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Bérengère Gobin1,2., Gatien Moriceau1,2., Benjamin Ory1,2,3, Céline Charrier1,2,3, Régis Brion1,2,3,4,
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Abstract

Osteosarcoma is the most common primary malignant bone tumour characterized by osteoid production and/or osteolytic
lesions of bone. A lack of response to chemotherapeutic treatments shows the importance of exploring new therapeutic
methods. Imatinib mesylate (Gleevec, Novartis Pharma), a tyrosine kinase inhibitor, was originally developed for the
treatment of chronic myeloid leukemia. Several studies revealed that imatinib mesylate inhibits osteoclast differentiation
through the M-CSFR pathway and activates osteoblast differentiation through PDGFR pathway, two key cells involved in the
vicious cycle controlling the tumour development. The present study investigated the in vitro effects of imatinib mesylate
on the proliferation, apoptosis, cell cycle, and migration ability of five osteosarcoma cell lines (human: MG-63, HOS; rat:
OSRGA; mice: MOS-J, POS-1). Imatinib mesylate was also assessed as a curative and preventive treatment in two syngenic
osteosarcoma models: MOS-J (mixed osteoblastic/osteolytic osteosarcoma) and POS-1 (undifferentiated osteosarcoma).
Imatinib mesylate exhibited a dose-dependent anti-proliferative effect in all cell lines studied. The drug induced a G0/G1 cell
cycle arrest in most cell lines, except for POS-1 and HOS cells that were blocked in the S phase. In addition, imatinib
mesylate induced cell death and strongly inhibited osteosarcoma cell migration. In the MOS-J osteosarcoma model, oral
administration of imatinib mesylate significantly inhibited the tumour development in both preventive and curative
approaches. A phospho-receptor tyrosine kinase array kit revealed that PDGFRa, among 7 other receptors (PDFGFRb, Axl,
RYK, EGFR, EphA2 and 10, IGF1R), appears as one of the main molecular targets for imatinib mesylate. In the light of the
present study and the literature, it would be particularly interesting to revisit therapeutic evaluation of imatinib mesylate in
osteosarcoma according to the tyrosine-kinase receptor status of patients.
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Introduction

Osteosarcoma is a rare bone tumour mainly affecting young

patients (peak of incidence around 18 years old), defined by the

presence of tumour cells producing an osteoid matrix [1]. The

current therapeutic sequence for high-grade osteosarcoma was

proposed by Rosen et al in the 1970s and is now internationally

accepted [2]. This treatment is based on neo-adjuvant chemo-

therapy, delayed en-bloc wide resection, and adjuvant chemo-

therapy adapted to the histologic profile assessed on tumour tissue

removed during surgery. In spite of the fact that the development

of polychemotherapy has clearly improved the survival and the

quality of life of patients, the 5-year event-free survival has

remained at a plateau of 60–70% of patients with non-metastatic

osteosarcoma for over the last 40 years [3]. Nevertheless, in the last

10 years, better knowledge of oncogenic processes in osteosarcoma

has led to the development of new therapeutic approaches based

on single new drugs or administered in combination with

conventional chemotherapy [4].

Targeting intra-cellular signaling or metabolic pathways appear

as promising therapeutic approaches. For instance, mevalonate

pathway may be an interesting target in osteosarcoma. Thus, the

combination of apomine and lovastatine which targets the

mevalonate pathways significantly reduced tumour progression

in osteosarcoma-bearing mice compared to single treatment which

had no effect at the doses used [5]. The mTOR inhibitor

ridaforolimus has been studied in a phase II trial of patients with

advanced bone sarcomas and this study revealed improved

progression-free survival in advanced sarcomas including osteo-

sarcoma [6]. Moriceau et al. demonstrated recently that RAD001

(everolimus) a new oral mTOR inhibitor, inhibited osteosarcoma

cell proliferation and its combination with zoledronic acid reduced

tumour development in murine models of mixed osteoblastic/

osteolytic or undifferentiated osteosarcoma [7]. Similarly, NVP-
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BEZ235, a dual pan-PI3K-mTOR inhibitor, exhibits anti-

proliferative effects in a panel of osteosarcomas and showed

synergistic activity with chemotherapeutic agents and with other

small signaling inhibitors [8]. In contrast, targeting Src, a tyrosine

kinase which activates tumour cell-motility and invasion showed

interesting anti-proliferative and pro-apoptotic activity in osteo-

sarcoma cell lines but did not exert any activity in vivo [9].

Imatinib mesylate (Gleevec) is an orally active tyrosine kinase

inhibitor with activity against a large panel of tyrosine kinase

protein including bcr/abl, c-kit, MCSF receptor (cFMS) and the

PDFG receptor among others [10]. Its clinical success is

demonstrated by its current use as a first-line therapy for patients

with bcr-abl-positive chronic myeloid leukemia [11] and in

gastrointestinal stromal cell tumours characterized by activating

mutations of c-kit [12]. In addition, imatinib mesylate exerts direct

effects on bone cells. It inhibits osteoclast-resorbing activity by

increasing mature osteoclast apoptosis and targeting the MCF

receptor [13]. Moreover, imatinib mesylate also alters osteoblast

differentiation with promoting [14] or deleterious activities [15]. It

seems that the drug decreases osteoblast proliferation while

stimulating their activity. All published data suggest that imatinib

mesylate may transiently increase osteoblast activity and subse-

quently induce an opposite effect [16]. Based on these observa-

tions, imatinib mesylate may be an interesting drug for bone

sarcoma and especially for osteosarcoma.

