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PCSK9 targets important for lipid metabolism
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Abstract Ischemic heart disease is the main cause of death
worldwide and it is accelerated by increased low-density
lipoprotein (LDL) cholesterol (LDL-C) and/or lipoprotein
(a) (Lp(a)) concentrations. Proprotein convertase subtilisin/
kexin type 9 (PCSK9) alters both LDL-C and in part Lp(a)
concentrations through its ability to induce degradation of
the LDL receptor (LDLR). PCSK9, however, has additional
targets which are potentially involved in lipid metabolism
regulation such as the very low density lipoprotein recep-
tor (VLDL), CD36 (cluster of differentiation 36) and the
epithelial cholesterol transporter (NPC1L1) and it affects
expression of apolipoprotein B48. The PCSK9 activity is
tightly regulated at several levels by factors influencing
its transcription, secretion, or by extracellular inactivation
and clearance. Many comorbidities (kidney insufficiency,
hypothyreoidism, hyperinsulinemia, inflammation) modify
PCSK9 expression and release. Two humanized antibodies
directed against extracellular PCSK9 received approval by
the European and US authorities and additional PCSK9 di-
rected therapeutics (such as silencing RNA) are already in
clinical trials. Their results demonstrate a significant reduc-
tion in both LDL-C and Lp(a) concentrations – independent
of the concomitant medication – and one of them reduced
plaque size in high risk cardiovascular patients; results of
two ongoing large clinical endpoints studies are awaited. In
this review, we summarize and discuss the recent biologi-
cal data on PCSK9, the regulation of PCSK9, and finally
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Targets of proprotein convertase subtilisin/kexin
type 9 (PCSK9)

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is
a member of the proprotein convertase superfamily of ser-
ine proteinases also encompassing proprotein convertase 1
(PC1), PC2, PC4, PC5, PC7, furin, paired basic amino acid
cleaving enzyme 4 (PACE4), and subtilisin kexin isozyme
(SKI)-1 [86]. However, the only PCSK9 substrate iden-
tified so far is its own prodomain and autocleavage of
ProPCSK9 is a pre-requisite for its subsequent secretion
[3]. The cleaved prodomain remains firmly attached in the
putative substrate-binding cavity of the catalytic domain
thereby preventing PCSK9 from interacting with other sub-
strates.

Low density lipoprotein (LDL) receptor (LDLR).
PCSK9 binds to the extracellular domains of a highly se-
lective subset of transmembrane receptors including LDLR
and targets them for degradation in lysosomes by a mech-
anism that apparently is independent of its proteolytic
activity ([83]; Fig. 1). The LDLR binds LDL cholesterol
(LDL-C) and removes it from the circulation by mediating
its endocytosis via clathrin coated pits. The acidic pH of
endosomes causes LDLR to dissociate from LDL-C [56].
LDLR recycles to the cell surface while the LDL-C particle
is degraded in lysosomes and recovered cholesterol is used
by the cell. LDLR bound to PCSK9 is also endocytosed
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Fig. 1 Extra- and intracellular PCSK9 has multiple targets including
receptors and transporters, but it also modifies apolipoprotein B48 and
apolipoprotein (a) expression (for details, see text). LRP1 Low density
lipoprotein receptor (LDLR) related protein 1, VLDLR very low den-
sity lipoprotein receptor, ApoER apolipoprotein E receptor, CD36 clus-
ter of differentiation 36, NPC1L1 Niemann-Pick C1-like protein 1,
apo B48 apolipoprotein B48, apo (a) apolipoprotein (a), – indicates
down-regulation or inhibitio, + indicates up-regulation

by a similar clathrin-dependent mechanism but the binding
is stronger at acidic pH and instead the entire complex is
destined for lysosomal degradation [67, 103]. Accordingly,
overexpression of PCSK9 in experiments in mice, hamsters
and pigs results in reduced numbers of hepatic LDLR ac-
companied by marked increases in plasma LDL-C [1, 6, 57,
67]. In contrast, PCSK9 knockout mice are characterized
by increased LDLR expression and reduced LDL-C [73].

