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ABSTRACT
The geoemydid turtles of the Eocoene Messel Pit Quarry of Hesse, Germany, are part
of a rich Western European fossil record of testudinoids. Originally referred to as
“Ocadia” kehreri and “Ocadia” messeliana, their systematic relationships remain
unclear. A previous study proposed that a majority of the Western European
geoemydids, including the Messel geoemydids, are closely related to the Recent
European representatives of the clade Mauremys. Another study hypothesised that
the Western European geoemydid fauna is more phylogenetically diverse, and that
the Messel geoemydids are closely related to the East Asian turtles Orlitia and
Malayemys. Here we present the first quantitative analyses to date that investigate
this question. We use continuous characters in the form of ratios to estimate the
placement of the Messel geoemydids in a reference tree that was estimated from
molecular data. We explore the placement error obtained from that data with
maximum likelihood and Bayesian methods, as well as linear parsimony in
combination with discrete characters. We find good overall performance with
Bayesian and parsimony analyses. Parsimony performs even better when we also
incorporated discrete characters. Yet, we cannot pin down the position of the Messel
geoemydids with high confidence. Depending on how intraspecific variation of
the ratio characters is treated, parsimony favours a placement of the Messel fossils
sister to Orlitia borneensis or sister to Geoemyda spengleri, with weak bootstrap
support. The latter placement is suspect because G. spengleri is a phylogenetically
problematic species with molecular and morphological data. There is even less
support for placements within the Mauremys clade.
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INTRODUCTION
The Messel Pit quarry from the middle Eocene (Lutetian, MP11) of Hesse, Germany,
has yielded an abundant and well-preserved turtle fauna, including the podocnemidid
Neochelys franzeni, and the trionychians Allaeochelys crassesculpta and Palaeoamyda
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messeliana (Cadena, Joyce & Smith, 2018). Staesche (1928) also described two abundant
(N >> 100) geoemydid morphs from Messel, which are of similar shape but have
clearly different sizes: “Ocadia” messeliana (carapace length of 10–20 cm) and “Ocadia”
kehreri (carapace length of 25–30 cm) (Fig. 1). Several specimens of the latter have
even preserved internal organs that were identified as oviducts, possibly swollen from
bearing eggs (Gaßner et al., 2001). Despite this seemingly propitious material, the
systematics of the Messel geoemydids is not well understood (only for convenience and
simplicity, we shall refer to the Messel morphs simply as messeliana and kehreri to
circumvent the nomenclatural disagreements described in what follows). The global
phylogenetic relationships of extant geoemydids began to become significantly clearer in

Figure 1 Geoemydid fossils from the Messel Pit quarry. The well-preserved kehreri specimen SMF
ME1340 in dorsal (A) and ventral (B) views. SMFME2607 (C) shows a common dorsal view preservation
of messeliana, with a collapsed carapacial dome. The ventral view of HLMD ME17626 (D) displays
three-dimensional preservation that is very rare formesseliana specimens. The carapace of that specimen
is partially collapsed. Photos A and B by Anika Vogel, C by Walter G. Joyce, and D by Eduardo
Ascarrunz. Full-size DOI: 10.7717/peerj.11805/fig-1
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the early 2000s thanks to phylogenetic analyses of molecular data (Honda et al., 2002;
Honda, Yasukawa & Ota, 2002; Spinks et al., 2004; Sasaki et al., 2006). Further work
stabilised the valid species and internal relationships of major clades (Barth et al., 2004;
Feldman & Parham, 2004; Le, McCord & Iverson, 2007; Spinks et al., 2012), and decisively
subsumed the extant species of the genus “Ocadia” into Mauremys (e.g. Barth et al.,
2004; Feldman & Parham, 2004; Spinks et al., 2004). Several palaeontological analyses have
since conducted phylogenetic analyses that exploit the signal from molecular data (Joyce &
Lyson, 2010; Naksri et al., 2013; Vlachos et al., 2019; Garbin, Böhme & Joyce, 2019;
Vlachos, 2020), but similar progress on Western European geoemydid material, including
the Messel material, remains wanting.

Hervet (2003, 2004) carried out the most comprehensive systematic treatment of
Western European geoemydids to date. Therein, she erected new genera for the Messel
geoemydids, creating the combinations “Euroemys kehreri” and “Francellia messeliana”.
In each genus she also described new species (Hervet, 2004), namely “Euroemys vidalenci”
from the middle Eocene (Lutetian, MP12-13) of Trotte-Cos in Aude, France, and
“Francellia salouagmirae” from the early Eocene (Ypresian, MP7) of Rians in Var, France.
Hervet’s study was done under the assumption of a close relationship between Mauremys
caspica and Mauremys leprosa (the only two extant geoemydid species that Hervet
recognised in Europe) and a large number of European fossil geoemydids that include
kehreri, messeliana, and species that historically had been attributed by various authors
to Palaeochelys, “Ocadia”, and Palaeoemys, among others, but excluding “ptychogasterids”.
That putative clade (Fig. 2A) was referred to as the “Palaeochelys sensu lato–Mauremys”
group, a concept based on previous ideas of de Broin (1977; de Lapparent de Broin,
2001). Unfortunately, the phylogenetic analyses of Hervet (2003) only included the
“Palaeochelys sensu lato–Mauremys” group and the outgroups Elkemys australis, a
testudinoid from the early Palaeocene (Shanghuan) of Guandong, China, with possible
but uncertain affinities to early testudinids or geoemydids (Danilov, Claude &
Sukhanov, 2012), and Platysternon megacephalum, an extant testudinoid more closely
related to emydids (Parham, Feldman & Boore, 2006; Pereira et al., 2017). Therefore, the
relationships between the extensive European fossil geoemydid fauna and extant
geoemydids (other than Mauremys caspica and Mauremys leprosa) were completely
unexamined in the phylogenetic analysis, and the support for the “Palaeochelys sensu
lato–Mauremys” group as a clade remained unclear.

In their description of testudinoids from the Eocene of Saint-Papoul, France, Claude &
Tong (2004) also provided a systematic review of western European fossil geoemydids with
a drastically different perspective. In general, they considered invalid various species
and genera erected by Hervet (2004), and proposed that messeliana and kehreri might be
conspecifics at different growth stages, and assigned them to genus Palaeoemys under
the combination “Palaeoemys messeliana”. Their concept of Palaeoemys also includes
Palaeoemys hessiaca (the generic type) from the middle Eocene (Lutetian) of Borken,
Germany, and Palaeoemys testudiniformis and Palaeoemys corroyi from the early Eocene
(Ypresian) of England and France, respectively. Claude & Tong (2004) were sceptical of
the reliability of morphological characters for inferring the global phylogenetic
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relationships of geoemydids, and opted for taking advantage of the molecular phylogenies
that had been recently published (Spinks et al. (2004), in particular) to guide their
interpretation of character polarities and construct a phylogenetic scenario, which was
later extended with new findings (Claude et al., 2012). In their preferred phylogenetic
scenario, Palaeoemys (including the Messel geoemydids) is grouped in a clade with
Malayemys, Geoclemys, and Orlitia (Fig. 2B). Although benefiting from a wider
phylogenetic scope, their hypothesis has not been evaluated by less subjective means.

Our aim in this study is to determine the phylogenetic position of kehreri and
messeliana in the context of the global diversity of extant geoemydids. Our results can have

Figure 2 Phylogenetic hypotheses for the fossil geoemyidid turtles. (A) “Hypothesis A” from Hervet (2003, 2004), and (B) “Hypothesis B” from
Claude et al. (2012). (C) shows possible placements for the Messel geoemydids in the molecular phylogeny of Pereira et al. (2017) (we only show the
species as included in our analyses), following hypothesis A (in red) or hypothesis B (in blue). The symbols indicate which genera or species
recognised by Hervet (2004) were synonymised by Claude & Tong (2004); the parentheses around the rhombus for Bergoniouxchelys indicate that it
was no longer considered a synonym of Palaeochelys in Claude et al. (2012). The geoemydid morphs analysed in this study, kehreri (star) and
messeliana (inverted star) appear in red. Extant species and clades appear in boldface. Full-size DOI: 10.7717/peerj.11805/fig-2
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a wider significance for the understanding of the phylogenetic relationships of western
European geoemydids because, although the position of the Messel morphs alone
would not suffice to validate the entire “Palaeochelys sensu lato–Mauremys” hypothesis
(hereafter “hypothesis A”) or the hypothesis of Claude et al. (2012) (which we term
“hypothesis B”), it has the potential to refute important aspects of either or both.

In a previous study, some of us we found that traditional discrete morphological
characters do not suffice for the reliable inference of phylogenetic relationships among
extant geoemydids (Garbin, Ascarrunz & Joyce, 2018), and in another, we obtained similar
results with continuous characters in the form of 3D coordinates of homologous
landmarks (Ascarrunz, Claude & Joyce, 2019). However, it was possible to use the same
data to make more reliable inferences about the position of individual species on a fixed
reference tree, a procedure known as “phylogenetic placement” (Matsen, Kodner &
Armbrust, 2010; Berger & Stamatakis, 2010). Furthermore, as the sets of anatomical
features described with the discrete and continuous characters are not fully overlapping,
there is potential for improving the reliability of our inferences by the combination of
the two sources of characters. We thus constructed a hybrid dataset for this study, and used
it in conjunction with phylogeny estimated in a recent and comprehensive molecular
phylogenetic analysis (Pereira et al., 2017) to estimate the phylogenetic placement of
kehreri and messeliana.

As in previous studies (Garbin, Ascarrunz & Joyce, 2018; Ascarrunz, Claude & Joyce,
2019), we evaluated the performance of different phylogenetic placement methods with
our data.

