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Secretory Leukocyte Proteinase Inhibitor (SLPI) is an antiinflammatory peptide that blocks the
activity of serine proteases, primarily the neutrophil elastase. In an attempt to direct the activity of
SLPI on inflamed sites, a chimera consisting of the transglutaminase Il substrate domain of trappin 2
(cementoin), and the mature SLPI protein was constructed. Cell attachment and biological activity were
compared between SLPI and this chimera. By using whole cell ELISA, fluorescence microscopy and
flow cytometry assays we observed that the cementoin-SLPI fusion protein (FP) but not SLPI attached
to a human lung epithelial cell line and monocytes. A maximum attachment was achieved 15 min

after FP was added to the cell cultures. In an elastase activity assay, we observed that FP retained its
antiprotease activity and that at equimolar amount of proteins, FP was more efficient than SLPI in the
inhibition. Both, FP and SLPI inhibits IL-2-induced lymphocyte proliferation, however, lower amounts
of FP were required to achieve this inhibition. Furthermore, FP binds to mycobacteria and maintained
the bactericidal activity observed for SLPI. Overall, these results show that this new chimera is able to
attach to the cell surfaces retaining and improving some biological activities described for SLPI.

SLPI and ELAFIN are low molecular weight endogenous serine proteases inhibitors'. They are produce by epi-
thelial cells and they are found in mucosal fluids including lung, digestive and genital systems®*. Moreover some
myeloid cells may produce them®. These serpins can control excessive proteolysis due to the action of neutrophil
serine proteases such as elastase, cathepsin G and proteinase-3°. Both proteins have been implicated in several
physiological and pathological events, such as wound healing, pregnancy, chronic obstructive pulmonary disease,
cancer, ischemia reperfusion injury and stroke, among others’.

The structure of SLPI and ELAFIN is characterized by the presence of whey acidic protein (WAP) domains'.
SLPI contains two WAP domains, on the contrary ELAFIN contains only one and it is synthesized from a precur-
sor named Trappin-2. The proteolysis at the C-terminal domain of Trappin-2 generates a WAP domain similar
to those found for SLPI. The N-terminal domain of Trappin-2 (38 residues) contains 5 repeated motifs with
the consensus sequence GQDPVK identified as a substrate of tissue type transglutaminase-2 (TGase-2). This
N-terminal portion is known as the cementoin domain®’ and it is responsible for the covalent attachment of
Trappin-2 with various extracellular matrix proteins. It has been reported that Trappin-2, ELAFIN and also SLPI
or its chimeras can be covalently linked to extracellular matrix proteins through transglutamination, while retain-
ing their anti-protease capacity'’. The therapeutic potential use of SLPI has been precluded due to their short
half-life in plasma and its inactivation by oxidation or by complexation with neutrophil elastase!!-'>. However, it
has been shown that SLPI can inactivate neutrophil elastase when it is bound to elastin’, suggesting that binding
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Figure 1. Adhesion of SLPI and FP to the surface of A549 cells. Cells were untreated (control cells) or pre-
treated with TNF-a (10 ng/ml, 24 h). Then, cell monolayers were incubated with SLPI or FP (4 pg/ml, 37°C,

1 hour). Cells were washed and labeled with a mouse monoclonal antibody against histidine, followed by a
secondary anti-mouse peroxidase-labeled. Quantification was performed by reading the OD at 452 nm in an
ELISA reader. Data represent mean -+ SEM of the relative expression (OD of cells with SLPI or FP minus OD of
untreated cells). *p < 0.05 vs untreated control cells. Student ¢ test for unpaired data.

to membrane or extracellular matrix could protect its structure and perhaps extend its half-life and biological
activities. In fact, we have previously reported that a fusion protein (FP), consisting of the N-terminal domain
of Trappin-2 (cementoin) and mature SLPI, protected the corneal from a noxa, preventing the development of a
serious corneal abscess in rats'®. However, this effect was not observed when SLPI was administered to the rats.
Therefore, we have speculated that the addition of cementoin to the SLPI structure favors the attachment of SLPI
to cell surfaces and transforms the serpine into a new peptide with different properties. In the present study we
analyzed and compare the binding ability of the new FP, that comprises of cementoin peptide fused to mature
SLPI. We showed by different techniques that this FP, but not SLPI, was able to attach to the cellular surface of
the human lung cell line A549 and monocytes. Furthermore, we showed that FP retained and increased some
biological activities described for SLPI.