The absence of a functional LDLR also leads to a marked
accumulation of plasma lipoprotein (Lp) (a) in human
apolipoprotein (a) transgenic WHHL rabbits suggesting
that LDLR may participate in the catabolism of Lp(a) [23].
An effect of LDLR availability on Lp(a) concentration
is further supported by cell-association studies in HepG2
cells: Lp(a) cell-association is reduced by co-incubation
with LDL-C and PCSK9 suggesting that Lp(a) competes
with LDL-C for LDLR binding and internalization. Thus,
when LDLR expression is increased – particularly in the
setting of low circulating LDL-C – Lp(a) will be reduced
[72].

PCSK9 consists of three domains: the N-terminal
prodomain followed by the catalytic domain and the C-ter-
minal domain. The catalytic domain mediates the direct
interaction with the epidermal growth factor (EGF) A do-
main of LDLR as demonstrated using various biochemical
methods including crystallography [17, 45, 52].

However, elements of the PCSK9 prodomain appear to
have a modulatory effect on LDLR degradation activity as
deletion of the sequence stretch 31–58 in the prodomain re-
sults in a PCSK9 variant with four to seven fold increased
activity. Up to 30% of PCSK9 is bound to LDL-C in mice
[27, 96] and normolipidemic subjects [44]. In mice, PCSK9
is also bound to high density lipoprotein (HDL) [27]. For

the binding of PCSK9 to LDL-C the amino residues 31–52
of the prodomain are required [44]. The C-terminal do-
main on the other hand is required for its ability to in-
duce LDLR degradation as a truncated PCSK9 variant lack-
ing the C-terminal domain display reduced activity against
LDLR whereas the isolated C-terminal domain alone has
no effect on LDLR degradation [105]. The role of the
PCSK9 C-terminal domain is strongly supported by data
using a monoclonal antibody directed against the C-termi-
nal domain which inhibits the ability of PCSK9 to reduce
LDL-C uptake in cells and decreases plasma LDL-C in
cynomolgus monkeys [63, 78].

Apart from LDL-C, PCSK9 binds to a variety of pro-
teins (for review, see [104]), one of them being annexin
A2, which is present in the nucleus, the cytosol and the
cell membrane in a variety of cells. The N-terminal repeat
R1 of annexin 2 binds to the CHRD region of PCSK9 and
inhibits its extracellular LDLR degrading activity [59]. In
annexin A2 knockout mice plasma PCSK9 levels are dou-
bled resulting in reduced LDLR expression and an increase
in LDL-C [85]; thus annexin A2 is viewed as endogenous
inhibitor of PCSK9 [59]. More recently, plasma PCSK9 is
found in association with Lp(a) particles in humans with
high Lp(a) levels and in mice carrying human Lp(a) [95].

Very low density lipoprotein receptor (VLDLR).
PCSK9 exerts effects that are independent from the surface
expression of LDLR as it also interferes with intracellular
transport and degradation of VLDLR [46, 55, 69]. In mice
in vivo, circulating PCSK9 – that originates entirely in the
liver – regulates VLDLR protein levels in adipose tissue
thereby limiting visceral adipogenesis. PCSK9 knockout
mice accumulate �80% more visceral adipose tissue than
wild-type mice and this is associated with adipocyte hyper-
trophy and increased in vivo fatty acid uptake and ex vivo
triglyceride synthesis [74]. VLDLR are implicated also in
the removal of Lp(a) from the circulation; in mice deficient
for the VLDLR Lp(a) disappearance from the circulation
is reduced when compared to control mice [2].

Other receptors/channels/enzymes affected by PCSK9.
Apart from binding to LDLR and VLDLR, PCSK9 also
interacts with other receptors such as the LDLR related
protein 1 (LRP1) [10] or the apolipoprotein E receptor
(ApoER) [46]. Some interactions of PCSK9 with recep-
tors depend on a EGF-A binding domain (VLDLR) [87]
or require the catalytic activity of PCSK9 (LRP1). Apart
from interaction with receptors, PCSK9 modifies CD81 on
hepatocytes (hepatitis C virus receptor) [47] and CD36 on
macrophages (for review, see [89]), intestinal cells [51],
adipocytes and in mouse liver [18]. In PCSK9 knock-
out mice, increased hepatic CD36 expression amplifies
the uptake of fatty acid and accumulation of triglycerides
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Fig. 2 Apart from liver cholesterol content being the most impor-
tant regulator of PCSK9 expression, co-morbidities influencing hepatic
PCSK9 expression and release are indicated