Hypotheses
To evaluate the support for the different hypotheses about the placement of the Messel
geoemydids (Hervet, 2003, 2004; Claude & Tong, 2004; Claude et al., 2012), we recast them
in terms of the modern understanding of the relationships of extant geoemydids after
Pereira et al. (2017) (Fig. 2C).

Hypothesis A:messeliana and kehreri are more closely related toMauremys caspica and
Mauremys leprosa than Cuora amboinensis.

Hervet (2003, 2004) consistently included Mauremys caspica and Mauremys leprosa in
the “Palaeochelys sensu lato–Mauremys” group, and left the relationships of other extant
Mauremys species as an open question. In the early 2000’s there was considerable
uncertainty about the concept of Mauremys, as the species traditionally included in the
genus were found forming a non-monophyletic group (Honda, Yasukawa & Ota, 2002).
Eventually, the name Mauremys was retained by expanding it to include the genera
Chinemys and Ocadia (Barth et al., 2004; Spinks et al., 2004). Hypothesis A, as stated here,
is therefore more inclusive than what Hervet might have envisaged. We confidently
exclude Cuora, the sister group of Mauremys, as Hervet never included any other extant
species in the “Palaeochelys sensu lato–Mauremys”.

Hypothesis B: messeliana and kehreri are more closely related to Orlitia borneensis and
Malayemys than Morenia petersi.
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Claude & Tong (2004, p. 20) proposed a slightly different hypothesis in which
Palaeoemys (including themesseliana and kehrerimorphs) formed a clade with Geoclemys
and Malayemys to the exclusion of all other geoemydids. Spinks et al. (2004) and
subsequent studies (Diesmos et al., 2005; Praschag et al., 2006) consistently found support
for Geoclemys as sister to the clade formed byMorenia, Pangshura, Batagur, and Hardella,
and therefore Claude et al. (2012, p. 649) revised their phylogenetic scenario with the
tree shown in Fig. 2B. Our formulation of hypothesis B closely follows the latter version.
It should be noted, however, that we unfortunately lacked sufficient data to include
Geoclemys in our analyses.

MATERIALS AND METHODS
There is disagreement on whether kehreri and messeliana represent one or two distinct
species (Claude & Tong, 2004; Hervet, 2004). We performed the placement analyses under
the two-species interpretation, because it represents the more complex scenario, for which
we can give a fuller discussion. However, we do not wish to endorse either alternative
in this contribution.

Phenotypic data
Our data comes from the discrete character matrix of Garbin, Ascarrunz & Joyce (2018)
and the 3D landmark coordinates of Ascarrunz, Claude & Joyce (2019), with some
modifications. Most importantly, we made sure to have both discrete and continuous data
of each species, for which we added 20 new specimens to the discrete data matrix,
based on photographs and notes from the material previously studied in Ascarrunz, Claude
& Joyce (2019) (Table 1). The data originally associated with Malayemys subtrijuga is
presented here as simply Malayemys, because it is possible that the collection
identifications of the osteological material that we studied stand in conflict with the
recently revised species delimitations within Malayemys (Ihlow et al., 2016). In total, we
compiled phenotypic data for 40 extant geoemydids, as well as 4 extant emydids and one
extant testudinid that we use as outgroups.

The continuous phenotypic measurements of the Messel geoemydids comes from five
messeliana and 15 kehreri specimens housed in the Senckenberg Museum in Frankfurt
(SMF), Hesse, Germany. Discrete characters of the Messel material were coded from nine
messeliana and 23 kehreri specimens from SMF and the Hessisches Landesmuseum
Darmstadt (HLMD) in Darmstadt, Hesse, Germany. We also incorporated an additional
series of measurements of the plastron of the holotype of messeliana (HLMD-ME1444)
provided by Staesche (1928). That plastron was in good condition when studied, measured,
and photographed by Staesche, but it is now encased in a plaster base and can no longer be
examined.

We categorised the Messel specimens as either messeliana or kehreri primarily by size,
while also checking other features noted by Staesche (1928) and Hervet (2003, 2004), such
as the more elliptical carapacial contour and presence of lateral carapacial carinae in
messeliana, and the more anterior position of the humeropectoral sulcus in kehreri.
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Table 1 Specimens added to the discrete and continuous datasets for this study.

Specimen Species Discrete data Continuous carapace data Continuous plastron data

FMNH 224083 Cyclemys dentata ● – ●

FMNH 224092 Cyclemys dentata ● – ●

FMNH 224095 Batagur baska ● – –

FMNH 224097 Batagur baska – – ●

MCZR 166446 Glyptemys insculpta ● ● ●

MCZR 182819 Malaclemys terrapin ● ● ●

MCZR 1863 Malaclemys terrapin – ● ●

MCZR 1870 Malaclemys terrapin ● – –

MCZR 46253 Graptemys barbouri ● ● ●

MCZR 46258 Graptemys barbouri – ● ●

MCZR 46278 Graptemys barbouri ● ● ●

MCZR 6397 Graptemys geographica – ● ●

PCHP 1176 Graptemys geographica ● – ●

PCHP 11927 Cyclemys dentata ● ● ●

PCHP 11959 Malaclemys terrapin ● – ●

PCHP 3952 Cyclemys oldhamii ● ● –

PCHP 4738 Mauremys leprosa ● ● ●

PCHP 6139 Cyclemys oldhamii ● ● ●

PCHP 6502 Batagur baska ● ● –

YPM HERR19103 Gopherus agassizii ● ● ●

HLMD ME20114† messeliana ● – –

HLMD BE142 kehreri ● – –

HLMD BE148 kehreri ● – –

HLMD BE157 kehreri ● – –

HLMD ME10477 messeliana ● – –

HLMD ME13437 messeliana ● – –

HLMD ME13770 messeliana ● – –

HLMD ME1444 messeliana ● – ●*

HLMD ME1452 kehreri ● – –

HLMD ME14749 kehreri ● – –

HLMD ME15011 messeliana ● – –

HLMD ME15033 kehreri ● – –

HLMD ME15565 kehreri ● – –

HLMD ME17626 messeliana ● – –

HLMD ME7229 kehreri ● – –

HLMD ME7960 messeliana ● – –

HLMD ME8037 messeliana ● – –

HLMD ME8051 kehreri ● – –

HLMD ME8877 kehreri ● – –

HLMD ME9051 messeliana ● – –

SMF ME10957 kehreri ● – –

(Continued)
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We had no disagreements withHervet’s (2003, 2004) assignments of the specimens that we
examined.

An important limitation in our current sampling is the lack other relevant fossil
geoemydids (e.g. Palaeoemys testudiniformis, Borkenia spp.), which could improve
inferences about the Messel geoemydids (Mongiardino Koch, Garwood & Parry, 2021).
We intend to incorporate more such material in further studies.

Continuous phenotypic data
In a previous study we collected geometric shell data of a wide range of extant geoemydids
in the form of 3D coordinates of homologous landmarks (Ascarrunz, Claude & Joyce,
2019). However, data from Messel geoemydid material cannot be collected in the same
way, as the fossils are without exception crushed or deformed to some degree making it
impossible to accurately capture their undeformed geometry (Fig. 1).

Fortunately, rather than using landmarks coordinates and superimposition techniques,
we could use ratios of linear measurements of localised features. Ratios are often used in
phylogenetic studies based on anatomical specimens, as they still capture some information
about shape and limit the effect of taphonomic distortion of the specimens, especially when

Table 1 (continued)

Specimen Species Discrete data Continuous carapace data Continuous plastron data

SMF ME11285 kehreri ● – ●

SMF ME11389 kehreri ● – ●

SMF ME11558 kehreri ● ● –

SMF ME1210 messeliana – ● ●

SMF ME1221 messeliana – – ●

SMF ME1340 kehreri ● ● ●

SMF ME1458 kehreri – ● –

SMF ME1557 kehreri – – ●

SMF ME1564 kehreri – ● ●

SMF ME1679 kehreri – – ●

SMF ME172 kehreri ● ● –

SMF ME1782 kehreri ● ● ●

SMF ME1797 kehreri – – ●

SMF ME2607 messeliana ● ● –

SMF ME2767 kehreri – ● ●

SMF ME2776 messeliana – ● –

SMF ME3495 kehreri – – ●

SMF ME3774 kehreri ● ● ●

SMF ME3777 messeliana ● ● ●

SMF ME717 kehreri ● ● –

Note:
† This voucher number was assigned after we had conducted our analyses. In our data files we refer to this specimen with the provisional voucher number HLMD 2015-3-
221.

* Data taken from Staesche (1928).
Institutional abbreviations (all in the USA): Field Museum of Natural History (FMNH) in Chicago, Illinois, the Chelonian Research Institute (PCHP) in Oviedo, Florida,
the Museum of Comparative Zoology (MCZ) in Cambridge, Massachusetts, and the Yale Peabody Museum (YPM) in New Haven, Connecticut.
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they correspond to small features rather than global shape. Furthermore, ratios do not
suffer from artificially forcing the uniform and isotropic distribution of the variance over all
points, as is done by standard superimposition techniques such as generalised Procrustes
analysis.

