 uptake. In another research, the hierarchical porous carbons from sugar as the carbon precursor and nano-CaCO3 as 
the hard template were prepared and the results showed that the CO2 uptake reaches 2.84 mmol/g at 25 °C and 1 bar and 
3.66 mmol/g at 0 °C and 1 bar [51]. According to these results, higher capacities were generally obtained for the activated 
or nitrogen, sulfur doped carbons. Besides the pore structure of carbons, surface chemistry is known to be an effective 
factor on the CO2 adsorption.

The cyclic stability of the adsorbent was tested by repeated consecutive adsorption and desorption steps. The adsorption/
desorption cycle of CO2 for S-0.73/T-0.52/C-850 carbon shows almost identical isotherm curves after four cycles (Figure 
10). The average adsorption capacity was not changed during these cycles. These results indicate that the templated porous 
carbon is reversible and exhibits good adsorption stability. 
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Figure 7. The CO2 adsorption isotherms of templated porous carbons at 273 K.
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The organic-inorganic self-assembly can be achieved in the one-pot method. Thus, the silica template is formed 
simultaneously with the carbon. Since this process does not require silica hard template preparation prior to the carbon 
synthesis, it significantly simplifies the process compared to the traditional hard template process and saves time, labour 
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Figure 8. The relationship of adsorbed amount of CO2 with (a) specific surface area, (b) micropore volume and (c) total pore volume of 
the templated carbons.
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and energy. At the same time, using a low-cost carbon precursor such as sucrose can make the process more economical. 
As a result, the carbons obtained in this study may be of interest as potential adsorbents in CO2 adsorption.
4. Conclusion
The templated porous carbons from sucrose were synthesized using one-pot method and characterized with various 
techniques such as Raman spectroscopy, FESEM, TEM, TGA, XRD, and N2 adsorption. The sucrose amount, TEOS molar 
ratio and carbonization temperature were changed during the synthesis of carbons and the influences of these parameters 
on the pore properties and CO2 adsorption of carbon materials were investigated. Results showed that the TEOS molar 
ratio is the most effective parameter on the pore properties of the synthesized carbons. The highest surface area of 1289 
m2/g and the highest micropore volume of 0.467 cm3/g were measured for the carbon prepared with the lowest TEOS 
molar ratio. For this templated carbon, the highest CO2 uptake of 2.28 mmol/g was also measured. Hence, the templated 
porous carbons can be used as CO2 adsorbent. It is hoped that these results for CO2 uptake with the templated carbons 
provides the benefits for further researches on the related porous carbons for CO2 capture.
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