and lipid droplets. Peripheral blood mononuclear cells
from PCSK9 loss-of-function variant subjects also show
significant increases in mRNA levels of CD36 when com-
pared to non-variant controls [30]. PCSK9 knockout mice
also present with a significant reduction of lymphatic
apolipoprotein B secretion compared to wildtype mice
[49]. As the apolipoprotein B concentration is important
for the loading of chylomicrons with triglycerides and
cholesterol esters [7], PCSK9 deficiency might also protect
by reducing postprandial triglyceridemia as measured in
PCSK9 knockout mice [49]. Finally, in the intestine, gain-
of function (GOF) mutations of PCSK9 up-regulate the
cholesterol transporter NPC1L1 (Niemann-Pick C1-like
protein 1) and thus cholesterol uptake in a LDLR-indepen-
dent way [51]. Indeed, the PCSK9 antibody evolocumab
has a modest effect on cholesterol synthesis and absorption
in humans [68].

Expression and regulation of PCSK9 expression

Cell types. PCSK9 expression is highly restricted both
developmentally and in tissues [84]. In adult mice, the high-
est PCSK9 mRNA levels by far are found in the liver and
substantially lower expression is also found in the brain,
kidney and small intestine [96]. Under pathophysiological
conditions, PCSK9 may be expressed in other cell types as
well: in atherosclerotic vascular lesions in humans PCSK9
is detected and released from vascular smooth muscle cells
[26]. Also high concentrations of oxidized LDL-C induce
PCSK9 expression in endothelial cells which leads to en-
dothelial cell apoptosis; oxidized LDL-C-induced apopto-
sis is attenuated by silencing RNA directed against PCSK9.
Similarly, oxidized LDL-C induced PCSK9 expression in
cardiomyocytes [79].

Hepatic PCSK9 expression. In hepatocytes, up-regula-
tion of PCSK9 by cholesterol depletion or inhibition of in-
tracellular cholesterol synthesis by e. g. statins is explained
by a sterol regulatory element [22, 71], which have found to
be regulated by sterol-regulatory element binding protein-
2 (SREBP-2) and SREBP-1c ([15, 40]; Fig. 2). In close
vicinity to the sterol regulatory element, the PCSK9 gene
contains a highly conserved hepatocyte nuclear factor 1
(HNF1) binding site and HNF1α has been shown to co-
operate with SREBP-2 to regulate PCSK9 expression in
HepG2 cells [52] and in the liver [21, 90].

The chaperone heat shock protein 90 kDa β member 1
(= GRP94) residing in the endoplasmic reticulum binds
PCSK9 and prevents its ability to sequester LDLR pre-
maturely in the endoplasmic reticulum [70]. Mice lacking
GRP94 have highly reduced LDLR level in the liver. The
coat protein complex II (COPII) vesicle adaptor protein
SEC24A is an endoplasmic reticulum sorting receptor for
PCSK9 required for efficient exit of PCSK9 from the endo-
plasmic reticulum [14]. SEC24A is highly enriched in the
liver and SEC24A knockout mice display increased liver
LDLR and reduced plasma PCSK9 and LDL-C.

PCSK9 secretion. Sortilin is as a high affinity receptor
for PCSK9 [35] with an affinity constant in the nanomolar
range being close to the actual PCSK9 plasma concentra-
tion [48]. Thus, the interaction of sortilin with PCSK9 is
up to hundred-fold stronger than the interaction between
PCSK9 and the LDLR [27]. Sortilin appears to be involved
in intracellular trafficking and release of PCSK9 and sortilin
knockout mice display reduced level of circulating PCSK9
and reduced LDL-C [35, 43]. The expression of sortilin is
modulated by lifestyle factors – such as diet and exercise
– and the plasma sortilin extracellular domain expression
correlates with increased body mass index [8].

Several disease states also affect hepatic PCSK9 expres-
sion and/or the circulating PCSK9 concentration (Fig. 2):

● Kidney disease increases liver PCSK9 expression and
release possibly explaining the hypercholesterolemia
observed in patients with chronic kidney disease and
nephrotic syndrome [36, 92, 93].

● Lipodystrophy increases PCSK9 concentrations in fe-
males and leptin treatment (to cure lipodystrophy) re-
duces the plasma PCSK9 concentration in parallel with
the LDL-C concentration [50].

● Hypothyroidism increases PCSK9 expression in patient
with thyroid cancer and hypothyroidism is associated
with an increase in LDL-C and apolipoprotein B concen-
trations [65].