It is straightforward to compute linear measurements from the original landmark data
that are strict homologues to linear distances as they would be recorded by a regular
calliper with sub-millimetric precision. To do this, we defined segments that correspond to
distances between chosen pairs of landmarks that we had surveyed (Fig. 3). Those
segments corresponded to features that we observed to have a good chance of being
reasonably well-preserved in the fossils. For instance, the length of the sulcus between the
first and second pleural scutes (Fig. 3, measurement C17) or the length of the intergular
sulcus (Fig. 3, measurement P1). Because such linear measurements are bound to have
a strong correlation with specimen size, we implemented a rough correction by finding
pairs of segments that yield ratios (Table 2) that have weak correlations (Pearson
correlation coefficients between −0.3 and 0.3 in a log-log scale) with the centroid size of the
carapace or the sum of the centroid sizes of the plastral lobes of the specimens of extant
species. These were simple linear correlation analyses that do not take into account
phylogenetic structure nor assume a model of evolution (we discuss the fit of the data to
single-rate Brownian motion models often assumed in comparative methods below), and
therefore do not separate phylogenetic and non-phylogenetic covariances in the data.
The continuous characters used in our phylogenetic analyses are log-transformations of
the ratios, or, in one case, the log-transformation of the segments (see the maximum
likelihood analyses below). The log-transformation unskews the data to approximate the
normal distribution assumed in Brownian motion models and normalises the effect of the
arbitrary choices of numerator and denominator in the maximum parsimony analyses
(Mongiardino Koch, Soto & Ramírez, 2015). We defined 10 log-ratio characters based on
17 segment characters of the carapace, and 15 log-ratio characters based on 20 segment
characters of the plastron (Fig. 3). The segment characters were directly measured with a
digital calliper (4 decimal digits of precision in a millimetre scale, which we rounded
down to 2; similar to the precision of the microscribe that we used) on a series of SMF
specimens. Segments with contralateral homologues were measured on whichever
side of the specimen was best preserved. For the specimens of extant geoemydid species,
the characters were measured programmatically from the 3D landmark coordinates,
after steps of replicate averaging and bilateral symmetrisation with estimation of
missing landmarks by reflection as described in Ascarrunz, Claude & Joyce (2019). The
symmetrisation step was performed to make the measurements of extant species
comparable to the measurements of the Messel material, which were not systematically
taken from either side. In some cases, log-ratio characters could be obtained from multiple
specimens, providing information about intraspecific variation for 227 of the 1175 cells
in the matrix of continuous data. We dealt with this situation in two ways. For the main
analyses with maximum parsimony (see below), we created a continuous character data
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matrix with the 95% confidence interval (95% CI) of the mean of the log-ratio characters
assuming a normal distribution. The parsimony criterion treats ranges of continuous
values analogously to polymorphic observations of a traditional ordered multi-state
discrete character (Goloboff, Mattoni & Quinteros, 2006). All the analyses with other
phylogenetic inference methods were performed with the point estimates of the means of
the log-ratio characters, owing to limitations of their implementations. We also performed
maximum parsimony analyses on the point estimates of the log-ratio means, whose results
are more directly comparable to those of the other methods.

Figure 3 Measurements taken to construct the log-ratio characters in Table 2.On the fossil specimens
measurements with a contralateral homologue were taken on whichever side they were best preserved.
On specimens of extant species, the geometry of the shell was first captured with 3D landmark coor-
dinates and symmetrised, and then the measurements were taken as distances between landmarks.

Full-size DOI: 10.7717/peerj.11805/fig-3
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Discrete phenotypic data
We built a discrete character matrix based on the matrix published in Garbin, Böhme &
Joyce (2019), with the following modifications (numbers refer to characters in the original
matrix). We excluded all characters that could not be coded or were not relevant for
the Messel material (27, 28, 29, 55, 56, 57, 58, 60, 61, 62, 73, 75, 76, 77, 78, 79, 80, 84, 87, 90,
92, 93), and the discrete characters similar to our new ratio characters (34, 74, 81, 82, 83,
88, 89). The latter does not imply that we avoided all correlations between discrete and
continuous characters, but merely that we removed the discrete characters that were
glaringly redundant. Characters 48 and 49 were also excluded for partial redundancy,
although they were formulated in terms of maximal dimensions that did not always meet

Table 2 Definitions of log-ratio characters used in this study.

Name Numerator Denominator r Description

RC1 C4 C5 0.000 Marginal 2, ratio of inner length to posterior width

RC2 C6 C9 0.088 Neural 3, position relative to sulcus between vertebral 2 and vertebral 3

RC3 C7 C8 0.030 Vertebral 3, ratio of lateral length to posterior width

RC4 C14 C13 0.229 Pleural 3, ratio of posterior width to inner length

RC5 C10 C11 −0.092 Marginal 3, ratio of inner length to posterior width

RC6 C15 C1 −0.185 Vertebral 5, ratio of anterior width to distance between inner vertebral
5-pleural 4 contact to inner marginal 11-marginal 12 contact

RC7 C16 C17 0.110 Pleural 1, ratio of inner length to posterior width

RC8 C12 C13 0.162 Pleural 2, ratio of inner length to anterior width

RC9 C12 C7 0.061 Ratio of inner length of pleural 2 to lateral length of vertebral 3

RC10 C2 C3 −0.180 Nuchal, ratio of length to posterior width

RP1 P1 P1+P2+P3 −0.225 Intergular sulcus, ratio to total midline length of anterior lobe scutes

RP2 P2 P1+P2+P3 0.220 Interhumeral sulcus, ratio to total midline length of anterior lobe scutes

RP3 P4 P4+P5+P6 0.176 Interabdominal sulcus, ratio to total midline length of posterior lobe scutes

RP4 P5 P4+P5+P6 0.236 Interhumeral sulcus, ratio to total midline length of posterior lobe scutes

RP5 P1+P2+P3 P4+P5+P6 0.122 Total midline length ratio between anterior and posterior lobe scutes

RP6 P17 P8 0.164 Position of humeropectoral sulcus relative to entoplastron midline length

RP7 P13 P14 0.033 Ratio between anterior to posterior lateral margins of entoplastron

RP8 P12 P1 0.046 Gular, ratio of anterior width to midline length

RP9 P11 P10+P11 −0.211 Xiphiplastron, ratio of midline length to total midline length of posterior
lobe plates

RP10 P19 P11 −0.217 Xiphiplastron, ratio of anterior width to midline length

RP11 P16 P15 −0.229 Ratio of entoplastron width to length of epi-hyoplastral suture

RP12 P7 P1 0.050 Ratio between lengths of interepiplastral suture and intergular sulcus

RP13 P9 P7+P8+P9 0.063 Hyoplastron, ratio of midline length to total midline length of anterior lobe
plates

RP14 P18 P11 0.212 Xiphiplastron, ratio of interfemoral sulcus to midline length of the
xiphiplastron

RP15 P20 P9 0.092 Hyoplastron, ratio of interabdominal sulcus to midline length of
hyoplastron

Note:
Refer to Fig. 3 for the measurements in the numerator and the denominator. r is the Pearson correlation coefficient between the log-ratio character and the log-centroid
size of the carapace or the logarithm of the sum of centroid sizes of the plastral lobes.
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homologous landmarks. We modified the characters pertaining to the carapacial carinae,
because we observed that ontogenetic variation was confounding putative homologies
(carapacial carinae tend to become less prominent or disappear with age in many species).
Thus, we merged characters 1, 2, and 5, and deleted characters 3, 4, and 6. The final
modified matrix has 60 discrete characters for the same 47 species as scored for the
continuous data.

Character 46 made reference to the extent of the sulcus between the twelfth marginals,
including a state for the condition in which the sulcus does not exist because the marginals
have fused. The proposed homology relations thus implied between those states are
mistaken. The extent of the intermarginal sulcus is determined by the degree to which the
fifth vertebral extends posteriorly between the marginals. If the fifth vertebral were to
extend back all the way to reach the posterior edge of the carapace, the intermarginal sulcus
would disappear because the twelfth marginals would no longer be in contact with each
other. The fusion of the twelfth marginal scutes also results in the disappearance of the
intermarginal sulcus, but it is clearly a different and incompatible phenomenon that occurs
prior to the appearance of the anlagen of the sulci (Cherepanov, 2006). Thus, we split
character 46 into two characters: one for the fusion of the marginals, and another for the
extent of the intermarginal sulcus.

Intraspecific variation was represented in almost all the characters with polymorphic
coding (Campbell & Frost, 1993;Wiens, 1995), where all the states of a character observed
in different conspecific specimens are included in the corresponding cell of their
species. Other coding schemes also incorporate information about the frequencies of the
states, but they don’t perform well with this dataset (Garbin, Ascarrunz & Joyce, 2018).
Only characters pertaining the presence of carapacial carinae and marginal spikes were
coded following the “any-instance” scheme (Murphy, 1993; Wiens, 1995) (i.e. species are
coded with the most derived state observed among all specimens), because we observed
that their derived states tend to be most clearly manifested in juveniles and young adults,
and sometimes lost in old specimens (also reported by Claude & Tong (2004)). Our revised
matrix contains 60 discrete characters, 51 of which are parsimony-informative. We refer
to the discrete characters in our revised matrix as characters D1 to D60. Uninformative
characters were excluded in all the analyses and parsimony scores reported here.

Characters were treated as ordered whenever there were clear intermediate states, such
as elements that vary in number, size, or position along a single dimension.

Phylogenetic methods
We used the maximum likelihood method by Revell et al. (2015) and the Bayesian method
of Parins-Fukuchi (2018a) only on continuous characters, as these methods are specific for
these characters. We used maximum parsimony for the analysis of the continuous and
discrete characters combined. With all three methods we performed two kinds of analyses:
a phylogenetic placement performance analysis with the data of extant species only, and
the phylogenetic placement analysis that incorporates the fossils. We give more details
about the methods below, as well as a general comparison between them in Table 3.
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All phylogenetic placement analyses were done with the phylogeny from Pereira et al.
(2017), henceforth “the Pereira tree”. We also used the mean divergence times estimated
by Pereira et al. (2017) in our maximum likelihood analyses. Maximum parsimony
analyses were performed with TNT 1.5 (release of June 2020) (Goloboff & Catalano, 2016).
Various other analyses and tree-related tasks were done with ape v5.3 (Paradis, Claude &
Strimmer, 2004) running on R v3.6.1 and a custom phylogenetics package written by
E. A. (https://github.com/eascarrunz/Phylodendron2.jl) on Julia v1.4.1. Parallelisation of
time-consuming computations was managed with GNU Parallel (Tange, 2011).