The present work aimed to analyze the biological activities of

imatinib mesylate in various human, mouse and rat osteosarcoma

cell lines and on primary tumour growth (at the bone site) using

two different syngenic models of murine osteosarcoma.

Materials and Methods

Ethic Statement
Mice (Elevages Janvier, France) were housed under pathogen-

free conditions at the Experimental Therapy Unit (Faculty of

Medicine, Nantes) in accordance with the institutional guidelines

of the ethical committee and under the supervision of authorized

investigators. The Institutional Animal Care and Use Committee

(CEEA PdL 06) approved specifically the study (authorization

number: 1280.01).

Cells and Culture Conditions
The rat osteosarcoma OSRGA cell line established from a

radio-induced osteosarcoma [17] and human HOS, MG63 cells

purchased from ATCC (Promochem, France) were cultured in

DMEM (Lonza, Belgium) supplemented with 10% FCS (Hyclone,

USA). Murine osteosarcoma POS-1 and MOS-J cells derived from

mouse spontaneous osteosarcoma were provided respectively by

Dr Kamijo [18] and by Dr Shultz [19] and were cultured in RPMI

with 10% FCS. Cells expressed osteoblastic markers more

specifically cbfa1/Runx2, bone alkaline phosphatase, and MOS-

J and OSRGA cells were able to form mineralized nodules in vitro

(data not shown). These parameters were tested before cell

implantation.

Cell Growth, Viability
Two thousand cells per well were plated into 96-well plates and

cultured for 72 h in the presence or absence of imatinib mesylate

(10–40 mM). Cell growth and viability was determined by the

sodium 39[1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis(4-me-

thoxy-6-nitro)benzene sulfonic acid hydrate (XTT) cell prolifera-

tion reagent assay kit (Roche Molecular Biomedicals, Germany).

After the culture period and addition of the XTT reagent, the

absorbance was then determined at 490 nm. Caspase activity was

assessed on 10 ml of total cell lysates using the kit CaspACE Assay

System (Promega, USA), following the manufacturer’s recommen-

dations. Results were expressed in arbitrary units and corrected for

protein content quantified using the BCA [bicinchominic acid+
copper(II) sulfate] test (Pierce Chemical Co.). In some experi-

ments, cells were treated with 20 mM of imatinib mesylate in the

presence or the absence of 50 mM of caspase inhibitor N-

benzyloxylcarbonyl-Val-Ala-Asp (OCH3) fluoromethyketone (Z-

VAD-FMK)(Promega, France). Cells treated with 100 nM of

Staurosporin for 24 hours were used as a positive control. Imatinib

mesylate was provided by Pharma Novartis AG (Switzerland).

Time-lapse Microscopy and Wound Healing Assay
Osteosarcoma cells were cultured at 56103cells/mm2 (24-

multiwell plate) in the presence or absence of imatinib mesylate

(10–25 mM). Phase-contrast photos were taken every 10 minutes

for 72 hours through a Leica microscope using a X10 objective

[Leica DMI 6000B (Wetzlar, Germany) coupled with a Coolsnap

HQ2 video camera (Roper Scientific, Evry, France)], then Quick

Time movies were edited with the Metamorph 7.5 software

(Roper Scientific). Cell divisions and dead cells were then

manually scored in each field of observation in a time-dependent

manner. The cells accompanied by extensive plasma membrane

blebbing were considered as apoptotic cells. For wound healing

assay, osteosarcoma cell monolayers were damaged by scraping

with a micropipette tip then incubated for 24 hours in the presence

of 4 mg/mL of mitomycin with or without imatinib mesylate (10–

40 mg/mL). The extent of cell migration into the wounded area

was analyzed by comparing microphotographs after 24 hours of

treatment. Each condition was performed in duplicate.

Cell Cycle Analysis
Sub-confluent OSRGA, MG63, POS-1 or MOS-J cells were

incubated with or without imatinib mesylate (10–25 mM) for 24

hours to 72 hours. After the treatment period, cells were removed

from culture dishes by trypsinization, washed twice in PBS, and

incubated in PBS containing 0.12% of Triton X-100, 0.12 mmol/

L of EDTA, and 100 mg/mL of DNase-free RNase A (Sigma).

Then, 50 mg/ml of propidium iodide were added for 20 minutes at

4uC in the dark. Cell cycle distribution was studied by flow

cytometry (Cytomics FC500, Beckman Coulter,France), based on

2 N and 4 N DNA content and was analyzed by DNA Cell Cycle

Analysis Software (Phoenix Flow System, USA).