● Hyperinsulinemia increases PCSK9 expression in mice
[15] whereas a moderately hyperinsulinemic glucose
clamp for 24 h has no effect on PCSK9 plasma concen-
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Fig. 3 Lipoprotein [Lp](a) clearance occurs via the low density
lipoprotein receptor (LDLR) and/or the very low density lipoprotein
receptor (VLDLR), both of which are decreased in expression by
PCSK9. PCSK9 antibodies by increasing the expression of LDLR
and VLDLR thereby might increase Lp(a) clearance. Furthermore,
apolipoprotein [(Apo)] (a) is increased by PCSK9 and is reduced by
PCSK9 antibody treatment. Finally, PCSK9 binds to Lp(a) and af-
ter binding of PCSK9 antibodies, the total construct is taken up by
macrophages and thus cleared from the circulation (for further details,
see text)

trations in healthy and type 2 diabetic men [41]. Interest-
ingly, PCSK9 concentration is decreased in patients with
type 1 as compared to type 2 diabetes [12], which goes
along with data in obese mice with pharmacologically-
induced insulin deficiency showing a reduced PCSK9
expression [62].

● Inflammation modulates PCSK9 expression and release.
An increase in tumor necrosis factor (TNF) α and in par-
ticular activation of the Janus kinase/signal transducer
and activator of transcription (JAK/STAT) pathway sup-
presses PCSK9 transcription in HepG2 cells and in vivo
[11]. On the other hand, suppressor of cytokine signaling
SOCS3, which is a negative regulator of JAK/STAT, in-
duces PCSK9 expression through activation of SREBP-
1 [76]. LRP1, which is regulated by PCSK9 (see above),
antagonizes the pro-inflammatory effects of lipopolysac-
charides (LPS) and TNFα. While activation of LRP1 de-
presses nuclear factor kappa-light-chain-enhancer of ac-
tivated B cells (NFκB) signaling, extracellular LRP1 acti-
vates stress activated kinases like p38MAPK [58]. While
the activation of LRP1 attenuates LPS-driven inflamma-
tion, LPS itself increases the expression of PCSK9 and
therefore decreases the hepatic expression of LDLR [24].
Furthermore, the inflammatory cytokine resistin induces
PCSK9 expression in human hepatocytes [61]. Intrigu-
ingly, the PCSK9 C-terminal domain displays structural
resemblance to resistin suggesting both a structural and
functional relationship between cytokine signaling and

PCSK9 [37]. Also, C-reactive protein (CRP) increases
PCSK9 expression by activating p38 mitogen activated
protein kinase (p38MAPK)-HNF1α pathway in HepG2
cells [16].

All the above observations are interesting considering
that PCSK9 recently has been described as a critical regu-
lator of the innate immune response and survival following
sepsis in both mice and humans [101] (for further review,
see [25, 66]).

● Nonalcoholic fatty liver disease (NAFLD), which is asso-
ciated with cardiovascular disease independently of clas-
sic risk factors – increases circulating PCSK9 concentra-
tion; the increase in PCSK9 correlates with hepatic fat
accumulation and the severity of steatosis, independently
of metabolic confounders and liver damage. Thus, modu-
lation of PCSK9 synthesis and release might be involved
in NAFLD pathogenesis [75].

PCSK9 cleavage. Mature PCSK9 can be detected in
plasma and hepatocyte culture supernatant as a 62 kDa
active form and a 55 kDa form with reduced activity to-
wards LDLR. The lower molecular form originates from
proteolytic processing by the related proprotein conver-
tase furin and to a lesser extent by PC5/6A [4, 38]. Furin
cleavage likely primes PCSK9 for further degradation and
thereby elimination from the circulation. Recently, matrix
metalloproteinase 2 has been found to proteolytically inac-
tivate PCSK9. However, the physiological relevance of this
regulatory effect remains to be established [102].