Phylogenetic placement performance analyses
In order to assess the ability of our data and methods to estimate the phylogenetic position
of extinct species, we used the same data and methods to perform the same task with extant
species. Assuming the Pereira tree to represent a reasonably accurate estimate of the
phylogenetic relationships of extant testudinoids, we assessed the performance of
phylogenetic placement of extant species with a leave-one-out procedure employed in
previous studies (Garbin, Ascarrunz & Joyce, 2018; Ascarrunz, Claude & Joyce, 2019; see
also Berger & Stamatakis, 2010). A species is removed from the Pereira tree and then
reinserted using the only morphological data. This procedure is repeated for each extant
species in the tree.

We measure the error in the placement of a species i as the number d ið Þ of nodes
between the original (“correct”) position and the branch on which it was reinserted.
The maximum possible value of d ið Þ is e ið Þ � 1, where e ið Þ is the eccentricity of the node of
species i, i.e. the maximum number of nodes along the path between the node of i and any
other node in the tree. We compare placement errors across species as proportions of their
respective maximum possible values, which is the scaled placement error ds ið Þ ¼ d ið Þ

e ið Þ�1.
Using the scaled placement errors we characterise the accuracy of phylogenetic placements
across all species in the tree as a cumulative error distribution curve, the corresponding
area under the curve (AUC), and the median. When maximum parsimony identified
multiple most parsimonious placements for a species, we use the median of the scaled
error of those placements to construct the cumulative error distribution curve. Greater
values of AUC and lower medians imply that an analysis has higher accuracy, yielding
greater proportions of species placements with lower amounts of scaled placement
errors. All computations of placement errors were done with unrooted trees, because the

Table 3 Comparison of the phylogenetic placement methods used in this study.

Method Mode of inference Type of character Clock Character correlation
correction

Weights

Locate.fossil (Phytools) Maximum likelihood Continuous (mean) Strict Orthogonal rotation Equal

Cophymaru Bayesian Continuous (mean) No None Calibrated against
reference tree

Parsimony Maximum parsimony Continuous (95% CI
and mean) and discrete

No None Equal or implied
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algorithms that we used work by identifying common bipartitions in the Pereira tree and
the re-placement trees.

The phylogenetic placement performance analyses were done with maximum
parsimony and Bayesian inference with the models and settings detailed below.

Maximum likelihood analyses
We used the maximum likelihood phylogenetic placement approach of Revell et al. (2015)
as implemented in the phytools package (Revell, 2012), which only works with continuous
characters. We will refer to it as “locate.fossil”, after the name of the Phytools function in
which it was implemented. In it, the characters are modelled with a Brownian process
where the amount of expected morphological change in a lineage is the product of the
instantaneous diffusion rate and the amount of time during which the lineage evolves
(Felsenstein, 1981). The instantaneous diffusion rate is assumed to be constant over the
entire tree, which amounts to a “strict clock” model. The information about the time of
evolution is given in the branch lengths of the reference tree; in our case, the dated Pereira
tree. Locate.fossil tries out the placement of a query species on each branch of the reference
tree and optimises the branch lengths with the constraints that the divergence and tip
times of the reference tree be kept constant, and that a given temporal bound for the
occurrence of the query species is respected. When the query species are extant is the
corresponding tip is simply set to the present (0.0 Ma), and the analysis is performed with
the locate.yeti function of phytools. In the placement analyses of the Messel geoemydids
the upper and lower temporal bounds passed to the locate.fossil function are 48.25 Ma
and 47.41 Ma (Lenz et al., 2015).

As the reference tree topology and branch lengths are fixed and assumed approximately
correct, this approach allows us to correct for the correlations between the continuous
characters by rotating the data with the loadings of a phylogenetic principal component
analysis (Revell, 2009). In theory, this would make the use of ratio characters unnecessary.
We evaluated the performance of the method with the rotated log-segment characters,
and the raw and rotated log-ratio characters.

Bayesian analyses
We used the Bayesian Markov chain Monte Carlo (MCMC) phylogenetic placement
approach introduced by Parins-Fukuchi (2018a), which was implemented by the author in
the Cophymaru program (https://github.com/carolinetomo/Cophymaru, master branch
commit 9f82d61). We shall refer to this approach as “Cophymaru”. It estimates the
placement of one or more query species from continuous character data. Like the approach
of Revell et al. (2015), it is based on a Brownian process, but they in Cophymaru the
diffusion rate that governs the evolution of all the characters is allowed to vary across
branches of the tree, as the branch lengths are estimated in units of expected accumulated
Brownian variance rather than time. Given that the branch lengths that describe the
evolutionary process under this model are not known a priori, it is not possible to correct
for correlations between characters with the orthogonalisation procedure of Revell et al.
(2015).
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For the Bayesian estimation of the branch lengths we used a compound Dirichlet prior
with alpha parameters equal to 1.0 and beta parameters equal to the sum of branch lengths
of the tree optimised by maximum likelihood (Parins-Fukuchi, 2018a).

Cophymaru allows us to further refine the treatment of the data by computing character
weights based on restricted maximum likelihood (Felsenstein, 1981), following a method
introduced by Berger & Stamatakis (2010). This is done by optimising the branch
lengths of the reference tree and a large collection of random trees (not including the query
species to be placed on the phylogeny later). The weight of each character is derived from
the fraction of times that the likelihood of the character is greater in the reference tree
than in a random tree. The program makes it possible to use those fractions as the weights
themselves, or to create binary weights that exclude the characters where the fraction is
lower than 0.95. We evaluated the performance of Cophymaru with equal weights, binary
weights, and fractional weights. We also evaluated the performance with and without
the z-score data transformation used by Parins-Fukuchi (2018a). That transformation
rescales the data so that all the characters have unity variance, in accordance with the
shared diffusion rate assumed by the model, and ensures that there are no characters with
very low variance that could cause difficulties in MCMC mixing.

In the performance analyses we ran a single MCMC of 5 million generations for each
species, sampled every 1000 generations. We discarded at first 10% of the generations
as burn-in, and checked chain convergence with the Geweke statistic (Geweke, 1991) using
the R package coda v0.19-3 (Plummer et al., 2006). When a chain was not found to
have converged, we repeated the process discarding another 10% of the generations as
burn-in until the Geweke statistic was compatible with chain convergence and the effective
sample size was of at least 500. Chains that failed to meet those two conditions were re-run
for 10 million generations, which was sufficient for obtaining posterior samples that
satisfied the same requirements. This entire process was automated. We summarised the
posterior distribution of each analysis with the maximum clade credibility tree computed
with SumTrees v4.4.0 (Sukumaran & Holder, 2010, 2018), which we used to compute
the placement errors.

For the placement of the Messel fossils, we ran 4 MCMC of 20 million generations
sampled every 10,000 generations, and assessed convergence visually with Tracer
(Rambaut et al., 2018). We modified the Cophymaru program to compute the character
weights with 1,000 random trees (instead of the 100 that are hard-coded in the program),
and to be able to use the exact same weights in different runs. Every run was done
with a separate instance of the Cophymaru program. We used the tree samples from only
one run (the four runs converged in all the fossil placement analyses) and discarded the
first 10% of the generations as burn-in.

Maximum parsimony analyses
We use the term “cost scheme” to refer to the ensemble of settings that determine the costs
of transitions between character states, and ultimately the total parsimony score of any
given tree. Such settings include scaling, the use of unordered and ordered characters,
step matrices, a priori or implied character weights, and so forth.
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The use of continuous characters highlights the problem of scaling, i.e. the amount
of change in a character that should be considered equivalent to a unit of change in
another. This issue is particularly evident when discrete and continuous characters are
combined. There is no agreed general approach to the scaling problem, although implied
weights have been proposed to have limited compensatory effects on range differences
(Goloboff, Mattoni & Quinteros, 2006). We explored three scaling options (Mongiardino
Koch, Soto & Ramírez, 2015): (1) keeping the continuous characters in their original
(log-transformed) scale, (2) scaling each continuous character to have a total range of
unity, and (3) z-score standardisation (scaling each continuous character to have unit
variance).

We performed phylogenetic placement analyses with equal weights and with extended
implied weights (Goloboff, 1993, 2014). In the extended implied weights analyses we
implemented a series of values for the concavity constant k (1, 2, 3, 6, 10, 25, 50, 75, 100,
125, 250, 500, 750, and 1,000). Artefactually lower amounts of homoplasy can be observed
in characters that have more missing data, which leads to the inflation of their implied
weights. Extended implied weights can compensate for that phenomenon by adjusting k
for each character according to a function that extrapolates the homoplasy content of
the missing entries as a proportion R of the homoplasy content in observed entries
(Goloboff, 2014). We used different values of R (0.0, 0.25, 0.5, 0.75, and 1.0) in combination
with each value of k in the phylogenetic placement performance analyses. Of the resulting
213 cost schemes, we selected the one that maximised AUC for use in the phylogenetic
placement of the Messel geoemydids.

Placement searches involved a single random addition sequence followed by
hill-climbing rearrangements by subtree pruning and regrafting and tree bisection and
reconnection (the command MULT 1). That search strategy is sufficient to find optimal
trees, because we are only estimating the position of one or two species. The exact
branch-and-bound method is not implemented for implied weights in TNT. The support
for the placement of the fossils was estimated with 5,000 bootstrap pseudoreplicates
(Felsenstein, 1985).