Results

Binding of FP to A549 cell surface. It has been reported that human epithelial alveolar cell line A549
expresses tissue TGase-2'7, which is increased by LPS and TNF-a!8-%. In this context we first compared the
binding ability of SLPI and FP to this cell line. Untreated or TNF-o-treated A549 cells were in vitro cultured
with FP or SLPI and their binding to the cell surface was examined in a whole cell ELISA assay. Figure 1 shows
that binding of SLPI or FP to untreated cells is low and similar. However, TNFa-treated A549 cells increased the
bind of FP but not SLPI to the cell surface (Fig. 1). In order to confirm that pro-inflammatory stimulus favors
the binding of FP but not SLPI on A549 cells, we performed an immunofluorescence experiment on LPS-treated
A549 cells (Fig. 2). Like the whole cell ELISA assays, we did not observed binding of FP or SLPI to the surface of
untreated cells. Clear fluorescent labelled cells were observed when cells were pre-treated with LPS and incubated
with FP (Fig. 2A). However, the fluorescent label was much lower when LPS-treated cells were incubated with
SLPI (Fig. 2A). Following, we performed a time kinetic assay of the FP attachment to the cells membrane. For
this purpose, FP was incubated during different time lapses with LPS-pretreated A549 cells. Figure 2B shows that
cell fluorescence was not observed at 30 seconds, while it was observed slightly dim at 1 min and intense at 15 and
60 minutes. Since there were no differences between 15 and 30 min of incubation, we assumed that 15 min was the
time necessary to saturate the attachment of the protein to the surface of the cells. Taking into account previous
bibliography, we hypothesized that an anti-TGase mAb could block the FP binding site. Therefore, in order to
determine whether cell membrane TGase-2 crosslinks FP, we performed a binding experiment of FP to A549 in
the presence of an anti-tissue TGase-2 mAb. For these experiments, LPS- treated A549 cells were preincubated
for 30 min with an anti-TGase-2 mAb. Afterwards, FP was added, incubated for 15 min and binding was detected
with an anti-His-6XTag PerCP labelled mAb by flow cytometry as described in Materials and Methods. Figure 3
shows that cells incubated with FP displayed lower mean fluorescence intensity when they were pre-incubated
with an anti-TGase-2 mAb compared to FP treated cells pre-incubated with an irrelevant isotype control mAb.
This result suggests that cell membrane TGase crosslinks FP.

Binding of FP to leukocytes cell surface. In order to evaluate the capacity of FP to bind cell surfaces in
the context of inflammation, the attachment of FP to human peripheral blood mononuclear cells (PBMC) was
analyzed.

Human PBMC were isolated and incubated with FP for one hour. Afterwards, cells were stained with CD14
or CD19 mAb and FITC anti-histidine antibody in order to detect the binding of the FP on human monocytes
(CD14%), B lymphocytes (CD197) and T cells (CD14~ and CD197). The cell flow cytometry analysis showed
strong staining on CD14" cells and mild on CD19, while no binding on CD14~ and CD19~ cells (Fig. 4A and B).

SCIENTIFICREPORTS | (2018) 8:5332 | DOI:10.1038/s41598-018-23680-0 2



A Control SLPI

o - - -
o - - -

|

Figure 2. Fluorescence microscopy image of A549 cells incubated with SLPI or FP. (A) A549 cells were
pretreated with 400 ng/ml of LPS (24 h, 37 °C) and then incubated with of SLPI or FP (4 pg/ml, 37°C, 1 hour).
Cells were washed and labeled with an anti-histidine antibody conjugated with FITC. A representative
fluorescence microscopy image from 3 different independent experiments is depicted. (B) Time kinetics
binding of FP to A549 cell line. LPS-treated A549 cells were incubated with FP (1.3 ug/ml, 37 °C) at different
time points. After 0.5, 1, 15 and 60 minutes, cells were washed and then sequentially incubated with a mouse
antibody against cementoin and then with an anti-mouse monoclonal antibody conjugated with FITC. A
representative fluorescence microscopy image from 2 different experiments is depicted.
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Figure 3. FP crosslinking to cell membrane TGase-2. A549 cells were treated with LPS (24 h, 37°C). Cells
were detached and pre-incubated 30 min at RT with mADb to tissue TGase2 or irrelevant isotype control mAb.
Following, cells were treated or not with FP (4 pg/ml, 37°C, 15min). Afterwards, cells were stained with a mAb
against anti-6 His tag and fluorescense were measured with flow cytometer. Data represent the mean + SEM of
MFI of 3 independent experiments. *p < 0.05 paired ¢ test compared to FP + control mAb.