Western Blot Analysis
Two hundred thousand osteosarcoma cells were cultured in 6-

multiwell plates and treated with imatinib mesylate (15 or 25 mM)

for 12 hours or 24 hours and then lysed in radioimmunoprecip-

itation assay (RIPA) buffer (150 mM Tris-NaCl, 5% Tris, pH 7.4,

1% NP-40, 0.25% Na deoxycholate, 1 mM Na3VO4, 0.5 mM

PMSF, 10 mg/ml leupeptin, 10 mg/ml aprotinin). In some

experiments, serum-starved osteosarcoma cells were treated with

50 ng/mL PDGF-BB (R&D System) for 5 minutes in the presence

of the absence of 25 mM imatinib mesylate. Cell lysates were

cleared of debris by centrifugation at 12,000 g for 15 minutes.

Protein concentration was determined using the BCA kit (Pierce

Chemical). Twenty mg of total cell lysate proteins were run on 10%

of sodium dodecyl sulfate-poly-acrylamide gel electrophoresis

(SDS-PAGE) and electrophoretically transferred to an Immobilon-

P membrane (Millipore, Bedford, MA, USA). The membrane was

blotted with antibodies to p-mTOR (Ser 2448), p-AKT (Ser 473),

p-ERK1/2 (Thr202/Tyr204), pPDGFRa (Tyr 754), p-PDGFRb
(Tyr 751), p-ERK1/2 (Thr202/Tyr204), actin or the total forms of

protein described above (Table 1) in PBS, 0.05% Tween 20, and
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3% bovine serum albumin (BSA). The membrane was washed and

probed with the secondary antibody coupled to horseradish

peroxidase. Antibody binding was visualized with the enhanced

chemiluminescence system (ECL Kit; Roche Molecular Biomedi-

cals). For quantification, the emitted glow was acquired with a

CCD camera (Syngene, Cambridge, UK) and analyzed with the

GeneTools software (Syngene).

Phospho-Receptor Tyrosine Kinase (RTK) Array
A commercial antibody-based protein microarray designed to

detect 49 human Phospho-receptor tyrosine kinase array kit (R&D

System, UK) was used to identify the molecular targets of imatinib

mesylate. Experiments were carried out following manufacturer’s

instructions. Briefly, array membranes were blocked with the

saturated buffer for 1 hour and then incubated for 2 hours with

HOS osteosarcoma cell lysates treated or not with 50 mM imatinib

mesylate for 45 minutes. After washing, the membranes were

incubated overnight with a specific peroxidase-labeled streptavidin

anti-pTyr antibody. The membranes were then washed, and

detection of immunoreactive spots was revealed by chemilumi-

nescence detection system (GE Healthcare, France). The intensity

of the chemiluminescence was acquired using the ChemiDoc

XRS+ system (BioRad, France). The intensities of the various spot

were determined using Gene Tools software.

RNA Extraction and Semi-quantitative Reverse
Transcription-polymerase Chain Reaction (RT-PCR)
Total RNA was isolated from cultured MG63, HOS, MOS-J,

POS-1 and OSRGA osteosarcoma cells using the TRIzol reagent

(Invitrogen, France). First, RNA was reverse-transcribed (RT),

using 400 U of MMLV-RT from Invitrogen, then 2 ml of the RT
reaction mixture were subjected to PCR using upstream and

downstream primers to determine the expression of human, mouse

and rat PDGFRa/b [30 pmol each, Table 2] and 0.25 ml of 5 U/

ml Taq polymerase (Eurobio, France). PCR products were

analyzed in 1% agarose gels, stained with gel RED and

photographed. Relative expression of the PDGFRa and PGDFRb
genes were compared to the 18S signal and band densities were

measured using the Image Quant computer software program.

After the number of PCR cycles was increased, a plot was done for

each sample, and the cycle value corresponding to the mid of the

linear part of the amplification curve were used to analyse the

expression of the corresponding gene.

Mixed Osteoblastic/Osteolytic Osteosarcoma Model
Four-week-old male C57BL/6J mice were anesthetized by

inhalation of a combination Isoflurane/air associated with an i.m.

injection of Buprenorphine (Temgésic, Schering-Plough) before an

i.m. injection of 46106 MOS-J cells. Tumours appeared in contact

with the tibia approximately 8 days later and led to osteoblastic

lesions reproducing the osteoblastic form of human osteosarcoma

associated with osteolytic foci [7]. Three groups of eight mice each

were assigned as controls (placebo by daily oral administration)

and imatinib mesylate (50 and 100 mg/kg, daily oral administra-

tion) groups. Two types of experiments were carried out: (i)

treatment started one day after tumour cell implantation named

‘‘preventive treatment’’, (ii) treatment started when tumours were

palpable (7–10 days) named ‘‘curative treatment’’.

Undifferentiated Osteosarcoma Model
Four-week-old male C3H/He mice were anesthetized as

previously described before s.c. inoculation of 26106 POS-1 cells

in the hind footpad of the mice. Under these conditions, mice

develop a primary tumour at the site of injection in 3 weeks that

can be transplanted to mice of the same strain as a small fragment

(26262 mm) in close contact with the tibia. For this purpose, the

periostum of the diaphysis was opened and resected along a length

of 5 mm, and the underlying bone was intact. The osteosarcoma

fragment was placed contiguous to the exposed bone surface

without the periostum, and the cutaneous and muscular wounds

were sutured. Tumours appeared at the graft site approximately 8

days later, associated with the development of pulmonary

metastases in a 3-week period. The tumours that developed in

contact with the femora lead to osteolytic lesions that reproduced

the osteolytic form of human osteosarcoma (7, 20). Two groups of

eight mice each were assigned as controls (placebo by daily oral

administration) and 100 mg/kg imatinib mesylate (daily oral

administration) groups. The treatment started one day after

tumour cell implantation.