RESULTS
Placement performance analyses
Maximum parsimony
In the analyses with 95% confidence intervals (95% CI) of the log-ratio characters, the best
placement performance corresponded to a cumulative placement error area under the
curve (AUC) of 0.849 with a median placement error of 0.077 (Fig. 4A). Those results were
obtained with the log-ratio characters scaled by z-scores and equal weights. Among all
trials of combined log-ratio and discrete data, the most important factor that affected
performance was the scaling of the log-ratio characters, followed by the value of k.
Different values of the extrapolated homoplasy proportion R had comparatively little
effect.
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The separate analyses of the log-ratio and discrete characters show that the log-ratio
characters carry most of the phylogenetic signal. Under the optimal cost scheme
mentioned above (equal weights), the log-ratio characters alone yield a cumulative error
placement AUC of 0.823 and error placement median of 0.125. The discrete characters
alone under the same settings yield a maximum cumulative placement error AUC of 0.741
(median = 0.912) with equal weights. The separate analyses also show that the optimal cost
schemes are not the same as when the continuous and discrete data are analysed jointly.
The best performance of the log-ratio data alone (cumulative placement error
AUC = 0.829, median = 0.125) was found without scaling and a k value of 3. The best
performance of the discrete characters (cumulative placement error AUC = 0.741,
median = 0.192) was found with equal weights. These results suggest that better
performance in the joint analyses could be attained by setting separate k values for the
log-ratio and discrete data partitions. We did not attempt to further optimise the cost
scheme in that way because there are too many possible combinations of parameter values.
We identified species that were placed with low accuracy in placement performance
analyses. Only six species were placed with scaled nodal errors higher than 0.27 in the
parsimony analyses with the combined dataset (z-scaled log-ratios) and optimal cost
scheme (equal weights): Mauremys annamensis (0.58), Geoemyda spengleri (0.55),
Leucocephalon yuwonoi (0.67), Gopherus agassizii (0.46), Orlitia borneensis (0.75), and
Rhinoclemmys nasuta (0.46).

Figure 4 Phylogenetic placement performance with maximum parsimony with continuous and discrete characters. (A) Analysis with 95% CI
ranges of log-ratio characters and equal weights. (B) Analysis with point-estimates of means of log-ratio characters and implied weights. Analysis
settings discussed in the text. AUC, Area Under the Curve. Full-size DOI: 10.7717/peerj.11805/fig-4
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Placement performance analyses using point estimates of the means of the log-ratio
characters instead of 95% CI showed similar behaviour in general, but with higher
maximum performance (cumulative placement error AUC of 0.875, median = 0.077) in
the joint analyses of continuous and discrete data with light implied weighting (k = 75)
(Fig. 4B). Also, Orlitia borneensis had the much lower scaled nodal error of 0.25.

Locate.fossil
The maximum likelihood analyses with a strict clock model had a worse placement
performance than the other methods that use continuous characters (Fig. 5A). The AUC of
the cumulative placement error with ratio characters was 0.724 (median = 0.214), and
slightly worse when the ratio characters were rotated for phylogenetic orthogonalisation
(AUC = 0.715, median = 0.25). Rotated (phylogenetically orthogonalised) segment
characters had very poor performance, with a cumulative error placement AUC of 0.569
and a median of 0.5.

Cophymaru
Cophymaru performed best with z-score transformed data (Fig. 5B). In those analyses,
fractional weights showed a clear performance advantage (AUC = 0.855, median = 0.077)
over equal and binary weights. In the analyses without the data transformation, equal
and fractional weights performed were tied for best performance (AUC = 0.795, median =
0.182), suggesting that the optimal weighting scheme is contingent to the properties of
the character data.

Placement analyses
There are three general kinds of placements of messeliana and kehreri relative to each
other. In the first kind, messeliana and kehreri placed in different branches of the tree.
In the second kind the two are placed in the same branch in succession, with either
messeliana or kehreri closer to the root of the tree. Finally, in the third kind the two
are sister to each other, forming a clade that is attached to a branch of the tree.McKenzie &
Steel (2000) introduced the term “cherry” to refer to clades containing only two tips.
We take advantage of that terminology to refer more specifically to the cases in which
messeliana and kehreri are found being sister to each other. In the following, we present
results in which themesseliana-kehreri cherry is placed on some branch of the Pereira tree.
Placements of the kind 1 and 2 have negligible support in the results of most analyses,
so we do not treat them in detail. In Figs. 6–8 we report the bootstrap frequency or
posterior probability of the placement messeliana and kehreri separately on a branch (not
forming a cherry), those values correspond to the total support for placements of kind 1
and 2 on that branch.

Locate.fossil

The current implementation of the method (Revell et al., 2015) cannot handle the
simultaneous placement of two or more species, therefore we conducted two analyses each
placing messeliana and kehreri individually. The separate analyses found the same
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maximum likelihood placement for kehreri and messeliana: in polytomy at the root of the
tree (Fig. 6A).

Cophymaru
We performed the placement analyses with the z-score transformed data and fractional
weights (Fig. 6B). We found strong support for the placement of kehreri alone as sister to
Leucocephalon yuwonoi (posterior probability = 0.89), and found the most strongly
supported placement for messeliana as sister to Batagur baska (posterior
probability = 0.67), with also some support for placements sister to Leucocephalon yuwnoi
(posterior probability = 0.13). We found low posterior probabilities for cherry placements
either sister to Leucocephalon yuwonoi (0.07) or Batagur baska (0.01).

Maximum parsimony
We conducted the placement of the Messel geoemydids with maximum parsimony
following the optimal cost schemes identified for the combined continuous and discrete
data with the point estimates of the means of the log-ratio characters (z-scale, k = 75, any
value of R) and the 95% confidence interval of the means of the log-ratio characters
(z-scale, equal weights; notice that parsimony scores are not directly comparable between
the two treatments of log-ratio characters due to different character weighting). The
most parsimonious placement of the Messel geoemydids is a cherry sister to Orlitia
borneensis with 31% of bootstrap support when 95% CIs of the log-ratio characters are
used, consistent with hypothesis B with a parsimony score of 627.56 (Fig. 7). A cherry
placement sister to Geoemyda spengleri also received moderate bootstrap support (26%).

Figure 5 Placement performance of methods based on Brownian motion models. (A) Maximum likelihood with a strict clock model (Revell et al.,
2015). (B) Cophymaru (Parins‐Fukuchi, 2018a). AUC, Area Under the Curve. Full-size DOI: 10.7717/peerj.11805/fig-5
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Placements sister to Batagur baska received low bootstrap support (10%), and placements
on other branches reached no more than 5% bootstrap support.

With the means of the log-ratio characters, the global most parsimonious placements
for the Messel geoemydids found messeliana and kehreri forming a cherry sister to
Geoemyda spengleri, with a parsimony score of 7.78703 and a bootstrap support of 44%.
We refer to this placement as hypothesis C. Alternative placements that received bootstrap
support higher than 5% were in a cherry sister to Malayemys (19%), in a cherry sister
to Orlitia borneensis (11%), and in a cherry sister to Batagur baska (7%).

The most parsimonious placement compatible with hypothesis A is in a cherry sister to
Mauremys annamensis when discrete data is analysed either with 95% CIs of the means
(parsimony score = 633.01, bootstrap support = 45%), or just the means of log-ratio
characters (parsimony score = 7.84462, bootstrap support = 51%). The most parsimonious
placement compatible with hypothesis B was a cherry sister to Malayemys with a
parsimony score of 7.79436 and 57% of bootstrap support, based on discrete data and
means of log-ratio characters.

Figure 6 Phylogenetic placement of the Messel geoemydids estimated with methods based on models of Brownian motion. (A) locate.fossil
placements with maximum likelihood with a strict clock. The maximum likelihood placement of messeliana is identical to the placement of kehreri
shown here. (B) Bayesian analysis with cophymaru with unconstrained rates of evolution across branches. Colours and numbers under the branches
in B indicate the posterior probability of placements on that branch. Posterior probabilities lower than 0.01 are not shown.

Full-size DOI: 10.7717/peerj.11805/fig-6
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We also performed placement analyses with only either the log-ratio or the discrete
characters (Fig. 8), with their respective optimal cost schemes. With 95% CIs of log-ratio
characters alone and k = 3, the most parsimonious placement is a cherry sister to
Leucocephalon yuwonoi (Fig. 8A). With mean log-ratios and k = 10, and the results are
similar to the Cophymaru analyses: the most parsimonious solution placed kehreri as sister
to Leucocephalon yuwonoi with 29% of bootstrap support and messeliana as sister to
Batagur dhongoka with 33% of bootstrap support, and low bootstrap support (11%) for a
cherry placement sister to Leucocephalon yuwonoi. The analysis with discrete characters
alone (Fig. 8B) was performed with equal weights and found the most parsimonious
placement for messeliana and kehreri as a cherry sister to Malayemys with 40% of
bootstrap support.

Figure 7 Maximum parsimony placement of the Messel geoemydids. The cherry symbol shows
indicates the placement of kehreri and messeliana, sister to each other.

Full-size DOI: 10.7717/peerj.11805/fig-7
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We show in Fig. 9 a summary of each character’s contribution to the parsimony fit of
the focal hypotheses relative to the most parsimonious placement and to each other.
We discuss the impact of different characters in the following section.

DISCUSSION
Placement methods
Our results indicate that log-ratio characters carry significant phylogenetic information
for placement analyses with Cophymaru and maximum parsimony. The inclusion of
discrete characters in maximum parsimony further improved placement performance.
According only to the performance metrics that we evaluated, optimal placements
(AUC = 0.875, median = 0.077) were obtained with maximum parsimony of discrete and
mean log-ratio characters with light implied weights (k = 75) and z-scaling. We also
assessed the performance of parsimony analyses incorporating the intraspecific variation
of the log-ratio characters, which we implemented with 95% confidence intervals of the
means. Although the optimal performance of these other analyses is slightly lower
(AUC = 0.849, median = 0.077), we recognise that continuous intraspecific variation is

Figure 8 Global most parsimonious placements and placement bootstrap supports with only one
type of data: either log-ratio characters (A) or discrete characters (B). For visualisation purposes,
branch lengths are arbitrary and do not reflect character change.

