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Fast neuronal network oscillations in the gamma-frequency band (30–100 Hz) provide a
fundamental mechanism of complex neuronal information processing in the hippocampus
and neocortex of mammals. Gamma oscillations have been implicated in higher brain
functions such as sensory perception, motor activity, and memory formation. The
oscillations emerge from precise synapse interactions between excitatory principal
neurons such as pyramidal cells and inhibitory GABAergic interneurons, and they are
associated with high energy expenditure. However, both energy substrates and metabolic
pathways that are capable to power cortical gamma oscillations have been less defined.
Here, we investigated the energy sources fueling persistent gamma oscillations in the
CA3 subfield of organotypic hippocampal slice cultures of the rat. This preparation permits
superior oxygen supply as well as fast application of glucose, glycolytic metabolites or
drugs such as glycogen phosphorylase inhibitor during extracellular recordings of the local
field potential. Our findings are: (i) gamma oscillations persist in the presence of glucose
(10 mmol/L) for greater than 60 min in slice cultures while (ii) lowering glucose levels
(2.5 mmol/L) significantly reduces the amplitude of the oscillation. (iii) Gamma oscillations
are absent at low concentration of lactate (2 mmol/L). (iv) Gamma oscillations persist at
high concentration (20 mmol/L) of either lactate or pyruvate, albeit showing significant
reductions in the amplitude. (v) The breakdown of glycogen significantly delays the decay
of gamma oscillations during glucose deprivation. However, when glucose is present, the
turnover of glycogen is not essential to sustain gamma oscillations. Our study shows that
fast neuronal network oscillations can be fueled by different energy-rich substrates, with
glucose being most effective.
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INTRODUCTION
The mammalian brain is a highly oxidative organ owing to
the disproportionately large fraction of oxygen consumption
compared with the small fraction of the total body mass (in
humans about 20% and 2%, respectively) (Rolfe and Brown,
1997; Erecińska and Silver, 2001). This suggests that complex
neuronal information processing is associated with high energy
expenditure and requires continuous delivery of glucose from the
blood (Shulman et al., 2001; Attwell et al., 2010; Kann, 2012).
Glucose enters the extracellular space of the brain parenchyma
based on a large concentration gradient (5–7 mmol/L in the
blood and 1–2 mmol/L in the extracellular space) via glucose
transporters (GLUTs) that are located on endothelial cells of the
blood-brain-barrier as well as astrocytes (Roberts, 2007; Hertz
et al., 2014). For normal conditions, glucose has been consid-
ered to be the dominant exogenous energy substrate in the adult
brain (Chih and Roberts, 2003; Dienel, 2012). Having a role in

Abbreviations: Ampl, amplitude; AUC, area under curve; DIV, days in vitro; Freq,
peak frequency; FWHM, full width at half maximum; LFP, local field potential;
PSD, peak power spectral density; Var, variance of the amplitude.

different biochemical pathways, glucose metabolism has impor-
tant functions related to bioenergetics, neurotransmission, and
oxidation–reduction (redox) reactions in the brain parenchyma
(Bak et al., 2006; Kann and Kovács, 2007; Dienel, 2012).
However, neurons are able to utilize exogenous and endogenous
energy substrates other than glucose in certain physiological and
pathophysiological conditions (Roberts, 2007).

A prominent example is lactate that is generated during neu-
ronal activity through glycogenolysis and/or anaerobic glycolysis
(1–2 mmol/L in the extracellular space) or may even enter the
brain parenchyma from the blood (Ide et al., 2000; Roberts, 2007;
Overgaard et al., 2012; Hertz et al., 2014). Lactate metabolism
may also involve complex interactions between neurons and
astrocytes (Suzuki et al., 2011; Pellerin and Magistretti, 2012).
Many studies on lactate and neuronal activity were made in
slice preparations of the hippocampus (Schurr et al., 1988, 1999;
Stittsworth and Lanthorn, 1993; Galeffi et al., 2007; Schurr and
Payne, 2007; Ivanov et al., 2011, 2014; Hall et al., 2012; Schurr
and Gozal, 2012). In all of these studies, neuronal activation
was induced by repetitive electrical stimulation, application of
neurotransmitters such as glutamate, or Mg2+-free recording
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solution. Notably, either of these experimental tools evokes quite
robust neuronal activation, with widely undefined activity states
in the local neuronal network, or even spreading (epileptic) depo-
larization. Thus, detailed information about the capability of
different energy substrates to fuel specific, naturally occurring
network activity states such as fast neuronal network oscilla-
tions in the gamma-frequency band (30–100 Hz) is lacking in the
literature.