For both models, the tumour volumes (V) were calculated from

the measurement of two perpendicular diameters using a caliper

according to the following formula: V= 0.56L6S2, where L and S

represent respectively, the largest and smallest perpendicular

tumour diameters. Treatment continued until each animal showed

signs of morbidity including cachexia or respiratory distress, at

which point they were sacrificed by cervical dislocation. Analysis

of architectural parameters was done using high-resolution X-ray

Table 1. Primary antibodies used for cell signaling analysis.

Antibodies and origin Phosphorylated residue Species Dilution

P-PDGFRa Tyr 754 Rabbit 1/1000

PDGFRa Rabbit 1/1000

P-PDGFRb Tyr 751 Rabbit 1/1000

PDGFRb Rabbit 1/1000

P-mTOR Ser 2448 Rabbit 1/1000

mTOR Rabbit 1/1000

P-AKT Ser 473 Rabbit 1/1000

AKT Rabbit 1/1000

P-ERK1/2 Thr202/Tyr204 Rabbit 1/1000

ERK1/2 Rabbit 1/1000

Actin NA Rabbit 1/20000

doi:10.1371/journal.pone.0090795.t001
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micro-computed tomography (CT) (SkyScan-1076). Relative

volume (BV/TV) of the tibia [total bone (cortical+trabecular) or
trabecular bone] was quantified at necropsy on a 3.2 cm length

area located between superior metaphysis and diaphysis. Radio-

graphs were taken at the same time (PLANMED Sophie

apparatus, Finland). Each experiment was repeated twice and

was reproducible. Only one set of experiments was shown.

Statistical Analysis
Each experiment was repeated independently three times in

triplicate. The mean6SD was calculated for all conditions and

compared by ANOVA followed by Bonferroni post hoc test.

Differences relative to a probability of two-tailed p,0.05 were

considered significant.

Results

Imatinib Mesylate Exerts Anti-proliferative Effects on
Human, Mouse and Rat Osteosarcoma Cells
To determine whether imatinib mesylate is able to modulate

viable osteosarcoma cell number, XTT assays have been carried

out for 72 hours in the presence or absence of imatinib mesylate

(1–40 mM). As shown in Figure 1, imatinib mesylate treatment of

human (Figure 1A), mouse (Figure 1B) and rat (Figure 1C)

osteosarcoma cells strongly reduced their viability. Thus, imatinib

mesylate decreased the number of viable osteosarcoma cells in a

dose-dependent manner [IC50 at 72 hours: 20 mM (MG-63),

11 mM (HOS), 23 mM (MOS-J), 15 mM (POS-1); 9 mM
(OSRGA); IC90 at 72 h: 30 mM (MG-63), 19 mM (HOS),

28 mM (MOS-J), 24 mM (POS-1); 16 mM (OSRGA)] with a

maximum effect at 30 mM for most of the cells assessed

(Figure 1D). To determine whether the effects of imatinib mesylate

on osteosarcoma cells resulted from the inhibition of cell

proliferation and/or the induction of cell death, the number of

cell divisions determined by time-lapse microscopy was manually

counted. Time-lapse microscopy revealed that imatinib mesylate

clearly markedly decreases the number of mitosis in a time- and

dose-dependent manner in all cell lines assessed (Figure 2, Figure

S1) (Data not shown for HOS and POS-1 cells). In addition,

imatinib mesylate treatment affected the various cell cycle phases

of all osteosarcoma cells compared to the untreated control

(Figure 3). In MG63, MOS-J and OSRGA cells, imatinib mesylate

induced a cell cyle arrest in G0/G1 phase. Indeed, the number of

cells in G0/G1 phases increased from 62 to 71% for MG63 cells,

from 42 to 52% for MOS-J and from 69 to 82% for OSRGA cells

when treated with imatinib mesylate. The number of cells in S

phase strongly increased from 40 to 65% HOS cells and from 45

to 64% for POS-1 cells when treated with the drug. Concomi-

tantly, the cells in the apoptotic sub-G0/G1 peak also increased in

all cell lines treated (Figure 3).

Imatinib Mesylate Induces Osteosarcoma Cell Death
To determine whether the inhibitory activity of imatinib

mesylate observed in osteosarcoma cell lines was associated with

cell death induction, we used time-lapse microscopy to monitor the

apoptotic events in human, mice and rat osteosarcoma cells

treated with the drug. Time lapse analyses revealed that imatinib

mesylate induced an increase of human, mice and rat osteosar-

coma cell death in a dose-and time-dependant manner (Figure 4,

Figure S2) (Data not shown for HOS and POS-1 cells). The

number of dead/viable cells was also assessed by manual cell

counting based on a trypan blue exclusion assay. Results

confirmed that imatinib mesylate induced cell death of all cell

lines assessed, in a dose-dependent manner (Figure 5A) associated

with a significant increase of caspase activity (Figure 5 B, C). The

pan-caspase inhibitor Z-Vad-FMK partly inhibited the drug-

induced effects on osteosarcoma cell viability as shown for human

MG63 cell line in Figure 5C (p,0.01). Overall, these data

revealed that imatinib mesylate induced apoptosis of all analyzed

osteosarcoma cell lines by a mechanism partly dependent of

caspase activition. In addition, to its functional activity on cell

death, we assessed the effect of imatinib mesylate on cell

migration. As shown in Figure S3, imatinib mesylate strongly

slowed down the migration of human, mouse and rat osteosar-

coma cells. These data demonstrate that imatinib mesylate

therefore exerts cytostatic activity on osteosarcoma.