Biological Activity. Finally, we compare the biological activity of FP and SLPI by analyzing the antipro-
tease activity and their ability to inhibit lymphocyte cell proliferation in an equimolar and comparable assay as
described in Materials and Methods. Figure 5A and B shows that SLPI and FP have anti-protease activity since
both proteins reduced the cleavage of the elastase-specific substrate. The inhibition activity is decreased gradually
by reducing the concentration of the proteins. However, at equimolar amounts of protein, the FP displayed higher
activity than SLPI (Fig. 5C and D).
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Figure 4. Binding of FP to human mononuclear cells. PBMCs from healthy volunteers were incubated with

FP (4pg/ml, 1h, 4°C). Then cells were washed and incubated (1 h, 4°C) with a mouse IgG1 anti-histidine mAb
(clear histogram) or isotype control antibody (black histogram). Following, cells were washed and stained with
arabbit FITC-IgG1 anti-mouse polyclonal antibody (SC Biotechnology, USA). Finally, cells were stained with a
mouse PE anti-human CD14 and APC anti-human CD20 mAbs. Cells were then analyzed by flow cytometry. A
representative experiment out of three independent experiments is shown in A and the mean £ SEM is shown
in B. #*p < 0.05; ***p < 0.001 Two way ANOVA, uncorrected Fisher’s LSD test.

In a previous work we showed that SLPI inhibits lymphocyte proliferation?'. This effect depends on the pres-
ence of monocytes?!. Therefore, based on the binding of FP mainly on CD147 cells (Fig. 4), we compared the
activity of both peptides on lymphocyte proliferation. Human PBMC were isolated and incubated in the presence
of different concentrations of FP or SLPI and proliferation was induced by IL-2 (8 ng/ml). Figure 6A shows that
4 and 0.4pg/ml, but not 0.04 ug/ml of SLPI reduced cell proliferation. However, for FP the inhibition on cell pro-
liferation was observed even at 0.04 pg/ml. Another relevant function of SLPI is its bactericidal activity. Indeed,
we have previously shown that SLPI binds and has bactericidal effect against Mycobacterium Bovis BCG**. When
FP was incubated with BCG, we observed that FP not only retained the SLPI binding capacity to BCG but also
increased it (Fig. 6B). However, when microbicidal activity was tested, we observed that both proteins showed a
similar anti-mycobacterial effect (Fig. 6C).

Discussion

The biological function of the transglutaminase-catalyzed covalent linking of trappin-2/ELAFIN to extracellular
cellular matrix (ECM) proteins is to protect them from degradation by neutrophil serine proteases, so helping
maintain tissue integrity during inflammation and/or tissue remodeling®*. The posibility of SLPI to avoid serine
proteases degradation seems to be more limited than other serpins with tranglutaminase binding motifs, such as
Trappin-2. The new FP generated by our group is thought to give SLPI the possibility to be more resistant to the
proteolysis, as cementoin was added to the SLPI structure. In fact, since a mAb against TGase was able to partially
block the binding of the FP to the cell surface, it is highly probable that cell surface TGase-2 targets and crosslinks
FP to cell surface membrane. Thus, FP retains and improves some biological activities described for SLPI such as
elastase inhibition and the inhibitory effect on lymphocyte proliferation.

One of the problems with the SLPI-based therapies is probably the relative short half-life of this protein, as it
degrades shortly after being injected or applied in different ways'**. Furthermore, SLPI can be internalized and
distributed throughout the cytoplasm and nucleus of monocytes, acquiring anti-inflammatory properties but
reducing its concentration at the inflammatory microenvironment?.