Full-size DOI: 10.7717/peerj.11805/fig-8
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important information that should not be ignored just like polymorphism in discrete
characters should not be ignored (Garbin, Ascarrunz & Joyce, 2018), and that its inclusion
helps to account for the effects of random sampling error. In our study, or even in general
with most palaeontological data, there are limited numbers of specimens available per
species, so one we should not assume high accuracy in the point estimates of the means of
the log-ratio characters. Indeed, we show here that intraspecific variation of continuous
characters, even when not exhaustively sampled, can have appreciable effects on the
preferred phylogenetic hypotheses.

The two treatments of intraspecific variation of log-ratio characters yielded different
most parsimonious placements, but both also resulted in moderate bootstrap support for
cherry placements consistent with hypothesis B (close relation to Malayemys and Orlitia)
and C (sister to Geoemyda). Considering the low error in phylogenetic placement
performance and the greater inclusion of relevant data, we conclude that the maximum
parsimony analyses with discrete and continuous data are the most reliable, and that
hypotheses B and C are the best supported by the data. In the rest of this subsection, we

Figure 9 Character-wise and total parsimony score differences between the most parsimonious
placement and the placements under the main hypotheses considered in this study. (A) Analysis
with 95% CI ranges of log-ratio characters and equal weights. (B) Analysis with point-estimates of means
of log-ratio characters and implied weights. Greater score differences reflect less homoplasy with a
hypothesis relative to the most parsimonious placement. Only characters with non-zero differences in
either hypothesis are shown, sorted by magnitude. RC, carapace log-ratio character; RP, plastron log-
ratio character; D, discrete character. Full-size DOI: 10.7717/peerj.11805/fig-9
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also discuss the behaviour of the other placement methods, which might also be of more
general interest.

Ascarrunz, Claude & Joyce (2019) found best placement performance of continuous
landmark data with maximum likelihood applied to a simple Brownian motion
implemented in Phylip (Felsenstein, 2005), over spatial parsimony (Catalano, Goloboff &
Giannini, 2010) and squared-change parsimony (Maddison, 1991). With Bayesian
phylogenetics, it is possible to design models with a Brownian process for the continuous
characters and an Mkv state substitution process for the discrete characters (Lewis, 2001).
We made several attempts to implement such models with the software RevBayes
(Höhna et al., 2016), but our Markov Chain Monte Carlo runs displayed anomalous
behaviour and therefore are not interpretable. We give a detailed description of the models
and the results of those analyses in an Appendix S1.

We found that the best placement performance results of continuous data alone was
with Cophymaru. The Brownian motion models of evolution implemented in Phylip and
Cophymaru are almost identical (Felsenstein, 1981), but Cophymaru uses Bayesian
inference and has a built-in character weighting approach.

In contrast, locate.fossil, the strict-clock maximum likelihood method of Revell et al.
(2015), performed poorly (Fig. 5A). It is likely that the problem with this method is the
strong assumption of a constant rate of evolution, which has been found to have a
poor fit to empirical data (Chira & Thomas, 2016; Puttick, 2018). Furthermore, rate shifts
are indicated by the fact that the branch lengths in units of expected Brownian variance
estimated by Cophymaru clearly deviate from the branch lengths in time units of the
Pereira tree (Fig. 6) and ultrametricity in general. These deviations from the fixed rate
model could also have compromised the phylogenetic orthogonalisation of the characters,
which is based on a phylogenetic principal components analysis with the same strict-clock
model (Revell, 2009). In theory, the orthogonalisation procedure would improve
placements with log-ratio characters and even make it possible to use segment characters.
In practice, we did not see any improvement (Fig. 5A).

Another problematic aspect of locate.fossil is that it depends on a single reference tree
with fixed branch lengths in units of time, which must come from a previous divergence
time analysis where the clade or tip temporal calibrations are derived from some other
data. Logically, it is impossible for a fossil to be placed in a clade that is younger than itself,
regardless of the strength of the morphological signal. The compatibility of the age of
the fossil with the clade ages estimated from some other data does have some evidential
weight, but it is preferable to perform an analysis where the signals of the morphological
and temporal data are considered jointly in the estimation of the divergence times
(Heath, Huelsenbeck & Stadler, 2014; Gavryushkina et al., 2017). Support measures in
those analyses would also be easier to interpret.

An example of the possible conflict between a dated tree and morphological signal
occurs in hypothesis A. In the dated Pereira tree the mean age of the divergence between
Cuora and Mauremys occurred is 43 Ma (Fig. 10), whereas the youngest limit for the
age for the Middle Messel Formation is 47.41 Ma (Lenz et al., 2015). To rule out hypothesis
A on those grounds alone would have been unsatisfactory.
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Finally, the placement of kehreri and messeliana in a polytomy at the root of
Testudinoidea likely reflects the aforementioned shortcomings of locate.fossil. Analyses of
ratio characters alone with other methods favoured placements as either sister to
Leucocephalon orGeoemyda. The former is chronologically impossible taking the currently
available dated trees at face value (Fig. 10; Thomson, Spinks & Shaffer, 2021) and the latter
yields very short branches that do not fit well the observed amounts of morphological
evolution. Possible branch lengths of placements sister to Geoemyda could be of at most
4.08 Myr in the dated Pereira tree, and placements compatible with hypothesis B imply
even smaller branch lengths. The solution given by locate.fossil attaches the Messel fossils
to the oldest node in the tree and implies that any resemblance between the Messel fossils
and the extant testudinoids in our sample is entirely the result of plesiomorphy and
homoplasy.

We recommend that empirical studies should test the adequacy of a single-rate
Brownian motion model before the use of locate.fossil.

One or two species?
In this contribution we have favoured the presentation of our results under the
interpretation that messeliana and kehreri are distinct species rather than conspecific
morphs. This is convenient and plausible, but we have not resolved the issue in this study.
Here we will merely expand on both hypotheses and the possible interpretations of the
evidence that follow from them. The results of the analyses with complete data always
favoured a sister relationship between kehreri and messeliana, which is compatible with
both scenarios.

Claude & Tong (2004) expressed the opinion that twomorphs simply represent different
ontogenetic stages. It is also possible that messeliana and kehreri represent the male and
female forms of the same species. Sexual size dimorphism is common in geoemydids,
in most cases with females being larger (Berry & Shine, 1980; Gibbons & Lovich, 1990;
Ceballos et al., 2013). An extreme case is Batagur dhongoka, with a reported female-to-
male mean straight-line carapace length ratio of 2.32 (Gibbons & Lovich, 1990). Fitting
with that interpretation, female reproductive internal structures have been identified only
in kehreri (Gaßner et al., 2001). Hervet (2003, p. 93) stated that male and female forms can
be identified in kehreri by the shape of their plastra and depth of the anal notches, but
she did not explain how she determined the sexes associated with each morphology, and
did not make reference to specific specimens of each sex to allow us to corroborate
her observations. Differences in tail lengths have been used to identify male and female
specimens of the carettochelyid Allaeochelys crassesculpta, also from Messel, that were
preserved forming mating pairs (Joyce et al., 2012). There were not enough complete or
nearly complete tails among the Messel geoemydid specimens that we examined to
perform similar analyses.

Conversely, it is possible thatmesseliana and kehreri simply represent sympatric closely
related species. Sympatry of closely related species occurs in turtles. According to the
Turtles of the World Checklist (Turtle Taxonomy Working Group, 2017), the following are
examples of groups of closely-related geoemydid species with at least partially overlapping
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types of habitat that have been observed at the same localities: Pangshura smithii,
Pangshura tecta, and Pangshura sylhetensis in Assam, India; Rhinoclemmys melanosterna
and Rhinoclemmys nasuta in Chocó, Colombia; and Heosemys annandalii and Heosemys
grandis in Vietnam, Thailand, and Cambodia. Furthermore, there is no reason to
expect the coexistence of the two putative species to be ecologically problematic. Instead, it
is reasonable to infer that there would not have been complete overlap of the niches of the

Figure 10 A comparison of dated phylogenies of geoemydids recovered from different studies, with
the number of mitochondrial of nuclear loci that were analysed. The topologies are simplified to
highlight the relationships that are more relevant to the placement analyses. The position of each node
indicates the mean of the posterior distribution of ages, and the blue bars indicate its 95% highest
probability density interval. The red band marks the time span for the occurrence of the Messel geoe-
mydids. Note that Cyclemys fusca was found separate from the other Cyclemys in Pereira et al. (2017).
The topology shown for Colston et al. (2020) is based on the majority rule consensus of the posterior
sample of trees. Full-size DOI: 10.7717/peerj.11805/fig-10
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two morphs, as their different body sizes would have allowed them, for instance, to
specialise in different kinds of prey.

We call researchers to consider both scenarios in cases where they would plausibly
influence the direct results or interpretation of their analyses.

The phylogenetic relationships of geoemydids
We based our placement analyses and our discussion in the following section on the
Pereira tree because it is the result of a recent study with what was at the time (2020) the
most comprehensive sampling of species and molecular markers, and because it is
broadly compatible with the results from previous studies (e.g. Spinks et al., 2004; Diesmos
et al., 2005; Guillon et al., 2012). Coincidentally, it is also the study that found the
oldest divergence times for deep geoemydid clades, presenting us with a broader range of
possible placements temporally compatible with the age of the Messel fossils. Still, the
assumption of a “known” fixed phylogeny in our placement analyses is purely operational,
and we must highlight general outstanding issues in our current knowledge of geoemydid
interrelationships.