Table 2. Primer sequences for RT-PCR experiments.

Gene Sequences Size (bp)

Human PDGFRa sens AAG ATA ATG ACT CAC CTG GGG 495

anti-sens AGC CAA AAA CTC CAT TCC TCG

PDGFRb sens AGG TGA TTG AGT CTG TGA GC 630

anti-sens TAT CGT AAG GGG CCA TGT AG

Mouse PDGFRa sens AAG ATA ATG ACT CAC CTG GGG 495

anti-sens AGC CAA AAA CTC CAT TCC TCG

PDGFRb sens AGG TGA TTG AGT CTG TGA GC 630

anti-sens TAT CGT AAG GGG CCA TGT AG

Rat PDGFRa sens CAG GTC TAG TGA GAA GCA AGC TC 382

anti-sens CGA TCT CTG GAT GTC GGA GTA

PDGFRb sens GGT ACG TGT GAA GGT GTC AGA AG 275

anti-sens GGC TCT CCT CCT TGG AAC TAT T

House keeping gene 18S sens TCA AGA ACG AAA GTC GGA GGT TCG 462

anti-sens TTA TTG CTC AAT CTC GGG TGG CTG

doi:10.1371/journal.pone.0090795.t002
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Imatinib Mesylate Inhibits Osteosarcoma Progression
in vivo
In the light of potent inhibitory effects of imatinib mesylate on

human, mice and rat osteosarcoma cell lines in vitro, we next

assessed the effect of the drug on osteosarcoma tumour growth.

Two pre-clinical models of mouse syngenic osteosarcoma have

been used and ‘‘preventive’’ and ‘‘curative’’ treatments have been

tested. The in vivo effects of ‘‘preventive’’ treatments on tumour

growth were first studied in osteolytic POS-1 osteosarcoma model

(Figure 6A,B). Imatinib mesylate reduced significantly in a dose-

dependent manner the tumour volume compared to the control

group (Figure 6A). Rate of tumour progression between days 12

and 21 was also significantly decreased in the treated group

compared to the controls (18566281 mm3 for control mice vs.

6356123 mm3 for daily 100 mg/kg imatinib mesylate treated

mice; p,0.001) (Figure 6B). Similar experiments were carried out

using a mixed osteoblastic/osteolytic MOS-J osteosarcoma model

(Figure 6C,D). All animal treated with imatinib mesylate (n = 8 per

Figure 1. Imatinib mesylate inhibits in a dose dependent
manner the osteosarcoma cells proliferation. Human (HOS,
MG63) (A),mouse (POS-1, MOS-J) (B) and rat (OSRGA) (C) osteosarcoma
cell lines were treated by increasing concentration of imatinib mesylate
(0.1–40 mM) for 72 hours. The number of viable cells was then
determined using an XTT assay. (D) Table summarizing the IC50 and
IC90 of each cell lines studied. Graphs represent the average values of
three independent experiments performed in triplicate.
doi:10.1371/journal.pone.0090795.g001

Figure 2. Inhibitory effect of imatinib mesylate on osteosarco-
ma cell mitosis. Human MG63 (A), mouse MOS-J (B) and OSRGA (C)
osteosarcoma cells were cultured in the presence or absence of
imatinib mesylate with 25 mM, 20 mM and 10 mM respectively. Phase-
contrast photos were taken every 10 minutes for 72 hours and the
number of cell mitosis manually scored in a time-dependent manner.
doi:10.1371/journal.pone.0090795.g002

Gleevec and Osteosarcoma
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Figure 3. Imatinib mesylate affects osteosarcoma cell proliferation by inducing a cell cycle arrest. Cell cycle distribution of human,
mouse and rat osteosarcoma cell lines treated or not with imatinib mesylated for 48 hours was analyzed by propidium iodide staining and flow
cytometry. All experiments were repeated 3 times, and representative results are shown.
doi:10.1371/journal.pone.0090795.g003
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group) exhibited a significant decrease in tumour volume

compared to the control group. In a comparable manner to the

POS-1 model, the studied drug reduced the rate of tumour

progression at days 18 and 43 (Figure 6D). To mimic the clinical

context where tumour was mainly diagnosed in patients when the

tumour mass was detectable, we assessed the ‘‘curative’’ effect of

imatinib mesylate animal treatment started when MOS-J tumours

were palpable (7–10 days) (Figure 6E,F). Although imatinib

mesylate was substantially less effective in the curative regimen

than in the preventive one, hundred mg/kg of compound delayed

the increase in tumour volume consecutively to its first adminis-

tration (Figure 6E). The relative tumour progression calculated

between day 18 and day 43 confirmed the significant inhibitory

effect of imatinib mesylate on osteosarcoma growth

(18786171 mm3 for control mice vs. 12456110 mm3 for

100 mg/kg imatinib mesylate treated mice; p,0.001) (Figure 6F).