In the present work we can see a slight binding of SLPI to LPS-treated A549 (Fig. 2). This was not unexpected
since it has been demonstrated that SLPI is also a TGase substrate, and that it can be crosslinked to ECM proteins
while retaining its elastase inhibitory activity'®. However, this binding of SLPI to LPS-treated cells, was not as
strong as FP. In fact, Baranger and co-workers also showed that a fusion protein consisting of cementoin fused
to the domain 2 of SLPI was a far better TGase substrate than is SLPI alone!® and also retains its ability to inhibit
neutrophil serine protease cathepsin G. In agreement with these findings, our protein consisting of the cementoin
peptide fused to the complete mature SLPI protein, showed better neutrophil elastase inhibitory activity than
SLPI alone.
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Figure 5. Quantification of SLPI and FP elastase inhibitory activity. Time kinetic curve for the inhibition of
elastase proteolytic activity by SLPI (A) and FP (B). The activity was analyzed by quantifiying the amount of
p-nitroanilide released after cleavage of an elastase specific substrate. The OD was measured at 405 nm every
2min. (C) Time kinetic curve for the inhibition of elastase proteolytic activity by equimolar concentrations
of SLPI and FP. The OD was measured at 405 nm every 5min for 50 min. (D) Residual proteolytic activity

of elastase alone or co-incubated with SLPI or FP. The residual activity was calculated as the ratio of rate of
substrate hydrolysis in the presence of inhibitor to the rate of substrate hydrolysis without inhibitor (control).
Data represents the mean + SD for three experiments. Unpair ¢ test p < 0.0001.

One of the main findings of our study, it is the demonstration that binding was higher when the epithelial
cell line was treated under pro-inflammatory conditions, such as TNF-o and LPS. This could be explained since
different cytokines, growth factors and hypoxic stimulus up-regulates tissue TGase-2 expression®.

When the cell surface attachment of FP to human immune cells was studied, a protein binding to monocytes
and B cells was observed (Fig. 4). Though the expression and function of TGase-2 on monocytes have been bet-
ter characterized, to our knowledge this issue has not been thoroughly addressed on B cells*”?%. Dendritic cells,
which like B cells are professional antigen processing cells, express tissue TGase-2%. Therefore, it is not unlikely
that B cells, such as monocytes and dendritic cells also express TGase2. This issue and its function on B cells
deserve further investigation but it is out of the scope of the present work.

A priori, we could speculate that FP and Trappin-2 would display different activities, based on the fact that
the latter has only one WAP domain and it has been described to exert a more restricted anti-protease activity™.
Although, this comparison between FP and Trappin-2 could arose interest and shed light on the understanding
of the role of cementoin, it is not the aim of the present study. Further experiments are needed to address this
specific issue.

FP displayed better enzymatic and biological function than SLPI when compared. The reasons for these differ-
ences could be due to: i) the binding of cementoin to TGase that triggers some biological events associated with
the signaling through TGase-2; ii) a more stable structure of FP than SLPI. Indeed, it is known the importance
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Figure 6. Biological activity of FP. (A) Human PBMC proliferation. PBMC (10° cells/well) were cultured

for 5 days in the presence of IL-2 (8 ng/ml). Cells were untreated or treated with different concentrations of
SLPI or FP. Proliferation was measured by [3 H] TdR incorporation during the final 18 h of culture. Data are
expressed as mean &+ SEM percentage proliferation relative to the controls. Controls were PBMCs culture with
IL-2 (98 +3.5%; n=7). *p < 0.05; **p < 0.01 and ***p < 0.001 ANOVA pos hoc Dunnett test for multiple
comparisons. (B) Binding of SLPI and FP on M. bovis BCG. For binding experiments, Bacterial particles (10°)
were incubated with control buffer, SLPI (4 pg/ml) or FP (4 ug/ml) for 2hours at 37 °C. After incubation, the
cells were washed and incubated with Penta-His Alexa Fluor 647 conjugate (30 min, 4 °C) to detect histidine-
tagged SLPI or FP. The cells were fixed and binding was detected by flow cytometry. The data represent the
percentage of mean & SEM of three experiments. **p < 0.01, ***p < 0.001 Sidak’s multiple comparisons test.
(C) Microbicidal activity against M. Bovis BCG. 50 pl volumes of mid-log phase bacteria at 1 mg/ml in Sauton
buffer was added to 96-well polystyrene microplates in triplicate, together with 4 ug/ml of SLPI, FP or control
buffer. After overnight incubation at 37 °C, the number of colony-forming units was determined by plating
serial dilutions onto 7H11 agar plates. Data represent the mean & SEM of the percentage of microbicidal activity
of two separate experiments. *p < 0.05, Tukey’s multiple comparisons test.

of the structures and the conformational changes of serpins for the correct function of them’'. In any case, the
covalent anchor of SLPI to the site of inflammation, through the cementoin peptide, could be a useful tool for a
SLPI based therapy, because in this way it could increases its local concentration and displays a targeted activity.
In fact, in a previous in vivo work in a model of corneal inflammation, we observed that FP but not SLPI resolved
the inflammatory process'®.