PCSK9 elimination. LDLR plays a major role in clear-
ance of plasma PCSK9. In a wildtype mouse iodinated
PCSK9 has a half-life of approximately 5min while this is
increased to 15min in a LDLR knockout mouse [33]. The
radioactivity mainly accumulates in the liver but a signifi-
cant portion is found in the kidney [94]. However, PCSK9
is still relatively rapidly removed from the circulation in
the absence of LDLR, suggesting the existence of other
clearance mechanisms. This is supported by the fact that
individuals homozygous for LDLR inactivating mutations
present with markedly increased LDL-C but the PCSK9
levels are not correspondingly high [9]. One obvious clear-
ance mechanism is proteolytic degradation of PCSK9 initi-
ated by furin as described above. Another proposed PCSK9
clearance receptor is amyloid β precursor like protein 2 but
this remains to be established in vivo [19, 20].
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Approaches to reduce PCSK9/LDLR interaction
and/or PCSK9 synthesis

The interaction of circulating PCSK9 with its potential tar-
gets can be attenuated by removing PCSK9 from the cir-
culation (extracellular IgG antibody, monobodies, vaccina-
tion) or offering alternative binding partners rather than
LDLR (mimetic peptides) (for review see [5, 80]). The
synthesis of PCSK9 can be reduced at the level of trans-
lation (silencing RNA, oligonucleotides) or its intracellular
self-cleavage (mimetic peptides). In this review only treat-
ments with already existing clinical trial data are discussed
and data for PCSK9-antibodies are summarized in the next
chapter.

PCSK9 silencing RNA. PCSK9 silencing RNA (siRNA)
is formulated in a lipidoid nanoparticle (LNP, Alnylam
Pharmaceuticals). Liver-specific silencing of PCSK9 in
mice and rats reduces PCSK9 mRNA levels by up to 70%
and LDL-C levels by 60%. In non-human primates, a single
dose of siRNA targeting PCSK9 results in a rapid, durable,
and reversible lowering of plasma PCSK9 and LDL-C last-
ing for 3 weeks after a single intravenous administration
[29]. The siRNA (ALN-PCS) was tested subsequently in
a dose-finding study in 32 healthy participants with a LDL-
C above 3mmol/L, ALN-PCS administered intravenously
resulted in dose-dependent reductions in plasma PCSK9
and LDL-C levels, with the highest dose conferring 70
and 40% reductions in PCSK9 and LDL-C levels, respec-
tively, an effect which was sustained for 2 to 3 weeks
after administration. Alnylam has recently another phase
I clinical trial testing subcutaneously administered ALN-
PCS demonstrating a sustained reduction of PCSK9 and
LDL-C for up to 180 days after a single injection [28].

PCSK9 antisense oligonucleotides (ASO). ASOs are
short, single-stranded complementary sequences of nu-
cleotides inhibiting protein synthesis by binding to the
target mRNA inhibiting protein translation. ASO offer
high specificity, but like monocolonal antibodies require
intravenous or subcutaneous routes of administration. Two
PCSK9-ASOs were initially explored in preclinical trials
but development was stopped after a phase I clinical trial
(http://www.clinicaltrials.gov; NCT01082562) because of
safety concerns [82].

Nucleic acid analogs that contain at least 1 monomer
in locked conformation (LNA) provide a higher binding
affinity and specificity to the target mRNA [42]. LNA ASO
reduces the mRNA and protein levels of PCSK9 with a con-
comitant increase in LDLR protein levels after transfec-
tion in HepG2 and HuH7 cells. In mice, tail vein intra-
venous administration of LNA ASO reduces the level of
PCSK9 mRNA by approximately 60%, an effect lasting

more than 16 days. Hepatic LDLR protein levels are signif-
icantly up-regulated 3fold for at least 8 days and approx-
imately 2 fold for 16 days [34]. In non-human primates,
LNA ASO targeting PCSK9 produced a sustained 50% re-
duction of LDL-C after a loading dose and four weekly
maintenance doses [54]. Although promising preclinical
data are available, the first phase I clinical trial testing
the efficacy of SPC5001 (Santaris Pharma) – an ASO with
locked RNA nucleotides on both ends of the DNA – was ter-
minated for undisclosed reasons (http://www.clinicaltrials.
gov; NCT01350960). One potential explanation for study
termination relates to renal side effects, since SPC5001 ad-
ministered subcutaneously in one volunteer increased crea-
tine levels, white blood cells, granular casts, and caused
minimal hematuria on urine microscopy. Kidney biopsy
showed multifocal tubular necrosis and signs of oligonu-
cleotide accumulation, all changes being reversible upon
termination of SPC5001 administration [98].

Thus, several approaches targeting both intra- and ex-
tracellular PCSK9 are under development, some of which
passed from the pre-clinical into clinical testing (silencing
RNA) while others failed (OSA, LNA). Since PCSK9 has
multiple intracellular targets [80] one has to see whether
long-term results of intra- and extracellular reduction of
PCSK9 are advantageous as compared to the extracellular
reduction of PCSK9 only.