We then analyzed the impact of imatinib mesylate on bone

microarchitecture parameters and did not observe significant

effect of the drug on BV/TV and the other bone parameters (data

not shown).

PDGFRa is a Key Target of Imatinib Mesylate in
Osteosarcoma
The functional activity of imatinib mesylate was confirmed by

western blot analysis (Figure 7). Similarly to RAD001, imatinib

mesylate inhibit mTOR pathway in human and murine osteosar-

coma cells (Figure 7A). In contrast to RAD001 for which a

feedback loop takes place in HOS cells (7), imatinib mesylate

markedly abolished Akt phosphorylation (Figure 7A). This

therapeutic association did not reveal any significant synergistic

or additive effect on osteosarcoma cells compared to single

treatments (data not shown). To better identify the main targets of

imatinib mesylate in osteosarcoma, phospho-RTK arrays were

performed in the human HOS cell line. Figure 7B clearly shows

several tyrosine receptor kinases (PDGFRa and PDGFRb, Axl,
RYK, EGFR, EphA2 and 10, IGF1R) as key targets of imatinib

mesylate in HOS cells. In these cells, the phosphorylation status of

these receptors was significantly decreased by imatinib mesylate,

PDGFRa being particularly affected. We then studied the

expression of PDGFRa in the various cell lines studied and

confirmed its expression in human, mouse and rat osteosarcoma

cells (Figure 7C). To confirm the functional activity of PDGFR in

human and murine osteosarcoma cells, the PDGF-BB induced

signaling was investigated (Figure 8). PDGF-BB induced in human

(MG-63, HOS) and murine (POS-1, MOS-J) a rapid phosphor-

ylation of PDGRa and PDFGRb, as well as the downstream

signaling pathways AKT and ERK1/2. The PDGF-BB induced

phosphorylation cascades were markedly inhibited by 25 mM of

imatinib mesylate confirming that both receptors represent

functional targets in osteosarcoma (Figure 8).

Discussion

Whereas metastasis is clearly the lethal process in osteosarcoma

patients, the initial therapeutic response to chemotherapeutic

drugs is a key aspect of the therapeutic care because it predicts the

chance that growth of metastases is inhibited. Indeed, the current

strategy for treatment of high-grade osteosarcoma is based on neo-

adjuvant chemotherapy, delayed en-bloc wide resection, and

adjuvant chemotherapy adapted to the histologic profile assessed

on tumour tissue removed during surgery. The initial therapeutic

response to the first line of chemotherapy will then condition the

following therapeutic lines. Imatinib mesylate is a promising

therapeutic drug targeting a large panel of tyrosine kinase proteins

but also having an effect upon on tyrosine kinase targets such as

quinine oxidoreductase and members of carbonic anhydrase

family of metalloenzymes [21–23]. In this context, we investigated

its effect on osteosarcoma cell lines in vitro and on tumour growth

in vivo. Imatinib mesylate exerts anti-proliferative activities in

human, mouse and rat osteosarcoma cell lines by affecting cell

cycle and inducing caspase-dependent cell death and cell

migration. Murine syngenic models of osteosarcoma have been

Figure 4. Imatinib mesylate increases osteosarcoma cell death.
A kinetic of human (MG63), mouse (MOS-J) and rat (OSRGA)
osteosarcoma cell death was analyzed by time-lapse microscopy in
the presence or the absence of 25 mM, 20 mM or 10 mM imatinib
mesylate respectively. The number of cell death was manually scored
every 10 minutes until 72 hours.
doi:10.1371/journal.pone.0090795.g004
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used to study the efficacy of this therapeutic agent on the primary

tumour growth at the bone site. The data revealed the inhibitory

activity of imatinib mesylate in undifferentiated- and mixed

osteoblastic2/osteolytic forms of osteosarcoma, in ‘‘preventive’’

and ‘‘curative’’ approaches. Finally, PDGFRa, Axl, PDGFRb,
RYK, EGFR, EphA2, EphA10 and IGF1-R are key targets of

imatinib mesylate in osteosarcoma.

Osteosarcomas originate from connective tissues and thus

derive from mesoderm. It has been suggested that osteosarcoma,

chondrosarcoma and Ewing’s sarcoma originate from multipotent

cells called mesenchymal stem cells able to differentiate into

fibroblasts, osteoblasts, chondrocytes, adipocytes etc [1,24–26].