Gamma oscillations (30–100 Hz) have been observed in many
mammalian brain regions, including the hippocampus and the
neocortex (Uhlhaas and Singer, 2010). Gamma oscillations reflect
synchronous rhythmic fluctuations of the membrane potential in
many neurons of a local neuronal network. In the hippocam-
pus, these subthreshold fluctuations are generated by complex
and precise synaptic interactions of excitatory pyramidal cells
and inhibitory GABAergic interneurons (Whittington and Traub,
2003; Hájos and Paulsen, 2009; Kann, 2012). The synchronizing
effect of gamma oscillations permits the coordinated activation
of defined sets of neurons that carry and process informa-
tion (Hájos and Paulsen, 2009; Kann et al., 2014). Therefore,
gamma oscillations provide a temporal matrix for complex neu-
ronal information processing during higher brain functions such
as sensory perception, motor activity, and memory formation
(Paulsen and Moser, 1998; Uhlhaas and Singer, 2010; van Vugt
et al., 2010).

Notably, excitatory pyramidal cells and certain subtypes of
inhibitory GABAergic interneurons might differ in the energy
demands during gamma oscillations and in their capability to
utilize energy substrates. Parvalbumin-positive basket cells, for
example, generate action potentials at much higher frequency
(“fast-spiking”) compared with pyramidal cells during gamma
oscillations (30–100 Hz and 1–3 Hz, respectively). Moreover,
parvalbumin-positive basket cells synchronize the activity of
numerous pyramidal cells by rhythmic inhibition. As prerequi-
sites, theses interneurons have unique electrophysiological prop-
erties that are likely associated with extraordinary high energy
expenditure (Gulyás et al., 2006; Hu and Jonas, 2014; Kann et al.,
2014).

The present study was designed to identify energy sub-
strates that are capable to power gamma oscillation in vitro.
Gamma oscillations can be reliably induced in hippocampal
slices by bath application of low micromolar concentrations of
cholinergic receptor agonists such as acetylcholine that mim-
ics input from the septum (Fisahn et al., 1998; Kann et al.,
2011). These oscillations share many features with hippocam-
pal gamma oscillations observed in vivo (Kann, 2012). We used
organotypic hippocampal slice cultures that were maintained
on Biopore™ membranes in an interface recording chamber.
This experimental approach permits the induction of persistent
gamma oscillations, with superior oxygen supply as well as rapid
exchange of energy substrates and drugs (Huchzermeyer et al.,
2013).

MATERIALS AND METHODS
SLICE CULTURES AND RECORDING CHAMBER
Animals were purchased from Charles-River (Sulzfeld,
Germany) and housed, cared, and killed in accordance with

the recommendations of the European Commission and the
authorities of Baden-Württemberg (T56/11). Organotypic
hippocampal slice cultures were prepared as described (Kann
et al., 2003a,b, 2011). In brief, hippocampal slices (400 µm)
were cut with a McIlwain tissue chopper (Mickle Laboratory
Engineering Company Ltd., Guildford, UK) from 7 to 9 days-old
Wistar rats under sterile conditions. Slices were maintained
on Biopore™ membranes (Millicell standing inserts, Merck
Millipore, Schwalbach, Germany) between culture medium,
which consisted of 50% minimal essential medium, 25% Hank’s
balanced salt solution (Sigma-Aldrich, Taufkirchen, Germany),
25% horse serum (Life Technologies, Darmstadt, Germany), and
2 mM L-glutamine (Life Technologies) at pH 7.3, and humidified
normal atmosphere (5% CO2, 36.5◦C) in an incubator (Heracell,
Thermoscientific, Dreieich, Germany). Biopore™ membranes
provide high viability and excellent trans-membrane oxygen
transport. The culture medium (1 ml) was replaced three times
per week. Slice cultures were used after 7–21 days in vitro (DIV)
(residual thickness of about 200 µm), when the tissue had
recovered from the slice preparation and damaged cut surfaces
were re-organized (Kann and Kovács, 2007).