The biological activities of SLPI and Elafin are not circumvent to their anti-proteases and anti-inflammatory
activities. Other well characterized function of SLPI is its wide spectrum microbicidal activity, wound healing
and antitumor effects. Although, we have not yet assessed the activity of FP in wound healing and antitumor
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activity, we observed that FP displayed a bactericidal activity against mycobacteria as good as SLPI?2. However,
the binding ability of FP to mycobacteria was twice higher than SLPI, which has been described as a secreted
pattern recognition receptor for mycobacteria®. This difference is relevant since it is probable that the clearance
of mycobacteria opsonized with FP could be more efficient than SLPI.

In light of these findings this FP could arise as a new therapeutic tool, but further studies are needed to know
its therapeutic potential in in vivo models.

Materials and Methods

FP gene construction. As it was previously described for SLPI*? cementoin mRNA was extracted from
HeLa cells (epitheloid cervix carcinoma) and reverse-transcribed to cDNA using oligo-dT primers with
MMLV-RT (Promega, Madison, WI) according to specifications of the manufacturer. Two pairs of modified
PCR primers (forward primer GTTCTACATATGGCTGTCACGGGAGTT and reverse primer TTAAAGGTC
AAGATAAAGTCAAAAAGCTT) were used to generate the complete open reading frame of the cementoin
peptide from the obtained cDNA. The SLPI and cementoin cloned genes were amplified by PCR with modified
primers, these primers created new recognition sites for restriction enzyme and an ATG (Met) translation initia-
tion codon on the 5 end. The plasmids, pPGEMT-SLPI and PGEMT-cementoin were digested with the restriction
enzimes Apal and HindIII (Promega, Madison, WI) and cementoin and SLPI fragments were incubated together
in equimolar amounts in a ligation reaction with the enzyme T4 DNA ligase (Promega). This insert was then
ligated to the pET22b™expression vector (Stratagen).

The pET-Cementoin-SLPI vector was purified and electroporated in the E. coli expression strain Origami
(Novagen, Inc., an Affiliate of Merck KGaA, Darmstadt, Germany). Origami host strains have mutations in both
the thioredoxin reductase (trxB) and glutathione reductase (gor) genes, which greatly enhance disulfide bond
formation in the cytoplasm.

Purification of the recombinant proteins. SLPI and FP were expressed and purified as described previ-
ously'®. Briefly, Bacterial culture was grown by shaking at 37°C until an optical density of 0.6 measured at 600 nm.
The expression of the recombinant protein was induced by adding IPTG (isopropyl thiogalactoside, 1 mM) for
3 hours of induction at 28 °C with continuous stirring. Finally, the culture was centrifuged (7000 rpm for 7 min)
and the pellet was split and stored at —20°C.

Bacterial pellets were resuspended in 2 ml lysis buffer (50 mM NaH,PO,, 1 M NaCl, 10 mM Imidazole, pH = 8)
and then sonicated. The lysate was centrifuged (10000 g, 30 min, 4 °C), the soluble fraction was recovered and
added to 1 ml of Nickel-nitrilotriacetic acid (Ni-NTA) agarose beads (Qiagen GmbH, Hilden, Westphalia,
Germany). Subsequent washes with increasing concentration of imidazole (20-40 mM) were performed and the
protein was eluted with 250 mM imidazole, pH = 8. Finally, the eluted samples were dialyzed in phosphate buffer
overnight at 4 °C. For LPS removal, polymixin-agarose was used. Possible residual LPS was confirmed by per-
forming a Limulus test assay.

Quantification of protein concentration. Protein quantification was performed using the MicroBCA
(Pierce, USA) kit following the instructions of the manufacturer. The assay was performed in an ELISA plate,
which was subsequently read on a reader plate at 550 nm.

Acrylamide gel electrophoresis. Aliquots from the different purification steps were heat denatured
(5 minutes at 95°C) in buffer Drill (SDS 0.5% w/v glycerol 2.5% v/v, 2-3-mercaptoethanol, 1.25% v/v). Then, the
different samples were loaded in a polyacrylamide gel (18%). The run was performed under denaturing condi-
tions at 120V for 1 h. The gel was stained with Coommassie-Blue and destained according to standard techniques.
Finally, the gel photograph was digitized for further analysis.