Osteoblasts and their precursors are cellular targets of imatininb

mesylate. Indeed, Indeed, imatinib mesylate inhibits osteoblast

Figure 5. Osteosarcoma cell death induced by imatinib mesylate is partly dependent of caspase activity. (A) Human (MG63, HOS),
mouse (POS-1, MOS-J) and rat osteosarcoma cells were cultured with or without increasing concentrations of imatinib mesylate. After 48 days of
treatment, the alive and dead cells number was manually scored (from trypsinized and floating cells) after trypan blue exclusion. (B) Using similar
culture conditions, caspase-3 activity was assessed using a kit CaspACE Assay System (Promega, USA). (C) On the same way, the involvement of
caspase activity in cell death induced by imatinib mesylate was analyzed using the 2,3-bis(2 methoxy-4 nitro-5-sulfophenyl)2H-tetrazolium-5-
carboxanilide (XTT) assay in the presence or the absence of 50 mM pan-caspase inhibitor Z-Vad-FMK(ZVAD).*p,0.05; ** p,0.01; ***p,0.001.
doi:10.1371/journal.pone.0090795.g005
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proliferation and activity in particular through its inhibitory

activity on PDGFRb [14–16]. We obtained similar findings with

stimulation of calcified matrix deposition by osteoblasts correlating

with modulation of differentiation markers (cbfa1, osteocalcine,

bone sialoprotein) in the presence of low doses of imatinib

mesylate (until 5 mM) while higher doses exert opposite effect with

a strong inhibition of mineral deposit (Figure S4). Such marked

effects of imatinib mesylate on osteoblastic lineage strengthen the

therapeutic interest of imatinib mesylate for osteosarcoma. Ten

years ago, McGary et al demonstrated that imatinib mesylate

inhibits PDGF-mediated growth and leads to osteosarcoma cell

apoptosis in vitro by selective inhibition of the PDGFR [27]. The

effectiveness of the drug was confirmed in murine immunodefi-

cient model of osteosarcoma as revealed by the follow-up of

tumour-associated osteolysis by radiography [28]. Interestingly,

expression of PDGF receptors and their ligands has been

investigated in tissue micro arrays prepared from 54 osteosarcoma

patients. Immunohistochemical analyses showed frequent expres-

sion of PDGFRa and PDGFRb (around 80%) and their ligands

with a correlation with lower event-free survival for PDGFRa that

was not observed for PDGFRb (28). In this context, the patient

PDGFR status may be used as a prognostic marker in

osteosarcoma and may serve to define imatinib mesylate therapy.

Unfortunately, a phase II study of imatinib mesylate in children

with solid tumours demonstrated little of no activity as a single

agent in children with refractory osteosarcoma (10 cases evaluated)

[29]. However, there was no information on the tyrosine kinase

status of patients initially enrolled. Our data revealed that among

the decreased phosphorylated receptors, PDGFRa appears as the

most sensitive target of imatinib mesylate in osteosarcoma. In

Figure 6. Imatinib mesylate inhibits osteosarcoma development in ‘‘preventive’’ and ‘‘curative’’ therapeutic context. Mice bearing
undifferentiated POS-1 (A, B) or mixed osteoblastic/osteolytic MOS-J (C–F) osteosarcoma tumours (n = 8 per group) were assigned as control
(vehicle), or imatinib mesylate (25, 50 or 100 mg/kg, daily oral administration). The treatment started 1 day after tumour cell inoculation (« preventive
» treatment, A–D) or treatment started when tumours are palpable (7–10 days) named ‘‘curative treatment’’ (E, F). Evolution of tumour volumes
(mm3) (A, C, E); follow-up of tumour progressions (B, D, F). * P,0.05; ** P,0.01; *** P,0.001.
doi:10.1371/journal.pone.0090795.g006
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addition, while all cell lines were sensitive to this drug, PDGFRa
was expressed by all cell lines in contrast to PDGFRb. Our data

are in agreement with the data obtained recently by Kitagawa

et al [30]. These authors studied the specificities of various

approved tyrosine kinase inhibitors including imatinib mesylate,

by activity-based kinase profiling using a panel of 310 human

Figure 7. Imatinib mesylate inhibits AKT/mTOR signaling pathway in osteosarcoma cells and activates ERK1/2 phosphorylation:
PDGFRa, a key target of osteosarcoma cells. Human, mouse and rat osteosarcoma were treated with various doses of imatinib mesylate to
analyse the effects of the drug on intra-cellular signaling pathways. (A) Imatinib mesylate inhibits mTOR and Akt phosphorylation in human HOS and
mouse MOS-J cells. RAD001 named everolimus (RAD), a mTOR inhibitor was used as a positive control. (B) Human Phospho-receptor tyrosine kinase
array Kit was used to identify the molecular targets of imatinib mesylate. (C) Expression of PDGFRa and PDGFRb analyzed in human, mouse and rat
osteosarcoma cells by semi-quantitative RT-PCR.
doi:10.1371/journal.pone.0090795.g007
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recombinant active kinases. They revealed that imatinib mesylate

targets were in rank order of IC50 values: PDFRa, PDFRb,
Discoidin Domain Receptor 2 (DDR2), DDR1, KIT, lymphocyte-

specific protein tyrosine kinase (LCK), yes-related novel PTK B

(LYN B), LYN A and ABL [30].