For recordings, the intact Biopore™ membrane carrying slice
cultures was inserted into the recording chamber. Slice cultures
were maintained at the interface between recording solution
and ambient gas mixture. Intact Biopore™ membrane inserts
ensure constant supply of oxygen and energy substrates from the
recording solution (rate 1.8 ml/min) that flows underneath the
Biopore™ membrane; the interface condition permits constant
oxygen supply from the ambient gas mixture (95% O2 and 5%
CO2, rate 1.5 l/min).

RECORDING SOLUTIONS AND DRUGS
Slice cultures were constantly supplied with pre-warmed (34 ±
1◦C) recording solution, i.e., artificial cerebrospinal fluid that
contained: 129 mM NaCl, 3 mM KCl, 1.25 mM NaH2PO4,
1.8 mM MgSO4, 1.6 mM CaCl2, 26 mM NaHCO3, and 10 mM
glucose (Sigma-Aldrich). The pH was 7.3 when the recording
solution was saturated with the gas mixture (95% O2 and
5% CO2).

Gamma oscillations were induced by bath application of
low concentrations of cholinergic receptor agonist, acetylcholine
(2 µmol/L) and acetylcholine-esterase inhibitor, physostigmine
(400 nmol/L) (Huchzermeyer et al., 2013). The absence of
action potentials (spiking) was induced by bath application
of tetrodotoxin, which blocks fast voltage-gated Na+-channels.
Acetylcholine was from Sigma-Aldrich, physostigmine was from
Tocris and tetrodotoxin from Biotrend (Köln, Germany).

For further specific experiments, Na-pyruvate (Sigma-
Aldrich), Na-L-lactate (Alfa Aesar, Karlsruhe, Germany),
L-glutamine, CP-316819 (5-Chloro-N-[(1S,2R)-2-hydroxy-3-
(methoxymethylamino)-3-oxo-1-(phenylmethyl)propyl]-1H-in-
dole-2-carboxamide; Tocris, R&D Systems GmbH, Wiesbaden-
Nordenstadt, Germany) and DAB (1,4-dideoxy-1,4-imino-d-
arabinitol; Sigma-Aldrich) were used. Stock solution of DAB was
made in double distilled H2O and CP-316819 was dissolved in
DMSO, with a final solvent fraction of less than 0.001% in the
recording solution.
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RECORDINGS OF LOCAL FIELD POTENTIALS
The local field potential (LFP) was recorded with glass elec-
trodes (tip diameter 3–5 µm) that were pulled from GB150F-8P
borosilicate filaments (Science Products GmbH, Hofheim,
Germany) with a PC-10 vertical micropipette puller (Narishige
International Ltd., London, UK) and backfilled with record-
ing solution. The glass electrode was positioned in stratum
pyramidale of the CA3 subfield with a mechanical microma-
nipulator (MM 33, Märzhäuser, Wetzlar). LFPs were recorded
with an EXT 10-2F amplifier in EPMS-07 housing (npi elec-
tronic GmbH, Tamm, Germany), low-pass filtered at 3 kHz, and
digitized at 10 kHz using CED 1401 interface and Spike2 soft-
ware (Cambridge Electronic Design, Cambridge, UK) for offline
analysis.

TOLUIDINE BLUE STAINING
Slice cultures were fixed in paraformaldehyde (4%, 0.1 M phos-
phate buffer; Applichem, Darmstadt, Germany) and rinsed in
0.1 M phosphate-buffered salt solution (PBS). Thereafter, slice
cultures were exposed for 20 min to toluidine-blue working solu-
tion, which was a mixture of 5 ml stock solution (1 g of Toluidine
Blue O in 100 ml of 70% ethanol; Sigma-Aldrich) and 45 ml of
1% NaCl solution (pH 2.0–2.5). Thereafter, 96% ethanol (100 ml
of 96% ethanol and 4 drops of acetic acid) was used for color-
differentiation of the staining. The differentiation step with strong
acid removes unspecific staining of weak acidic structures and,
thus, increases the contrast between background and stained cells.
The process was stopped using 0.1 M PBS, once the differentiation
was clearly visible. After brief rinsing with double distilled water,
slice cultures were placed on object plates and dried overnight.
The slices were then exposed to xylol (Sigma-Aldrich) for 10 min
and embedded with Entellan Neu (Merck Millipore, Schwalbach,
Germany).