A new phylogenetic analysis of extant turtles by Thomson, Spinks & Shaffer (2021)
yielded a new hypothesis regarding the interrelationships of major geoemydid clades.
In their hypothesis, Rhinoclemmys becomes sister to a large clade that includes Cuora,
Mauremys, Cyclemys, and Heosemys rather than being sister to all other geoemydids, and
Geoemyda becomes sister to the Mauremys-Cuora clade rather than to Siebenrockiella.
These alternative relationships would significantly alter our interpretation of the
phenotypic evolution of geoemydids. For instance, the presence of three carapacial keels
(Claude & Tong, 2004) would become a likely synapomorphy of Geoemydidae itself. It is
notable that the study of Thomson, Spinks & Shaffer (2021) made use of a mostly novel
and well-sampled set of 15 nuclear loci, whereas most of the previous studies had used a
high proportion of mitochondrial loci and often had patchy sampling for several loci
(Spinks et al., 2004; Le & McCord, 2008; Guillon et al., 2012; Lourenço et al., 2012; Pereira
et al., 2017; Colston et al., 2020). The only other phylogenetic analysis of geoemydids
without mitochondrial loci is the study of Sasaki et al. (2006) based exclusively on insertion
patterns of short interspersed nuclear elements (SINE), and this study also recovered a
clade including, among others, Geoemyda, Rhinoclemmys, and Mauremys (a so-called
“Geoemyda group”) and excluding Siebenrockiella, Batagur, and other south-east Asian
geoemydids. That study, however, only sampled 21 geoemydid species and failed to resolve
the relationships of Rhinoclemmys and Geoemyda within the “Geoemyda group”. It is likely
that an important cause of the topological discrepancy of the new study of Thomson,
Spinks & Shaffer (2021) is the sampling of different molecular markers that show different
patterns of locus phylogenies due to incomplete lineage sorting and possibly some degree
of introgression. Indeed, Sasaki et al. (2006) also recognised incomplete lineage sorting
as a possible cause of conflict in SINE insertion patterns, a type of data in which homoplasy
is expected to be very rare (Shedlock & Okada, 2000). Although consensus remains about
the composition of geoemydid “genera” and several subclades, a detailed study using
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methods based on coalescent theory is needed to clarify the relationships between major
geoemydid clades.

A second problem pertains to the molecular estimates of the ages of geoemydid clades.
As noted before, Pereira et al. (2017) found the oldest set of ages for geoemydid clades,
and other studies (Le & McCord, 2008; Lourenço et al., 2012; Joyce et al., 2013; Colston
et al., 2020) found far less explicit or implied temporal overlap between the age bracket of
the Messel deposit and extant geoemydid clades (Fig. 10). In particular, Colston et al.
(2020) estimated far younger divergence times, with a 95% highest posterior density
(95% HPD) bracket of 40.0 to 49.3 Ma for the timing of the basal split of geoemydids, and
no other geoemydid clade having an age compatible with the placement of the Messel
geoemydids within its divergence time 95% HPD interval. According to those age
estimates, the Messel geoemydids could only be placed as a stem geoemydids or in a very
basal position within the geoemydid crown. Estimates from Bayesian dating analyses can
be highly sensitive to a multitude of modelling decisions, such as the choice between
partitioning and coalescent models (see above), the nucleotide substitution models, the
choice of clock model, the use of a tree model or fixed topology, and calibration priors.
All such factors vary between the relevant studies (Le & McCord, 2008; Lourenço et al.,
2012; Joyce et al., 2013; Pereira et al., 2017; Colston et al., 2020), and in none of those works
there were assessments of the fit of different clock models. Furthermore, the sampling
of loci (discussed above), species, and choice of divergence time calibrations are critical to
every phylogenetic dating analysis. Without venturing in an assessment of the quality
of the different calibration sets, it should be noted that in none of them there was more
than one time-calibrated node within Geoemydidae, and that the calibration priors were
typically wide. For example, the divergence between Heosemys spinosa and Mauremys
reevesii set to have a flat prior distribution with a maximum of 68.5 Ma and a minimum of
5.3 Ma (Joyce et al., 2013; Pereira et al., 2017).

To complicate matters further, a recent phylogenetic analysis found several species of
“Echmatemys” from the Eocene of North America within the crown of Mauremys
(Vlachos, 2020; see also Vlachos, 2018). Previously, Echmatemys had been considered as a
likely stem geoemydid or closely related to Rhinoclemmys (McDowell, 1964; Hirayama,
1984; Claude & Tong, 2004; Claude et al., 2012). The new result would imply much earlier
origins than the current estimates for many geoemydid clades, but it should be taken with
caution, as it is unclear whether the proposed relationships are well-supported. Only the
strict consensus of the most parsimonious trees were reported (without bootstrap
analyses), and the behaviour of analyses with the discrete character matrix that was used
has not been explored in detail. Moreover, fossils of juveniles attributed to Echmatemys
have been recently reported (Lichtig & Lucas, 2015; Lichtig, Lucas & Jasinski, 2021),
bearing new morphological evidence that was not taken into account in the phylogenetic
analyses. The identification of these specimens merits close revision, as they remarkably
display the tricarinate condition (see below) unknown in Echmatemys or any other
American geoemydid previously known. These specimens must be carefully compared
with European fauna as fast faunal migrations likely occurred during the earliest Eocene
(Claude & Tong, 2004; Lourenço et al., 2012; Smith et al., 2014).
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Thus, we are left without clear means to determine which (if any) set of dates is reliable
enough for fossil placement purposes. As discussed in a previous section, this affects
directly the reliability of the inferences of locate.fossil, but is no problem for Cophymaru
and maximum parsimony. However, it weakens the usefulness of the estimated clade
ages as an external criterion for judging the plausibility of the placements estimated
with the latter two methods. More generally, any difficulties that might be behind the
discordance between the age estimates found in different studies are also plausible factors
in our lack of success in the implementation of Bayesian inference with combined
molecular and morphological data.

The phylogenetic position of the Messel geoemydids
Following the results of the placement performance analyses, we give greater credence to
the placement analyses with combined ratio and discrete data with maximum parsimony,
and in this section we will refer to those results, in particular with 95% CI, unless
otherwise noted.We discussed above current problems in the phylogeny of extant geoemydids,
here we will only concentrate on the relationships of the Pereira tree, for simplicity.

In all the analyses except locate.fossil, the Messel geoemydids are firmly placed in the
clade of tricarinate (or “three-keeled”) geoemydids. This clade is the sister to Rhinoclemmys,
and includes all the other extant geoemydid species. The tricarinate condition refers to
the occurrence of two lateral carapacial keels (character D1, state 2; Fig. 11) that do not occur
in Rhinoclemmys and other testudinoids (Claude & Tong, 2004; Joyce & Bell, 2004; Garbin,
Ascarrunz & Joyce, 2018). Placements outside the tricarinate geoemydid clade received
negligible bootstrap support in the combined evidence analysis (Fig. 7) and the parsimony
and Bayesian analyses with log-ratio data alone (Fig. 8A) or discrete data alone (Fig. 8B).

We give less credence to the placement of messeliana as sister to Batagur dhongoka and
kehreri as sister to Leucocephalon yuwonoi because they are strongly supported only
when the discrete data are excluded. The placement of kehreri as sister to Leucocephalon
yuwonoi is particularly dubious because Leucocephalon yuwonoi itself is a problematic
species to place in the reference tree in the placement performance analyses. Even with
combined discrete and ratio data and the optimal cost scheme, its scaled placement error is
0.5. Like the Messel geoemydids (Fig. 11) and Geoemyda spengleri (Fig. 12), Leucocephalon
yuwonoi has short and wide gulars that reach about the anterior tip of the entoplastron
(RP1 = 0.16, RP8 = 2.68, RP12 = 1.04; for ease of interpretation, all the ratio character
values that we give in this section are raw means, not log-transformed). However, the
overall shape of the epiplastra and the gulars of Leucocephalon yuwonoi is also markedly
different (Fig. 12): the gulo-humeral sulcus is more horizontal and marks a deep waist in
the epiplastron. Furthermore, we do not see other distinctive putative synapomorphies
for this placement in other characters. For instance, Leucocephalon yuwonoi does not have
the strong plastral buttresses shared by kehreri, Malayemys, Orlitia, and Batagur baska.
And, although we did not focus our attention on the skulls of the Messel geoemydids, it
is clear that their gross morphology is rather typical of geoemydids and does not show
the peculiar features noted in the diagnoses of Leucocephalon yuwonoi (McCord et al.,
1995, 2000). The sufficiently preserved skulls of kehreri (HMLD-ME 8877, HLMD-ME
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15033, SMF-ME 1340) and messeliana (SMF-ME 1210) display a robust temporal bar
(“postorbital bar” in McCord et al., 1995, 2000), which Leucocephalon lacks entirely due to
loss or great reduction of the quadratojugal (McCord et al., 1995, 2000; our observation of
YPMHERR 12109). We have also observed absent or slender temporal bars in collection
specimens of the species that form the sister clade to Leucocephalon yuwonoi: Cyclemys
dentata, Notochelys platynota, Heosemys grandis, and Heosemys spinosa. Thus, placements
sister to Leucocephalon would imply homoplastic reduction of the temporal bar or a
reversion to the primitive condition. Another skull feature that Leucocephalon yuwonoi does
not have in commonwith the Messel geoemydids is the presence of a medial anterior contact
of the maxillae. In skulls of kehreri (HLMD-ME 8877, HLMD-ME 15033, SMF-ME 1340)
the premaxillae prevent the anterior contact of the maxillae, and the bony “beak” at the
anterior end of kehreri skulls (HLMD-ME 8877, HLMD-ME 15033, SMF-ME 1340) has the

Figure 11 Representative carapaces and reconstructions of the plastra of messeliana (A–C) and
kehreri (D–F). The plastron reconstructions are based on measurements of the fossils. White arrows
indicate sulcus inflections that we interpret to mark the current or former presence of carapacial keels
(see Mauremys annamensis and Geoemyda in Fig. 12). HLMD ME1444 is the holotype of messeliana.
Not to scale. Full-size DOI: 10.7717/peerj.11805/fig-11
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typical notch found in most geoemydids rather than the “hook” seen in Leucocephalon
yuwonoi.