Measurement of elastase activity. The proteolytic activity of elastase was quantified as the absorbance
produced by the cleavage of the chromogenic substrate N-methoxysuccinyl-Ala-Ala-Pro-Val p-nitroanilide
(Sigma, MA). The inhibition assay was performed in an ELISA plate. For the quantification of the elastase inhib-
itory activity of each protein, 0.5 pl of elastase (4 pmol/pl) was incubated with FP or SLPI (0.2 pmol), for 15 min
at 37°C. Then, 0.6 mM of the chromogenic substrate diluted in Tris buffer (50 mM) at pH=7.5 was added. The
product of the reaction, p-nitroanilide was measured at 405 nm every 10 min in the ELISA reader (Multiskan
Labsystem, San Diego, CA). The amount of substrate cleaved was obtained using the Lambert-Beer law.

Cellline. The human epithelial cell line generated from alveolar lung adenocarcinoma A549, and was grown
in HAM F12 medium (GIBCO BRL, USA), 10% inactivated fetal bovine serum (GIBCO BRL), glutamine (2 mM)
and gentamicin (40 pg/ml), at 37°C and 5% CO,. All tests were conducted under conditions of sub-confluence
(80-90%), with an initial number of 5 x 10° cells/ml culture flask (25 cm?), unless otherwise indicated. This cell
line expresses transglutaminase II** and LPS or TNF-« induce an increase in its expression'®2. Therefore, for
some experiments, cells were treated with LPS (24 h, 400 ng/ml) (Sigma, MA) or TNFa (24 h, 40 ng/ml).

Immunofluorescence assay. The adhesion of the FP to the surface of A549 was analyzed by fluorescence
microscopy. A549 cells (3 x 10*) per well were seeded in 400 ul of HAM F12 medium (GIBCO BRL), 10% inac-
tivated fetal bovine serum (GIBCO BRL), glutamine (2mM) and gentamicin (40 ug/ml) in a 48 well plate. Some
of the wells were incubated for 24 h with LPS (400 ng/ml) (Sigma), at 37 °C and 5% CO,. This LPS was previously
activated by 2 cycles of 56 °C 10 min and 10 min more at 4°C. After the incubation time, the medium with LPS
was withdrawn and the cells washed. Media containing FP, SLPI 4 ug/ml or the equivalent volume of dialysis
buffer (as a control) was added to the monolayers for 15 seconds to 1 hour, depending on the experiment at 37 °C.
Afterwards the monolayers were washed and incubated with fetal bovine serum to a final concentration of 2%,
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for 10 min (blocking), washed and finally incubated with a primary antibody against the histidine tag (His-probe
(H3), Santa Cruz Biotechnology Inc, Dallas, TX) for 40 minutes at room temperature. Then, the medium was
removed, washed, and secondary antibody (FITC-conjugated goat anti-mouse, Caltag, Buckingham, UK) was
added for 40 minutes in the dark at room temperature. Finally, the monolayers were washed and the fluores-
cence was observed under the fluorescence microscope (Nikon TE200). For some experiments, FP crosslinking
to TGase on A549 cell surface was assessed by Flow Cytometry (Accuri 6 C plus, BD Biosciences, San Diego, CA)
in the presence or absence of a mouse mAb to human TGase2 (4G3, Santa Cruz Biotechnology, Inc). For these
experiments, LPS-treated cells were detached and incubated with the mAb to TGase or irrelevant isotype control
mouse mAb (B-6, Santa Cruz Biotechnology) for 20 min at RT. Following, cells were washed and FP (4 ug/ml) was
added during 15min at 37 °C. Then, cells were washed and anti-6X His tag antibody (PerCP, ab117496, Abcam)
or isotype control mouse IgG1 (PerCP, ab118658) was incubated for 45 min, washed and fluorescence read it by
Flow Cytometer.