Our study demonstrated the inhibition of a set of tyrosine kinase

receptors induced by imatinib mesylate (Figure 7). Ten years ago,

from 600 cDNA microarray experiments of human osteosarcoma

cell lines, five genes (Axl, TGFA, COLL7A1, WNT5A, and

MKK6) have been identified and were associated with adherence,

motility, and/or invasiveness of cancer cells [31]. More recently,

using phosphoproteomic screening, Rettew et al identified twelve

receptor tyrosine kinases that were phosphorylated in two

metastatic human osteosarcoma cells (143B, LM7) [32]. In this

extensive screening, these authors identified Axl, EphB2, FGFR2,

IGF-1R and Ret as specific activated receptor tyrosine kinases and

they demonstrated using functional inhibition approaches (neu-

tralizing antibodies, antisense-mediated knockdown or small

molecule inhibitors) that those specific receptors promote the

in vitro behavior of metastatic osteosarcoma cell lines [32]. Axl

appears to be expressed in most osteosarcoma tissues and its

knockdown inhibits proliferation and induces apoptosis of human

osteosarcoma cells [33], its expression predicting the clinical

outcome of patients [34].

Human osteosarcoma also expressed numerous other targets of

imatinib mesylate. Among them, cKit is one of the candidates

[35]. No correlation was found between c-kit expression and

overall or disease-free survival however c-kit-positive tumours

exhibited lower necrosis post-chemotherapy [36]. Similarly the

expression of EphA2 receptors is increased in osteosarcoma and

modulates activation of the mitogenic signalling pathway and

consequently may be involved in the oncogenic process [36]. In

contrast to ephrinB ligands and EphB receptors which regulate the

migration, attachment and spreading of mesenchymal stem cells,

and constitute a bidirectional signaling between osteoclasts and

osteoblasts activating osteoclasts, EphA2 and its ligands act as a

‘‘coupling inhibitor’’ [37]. Indeed, EphA2 reverse signaling into

osteoclasts enhances osteoclastogenesis and suppresses osteoblastic

bone formation. Consequently, EphA2 system may contribute to

the pathogenesis of osteosarcoma by modulating the communica-

tions between tumour cells and their microenvironment [37]. Mass

spectrometry experiments comparing human osteosarcoma cell

lines and human primary osteoblasts identified 156 surface

proteins significantly upregulated on osteosarcoma cells [38].

Among these proteins, EphA2 receptor 2 was the most abundant

surface protein on cancer cells and was expressed in a majority of

human osteosarcoma samples [38]. EphA10 may contribute to the

oncologic process but its role remains under investigation [39].

EGFR and IGF1R have been also identified as therapeutic targets

of tyrosine kinase inhibitors [40,41]. RYK is a tyrosine receptor

interacting with Wnt signalling [42] which strongly contributes to

the dialog between tumour cells and their stromal environment,

especially in osteosarcoma [43,44].

The present data underline the potential therapeutic interest of

imatinib mesylate in osteosarcoma. In light of these data and the

literature, clinical investigations are absolutely required to evaluate

its efficacy according the expression profile of tyrosine kinases

before to conclude on the absence of effectiveness of imatinib

mesylate in osteosarcoma patients. The therapeutic interest of

imatinib mesylate in osteosarcoma then remains an open debate.

Supporting Information

Figure S1 Imatinib mesylate inhibits osteosarcoma cell
divisions in a dose-dependent manner. Human MG63,

mouse MOS-J and rat OSRGA osteosarcoma cells were cultured

in the presence or absence of increasing doses of imatinib

mesylate. Phase-contrast photos were taken every 10 minutes for

72 hours and the number of cell mitosis manually scored in a time-

dependent manner.

(TIF)

Figure S2 Imatinib mesylate induces osteosarcoma cell
death in a dose-dependent manner. A kinetic of human

(MG63), mouse (MOS-J) and rat (OSRGA) osteosarcoma cell

death was analyzed by time-lapse microscopy in the presence or

the absence of increasing doses of imatinib mesylate. The number

of cell death was manually scored every 10 minutes until 72 hours.

(TIF)

Figure S3 Effect of Imatinib mesylate on the osteosar-
coma cell migration. Osteosarcoma cell monolayers were

damaged by scraping with a micropipette tip then incubated for 24

hours in the presence of 4 mg/mL mitomycin with or without

imatinib mesylate (10–40 mg/mL). The extent of cell migration

into the wounded area was analyzed by comparing microphoto-

graphs after 0 and 24 hours.

(TIF)

Figure 8. Imatinib mesylate inhibits the PDGF-BB induced signalling pathways. Human, mouse and rat osteosarcoma were treated with
50 ng/mL of PDGF-BB for 5 minutes in the presence of the absence of 25 mM of imatinib mesylate. PDGFRa, PDGFRb, Akt, ERK1/2 phoshorylations
were analyzed by Western blot compared to the levels of total forms of proteins and the levels of actin.
doi:10.1371/journal.pone.0090795.g008
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Figure S4 Imatinib mesylate exhibits a dual effect on
osteoblast differentiation. Human mesenchymal stem cells

(hMSC) were isolated, cultured, differentiated in osteoblasts and

characterized according the technique described by Lavenus et al

[45]. hMSC were cultured in the presence or absence of increasing

concentrations of imatinib mesylate for 21 days and their ability to

form mineralized matrix in vitro was revealed by alizarin red

staining (A). Osteogenic makers [Runx2 (B), Osteocalcine (C),

Bone Sialo Protein (D)] were followed by quantitative PCR.

Imatinib mesylate exhibits a dual effect on osteoblast differenti-

ation and acts as a pro-osteogenic factor until 5 mM and anti-

osteogenic drug for higher concentrations.

(TIF)
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