The most parsimonious placement with combined discrete and log-ratio data depends
on the use of 95% confidence intervals of the means (hypothesis B, cherry sister to Orlitia
borneensis) or just the means of the log-ratio characters (hypothesis C, cherry sister to
Geoemyda spengleri), but with either treatment the bootstrap support is concentrated in
results forming cherries in the branches corresponding to hypothesis B or in a sister
relationship to Geoemyda spengleri (Fig. 7).

Figure 12 Diagrams of carapaces and plastra of extant geoemydids. Carapacial keels are indicated
with light grey. Not to scale. White arrows mark sulcus inflections that are coincidental with carapacial
keels. Geoemyda spengleri is based on PCHP 12207; Leucocephalon yuwonoi is based on YPMHERR
12109, YPMHERR 17221, and MTD 40171 from the Museum für Tierkunde in Dresden, Germany;
Mauremys annamensis is based on PCHP 4071; Malayemys is based on PCHP 3446; and Orlitia bor-
neensis is based on PCHP 3366. Note that sutures in the pygal region of Leucocephalon yuhonoi are not
depicted only because they were obscured in our reference photographs.

Full-size DOI: 10.7717/peerj.11805/fig-12
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In Fig. 9 we show that characters RP1, RP8, and RP12 more strongly favour hypothesis
C over the placements of hypothesis A or B. All the three characters pertain to the gular
scutes. RP1 represents the length of the intergular sulcus relative to the total length of
the midline sulci of the anterior plastral lobe. RP8 is the ratio between the anterior width of
the gular to the intergular sulcus. R12 is the ratio between the interepiplastral suture and
the intergular sulcus, which represents the midline position of the gulo-humeral sulcus.
Values of RP12 smaller than 1 normally imply that the gulo-humeral sulcus overlays
the entoplastron. Very low values of RP1, high values of RP8, and values of RP12 close to 1
(i.e., short and wide gulars that reach about the anterior tip of the entoplastron) are found
in kehreri (RP1 = 0.14, RP8 = 2.33, RP12 = 1.05) and messeliana (RP1 = 0.17, RP8 = 1.76,
RP12 = 0.87), and also Leucocephalon yuwonoi (RP1 = 0.16, RP8 = 2.68, RP12 = 1.04),
Geoemyda spengleri (RP1 = 0.17, RP8 = 1.91, RP12 = 0.91). Although it is possible, for
instance, for a gular scute to be short, narrow, and still reach the entoplastron, it is likely
that there is some significant correlation between characters RP1, RP8, and RP12, and we
may thus have given too much weight to the features of the gulars. And notably,
removing either of them considerably shifts the amounts of homoplasy in favour of
hypotheses A and B (Fig. 9). An independent assessment of the three characters might be
necessary to rectify a possible overweighting error. Other characters that are strongly
against the hypothesis C compared to hypothesis A and hypothesis B are the position of
the lateral keels (D2), the serration of the posterior peripherals (D19) and the length of
the interabdominal sulcus (RP3). A particularly problematic aspect of hypothesis C is
that we also found Geoemyda to be difficult to place in the tree in the placement
performance analyses (scaled nodal error = 0.55, with either the means or confidence
intervals of log-ratio characters).

Hypothesis B received 49% of bootstrap support combining all the possible placements
within the Orlitia-Malayemys clade or its stem (Fig. 7). As noted by Claude & Tong, this
placement is supported by the position of the lateral keels closer to the neural series
than midway between the neural series and the peripheral series (character D2, state 1;
Fig. 9). Orlitia borneensis also shows poor placement performance when 95% CIs of the
means of the log-ratio characters are used (scaled placement error = 0.75), probably due to
the high variance observed in some log-ratio characters for this species. When point
estimates of the means are used, the placement performance of Orlitia borneensis is much
better (scaled placement error = 0.25).

Hypothesis A received little bootstrap support in the analysis of combined data,
with a total of 2% or 3% of the bootstrap placements (Fig. 7). The most parsimonious
placement consistent with hypothesis A was as a cherry sister to Mauremys annamensis.
This species is endemic to Vietnam (Turtle Taxonomy Working Group, 2017), and was
not included in the phylogenetic analyses conducted by Hervet (2003). The placement
sister Mauremys annamensis is supported by the same position of the lateral keels as seen
in Orlitia and Malayemys (character D2, state 1). In this feature Mauremys annamensis
differs from the other extant Mauremys that display the more widespread condition
with the lateral keels farther away from the neural series, but lateral keels close to the neural
series are also found in Mauremys thanhinensis from the late Eocene-early Oligocene of
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the Krabi Basin in Thailand, and could represent the ancestral condition of Mauremys
(Claude, Suteethorn & Tong, 2007). With point estimates of the means of the log-ratio
characters and light implied weights, the only character that strongly supports hypothesis
A over both the hypothesis C and hypothesis B is RC1, which refers to the length versus
width of the second marginal. Indeed, the similarity with the Messel geoemydids in the
anterior marginals is clearly visible (Fig. 11, Fig. 12). When 95% CIs of the means of the
log-ratio characters and equal weights are used, various ratio characters favour hypothesis
A over hypothesis B by slight amounts, but they are offset by vast score differences in
RP1, RP9 (size of the xiphiplastron) and the discrete characters D12, D52, and D53.

Of particular interest is also the classical character RP6, which corresponds to the
position of the humero-pectoral sulcus relative to the entoplastron. Greater values of RP6
reflect more posterior positions of the humero-pectoral sulcus, and values smaller than
1.0 indicate that the sulcus is located anterior enough to overlay the entoplastron. This
character has been used in discrete forms in many previous studies (Das, 1997; Hervet,
2003; Claude & Tong, 2004; Joyce & Bell, 2004; Takahashi et al., 2013; Garbin, Ascarrunz &
Joyce, 2018), and was originally used for the differential diagnosis of messeliana (sulcus
posterior to entoplastron, RP6 = 1.18) and kehreri (sulcus overlying entoplastron; mean
RP6 = 0.89, but SMF ME3774 has an RP6 = 1.03, with the sulcus slightly posterior to
the entoplastron) (Staesche, 1928; Hervet, 2003, 2004) (Fig. 11). Claude & Tong (2004)
considered that the humero-pectoral sulcus well posterior to the entoplastron was
diagnostic for Palaeoemys, but their synonymisation of kehreri and messeliana with
Palaeoemys messeliana implies that their diagnosis must be amended to account for the
more anterior position of the sulcus observed in the kehreri. Geoemyda spengleri has
an RP6 = 0.76, Mauremys annamensis has an RP6 = 0.853, Orlitia borneensis has an
RP6 = 1.09, and Malayemys has an RP6 = 0.94 (Fig. 12). Character RP6 is a good
illustration of the utility of continuous characters. The posterior suture of the
entoplastron represents a convenient point of reference for defining discrete character
states, but it is an arbitrary threshold that does not accurately represent the magnitude
of the differences between the phenotypes and would have introduced noise in the
analyses in previous studies.

CONCLUSIONS
We do not give a definite answer to the specific placement of the Messel geoemydids,
but we believe that this study demonstrates the empirical informativeness of continuous
characters in palaeontological placement analysis (Parins-Fukuchi, 2018a; Ascarrunz,
Claude & Joyce, 2019). This kind of analysis is in a sense less ambitious than the inference
of entire trees based on continuous characters alone, a debate that has been recently
rekindled (Parins-Fukuchi, 2018b; Varón-González, Whelan & Klingenberg, 2020), but
which we do not touch in the present contribution. Among the methods evaluated, a
model of Brownian motion without a fixed rate of evolution and free branch lengths
showed again an edge over maximum parsimony. The integration of Brownian models for
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continuous characters with traditional discrete characters remains an alluring project
despite our current failure to implement it.

Although we found in Mauremys annamensis a new potential link between Mauremys
and the Messel geoemydids, hypothesis A is less parsimonious than hypothesis B and
hypothesis C, and it received very low bootstrap support, recasting serious doubts over the
idea of the “Palaeochelys sensu lato–Mauremys” complex. When all the characters are
included, either hypothesis B or the placement sister to Geoemyda are the optimal solution
depending on the treatment of intraspecific variation of the log-ratio characters, but
both receive at least modest bootstrap support. Other characters not included in the
analyses are consistent with hypothesis B (robust temporal bar, thick plastral buttresses).
However, the more medial position of the lateral carinae is also found in other clades
(Mauremys, and one geoemydid from the Eocene of North America), which suggests that
this key character identified by Claude & Tong (2004) in support hypothesis B could be
more prone to homoplasy than originally thought. The new hypothesis of the close
relationship between the Messel geoemydids and Geoemyda merits more attention and
scrutiny because of the possible influence of character correlations and homoplasy
(as reflected in the difficulty to place Geoemyda in the placement performance analyses),
and because Geoemyda finds itself at the centre of a possible major revision of the
relationships between major geoemydid clades (Thomson, Spinks & Shaffer, 2021).
Alternative hypotheses about the topology and timing of the deep relationships between
extant geoemydids could also have a strong effect on the inferred placement of the
Messel geoemydids. The early age of the fossils and primitive traits of the skull could be
consistent with the Messel geoemydids belonging to an extinct lineage in a more basal
position. We encourage other researchers to consider account these uncertainties in their
future work, and at least take into account hypothesis C and the placements of hypothesis
B as plausible resolutions.

A nomenclatural revision of kehreri and messeliana remains outstanding. Even if the
“Palaeochelys sensu lato–Mauremys” group is rejected, it is necessary to study with explicit
phylogenetic methods a wider sample of the material studied by Hervet to assess the
monophyly of the genera that she erected. Likewise, the more ample concept of Palaeoemys
of Claude & Tong (2004) remains to be assessed with methods similar to the ones used in
the present study (Mongiardino Koch, Garwood & Parry, 2021).
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