Whole live cell ELISA. A monolayer of semi-confluent A549 cells were treated or not with TNF- (500 unit/
well, 24 hour) in a 96-well flat bottom plate. Then, the medium was removed, cells washed and FP or SLPI (4j.g/ml)
were added and incubated at 37 °C for 1 hour. Afterwards, the cells were washed and the anti-SLPI (HBT) anti-
body (0.8 mg/ml, 90 minutes, 37 °C) was added. The plate was then washed and incubated with anti-mouse
peroxidase-labeled antibody (Biorad Laboratories Inc., Hercules, CA) for 1hour at 37 °C. Finally, the plates were
washed with TMB solution. The reaction was stopped with 50 pl sulfuric acid and read at 450 nm in an ELISA
reader (Multiskan Lab System).

FP treatment of human immune cells. For these experiments, human peripheral blood mononu-
clear cells (PBMCs) were isolated by Ficoll gradient and monocytes were further isolated by CD14 dynabeads.
Monocytes were stimulated with LPS (100 ng/ml) for 3hours at 37 °C. Cells were then centrifuged at 1000 rpm for
10 minutes and washed 2 times with 0.5% FCS in PBS. The cells (5 x 10° cells/ml) were then incubated with 2 ug/ml
of FP in RPMI medium at 4 °C for 60 minutes, after which another 2 washes were performed.

Flow cytometry analysis. Cells were treated or not with FP, afterwards nonspecific binding was blocked
using 2% FBS RPMI medium and incubated for 10 minutes at 37 °C. IgG1 anti-histidine mouse monoclonal anti-
body (Santa Cruz Biotechnology) was then incubated with a final concentration of 3 pug/ml for 1 hour at 4 °C. Cells
were then centrifuged, washed and incubated with the FITC-conjugated IgG1 rabbit anti-mouse polyclonal sec-
ondary antibody (0.5 pl/1 x 106 cells, Santa Cruz Biotechnology) in 2% inactivated FBS-PBS medium for 1 hour
at 4°C in the darkness. Finally, the anti-human mouse monoclonal PE anti-CD14 and APC anti-CD19 were used
to identify monocytes and B lymphocytes respectively (following recommendations of the manufacturer). Cell
populations were incubated with the secondary antibody alone and analyzed to rule out false positives. Finally,
fluorescence intensity was analyzed using a FACStar Plus (BectonDickinson, BD Biosciences, San Diego, CA) and
dead cells were excluded by gating with propidium iodide.

Cell proliferation assay. Peripheral blood mononuclear cells (PBMC) were cultured in RPMI-1640 10%
FBS at 37°C for 5 days with IL-2 (8 ng/ml) and treated with SLPI or FP (0.04, 0.4 and 4 ug/ml) during which they
were pulsed with [3 H] thymidine (1 pCi/well, specific activity 5 mCi/mmol; PerkinElmer, Life Sciences, Boston,
MA) for the final 18 hours. Cells were harvested using a multi-well cell harvesters and thymidine incorporation
was measured with a beta-counter.

Binding and antibacterial activity to BCG. Binding of SLPI or FP to M. bovis BCG and the anti-
mycobactericidal activity were performed as described previously?”. In brief, suspensions were incubated with
SLPI or FP (2h, 37°C) and then incubated with Penta-His Alexa Fluor 647 conjugate (30 min, 4°C) to detect
rhSLPI histidine-tagged protein. Cells were washed, fixed (1.5% paraformaldehyde) and binding was detected
by flow cytometry. For the antibacterial activity, bacterial suspensions (1 mg/ml) were treated (16h, 37 °C) with
rhSLPI, FP or control buffer. Samples were taken at 24 hours for colony forming unit detection and viable bacteria
were detected by plating onto 7H11 agar plates after 2-4 weeks.

Statistical analysis. All statistics were analyzed in GraphPad Prism. Unpaired ¢-tests and pair ¢ test were
used to compare means as stated in each Figure legend. Two way ANOVA, uncorrected Fisher’s LSD test was used
for binding of proteins to human mononuclear cells. ANOVA pos hoc Dunnett test for multiple comparisons and
Tukey’s multiple comparisons test was used for evaluating biological activity of FP. A p-value < 0.05 was consid-
ered significant. Graphs were generated by GraphPad Prism (GraphPad, Inc., La Jolla, CA).

Ethics Statement. Human peripheral blood mononuclear cells were isolated from healthy volunteers.
All participants provided a written informed consent for the collection of samples and subsequent analysis and
the protocols conducted in this work were approved by the Ethical Committee of the Hospital Muiiiz and the
International Review Board Fundacion Huésped. All experiments were performed in accordance with relevant
guidelines and regulations.
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