Studies of PCSK9-inhibition in patients with high
cardiovascular risk

The fully human PCSK9-binding antibodies evolocumab
and alirocumab have been approved by the FDA (US
Food and Drug Administration) and the EMA (European
Medicines Agency) in 2015. Both drugs have been tested
in high cardiovascular risk patients on top of maximally
tolerated statin treatment.

LDL-C. Almost all studies with PCSK9 antibodies re-
port an additional reduction of LDL-C (as well as non-
HDL and ApoB) by 50–60% [13]. Even with mild to mod-
erate hepatic impairment, maximum LDL-C reductions in
the healthy, mild, and moderate groups were –57%, –70%
and –53%, respectively suggesting that the PCSK9 anti-
body evolocumab can be used without dose adjustment in
patients with active liver disease and mild or moderate hep-
atic impairment [32]. The cholesterol content of several
LDL subfractions is reduced and the apolipoproteins CII
and CIII and the cholesterol content of very low-density, in-
termediate-density, and remnant lipoproteins are decreased
[97]. High density lipoprotein cholesterol and triglyceride
concentrations are not significantly reduced with PCSK9
antibody treatment. Studies such as ODYSSEY CHOICE
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or LAPLACE confirm that the effect of PCSK9 inhibitor
is not reduced but additive in the presences of other oral
lipid lowering therapies [91]. The additive effect is consis-
tent with the mechanism of action and the upregulation of
PCSK9 serum concentrations by both statins and fibrates
[60].

Lp(a). Carriers of the PCSK9 R46L (loss-of-function) ge-
netic variant are characterized by low levels of LDL-C and
Lp(a) [99], which is a strong cardiovascular risk factor.
Clinical studies show that use of the two PCSK9 anti-
bodies alirocumab and evolocumab potently lowers Lp(a)
[31, 72, 81], the latter also in patients with type 2 dia-
betes [77]. Interestingly, PSCK9 inhibition reduces Lp(a)
in patient with homozygous familial hypercholesterolemia
despite their lack or dysfunction of the LDLR. Therefore
the question arises that the regulation of Lp(a) by PCSK9
may be independent of the LDLR. From this perspective,
the modulation of VLDLR by PCSK9 appears to be of
great interest since Lp(a) clearance by hepatocytes appears
to depend on VLDLR expression [39].

Although the underlying molecular mechanism(s) of re-
duced Lp(a) concentration by PCSK9 treatment are not
fully understood, the following pathways may contribute
(Fig. 3):

● The enhanced secretion of Lp(a) from primary hu-
man hepatocytes is blunted by PCSK9 inhibition (with
alirocumab) [53, 100];

● Reduction of apolipoprotein B or assembly of Lp(a) at
outer hepatocyte surface;

● Enhanced removal of Lp(a) in kidney, liver, peripheral
tissues, especially after docking of PCSK9 antibodies
[88];

● Potential additional receptors for Lp(a) such as docking
receptors, sorting receptors sortilin, endocytic receptors
(syndecan-1 heparan sulfate proteoglycan);

● Intestinal apolipoprotein metabolism (for review, see
[80]).

Atherosclerosis. Most recently, the PCSK9 antibody
evolocumab met its primary end point of change in percent
atheroma volume from baseline to week 78 compared with
placebo, as determined by intravascular ultrasound in the
GLAGOV trial involving 968 patients with coronary artery
disease [64]. LDL-C decreased to 37mg/dl in the statin +
evolocumab group vs 93mg/dL in the statin group, and
this reduction in LDL-C was associated with a reduction
in percent atheroma volume for evolocumab and in 2 out
of 3 patients a greater percentage of patients demonstrated
plaque regression. Post hoc analysis examining the relation-
ship between achieved LDL-C level and change in percent
atheroma volume showed a linear reduction down to very
low LDL-C levels of 20mg/dl. The two most important

open questions with regard to PCSK9 inhibitor relate to
their effects on clinical outcomes and the long-term safety.
Two very large outcome trials, FOURIER (~27,000 patients
with a history of CVD and at high risk of recurrent events,
NCT01764633) and ODYSSEY OUTCOMES (~18,000
patients recently hospitalized for ACS, NCT01663402), are
fully recruited and the first outcome results are expected to
be reported in March 2017.
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