DATA ANALYSIS
Offline signal analysis of gamma oscillations was performed in
MatLab 11.0 (MathWorks). Data segments of 100 s were low-pass
filtered with a digital Butterworth algorithm at 200 Hz corner fre-
quency and processed with Welch’s algorithm and Fast Fourier
Transformation with a Hamming window size of 4096 points for
calculation of the power spectral density and the power spec-
trum, respectively (bin size = 2.441 Hz). Gamma oscillations were
analyzed for various parameters, i.e., peak frequency (Freq), area
under curve (AUC), full width at half maximum (FWHM), peak
power spectral density (PSD), amplitude (Ampl), and variance of
the amplitude (Var).

Data are presented as mean ± SD derived from (n) slice
cultures and (N) preparations of rat pups. Statistical signifi-
cance (P < 0.05) was determined using SigmaPlot 12.5 (Systat
Software, Inc., San Jose, CA, USA). Data distribution was tested
for normality with Shapiro-Wilk test. Comparisons between
paired data were made with paired t-test or Wilcoxon signed
rank test. For multiple variance comparison, One-Way ANOVA
or Kruskal-Wallis One-Way ANOVA on ranks with Dunn’s post-
hoc test was used for unpaired data and One-Way repeated
measures ANOVA with Holm-Sidak post-hoc test or Friedman
repeated measures ANOVA on ranks with Tukey post-hoc test

was used for paired data. Figures were generated using Excel
(Microsoft Corporation, Redmond, USA) and CorelDRAW
(Corel Corporation, Ottawa, Ontario, Canada).

RESULTS
GAMMA OSCILLATIONS IN THE PRESENCE OF GLUCOSE
We induced gamma oscillations by bath application of acetyl-
choline in organotypic hippocampal slice cultures and performed
extracellular recordings of the local field potential (LFP) in
stratum pyramidale of the CA3 subfield (Kann et al., 2011).
In standard recording solution, i.e., in the presence of glucose
(10 mmol/L) and high oxygen fraction (95%) in the ambient
atmosphere (Kann and Kovács, 2007), gamma oscillations were
fully established after about 15 min of acetylcholine application
(Figures 1A–C). The oscillations were characterized by a fre-
quency of around 40 Hz in the power spectrum and persisted
for 60 min (Figure 1C) and longer (data not shown). This exper-
iment demonstrates that the reduced composition of recording
solution as well as the supply of oxygen in excess for 1 h does
not result in evident functional disturbances in the local neuronal
network of the CA3 subfield.

We next tested whether the properties of persistent gamma
oscillations changed with maturation of slice cultures (Bahr et al.,
1995; De Simoni et al., 2003). The characteristics of gamma
oscillations in standard recording condition (10 mmol/L glucose,
95% oxygen fraction) did not significantly change after 21 DIV
(Figure 2), albeit the well-known decrease of slice thickness over
time in culture (Bahr et al., 1995; Kann and Kovács, 2007). For
further experiments, we used slice cultures after 7 DIV and up to
14 DIV.

Bath application of tetrodotoxin (1 µmol/l), which blocks
fast voltage-gated Na+-channels and thus action potentials, sup-
pressed gamma oscillations after about 5 min (data not shown).
This experiment reveals that maintenance of slice cultures on
Biopore™ membranes in the interface recording chamber permits
rapid drug application and tissue saturation.

We further addressed whether application of glucose in a con-
centration closer to physiological conditions (2.5 mmol/L) would
affect gamma oscillations (Roberts, 2007; Schurr and Payne,
2007). In this condition, gamma oscillations were still present.
However, there were significant disturbances in the characteris-
tics of gamma oscillations such as lower amplitude (AUC, PSD,
Ampl) and widening of FWHM, reflecting less numbers and
less synchrony of activated synapses, respectively (Figure 3). This
experiment shows that even in optimized recording condition,
i.e., utilization of Biopore™ membranes and interface recording
chamber, a larger concentration gradient of glucose is required to
fuel gamma oscillations in vitro.

LACTATE AND PYRUVATE AS ENERGY SUBSTRATES
We next tested whether lactate in a concentration of 2 mmol/L
was capable to fuel gamma oscillations, similar as reported for
neuronal population responses evoked by electrical stimulation
(Schurr et al., 1988). To exclude that breakdown of the glycogen
reserve in slice cultures (Cater et al., 2001) affected the outcome
of this experiment (see below), we first depleted the glycogen
stores by glucose deprivation (recording solution with 0 mmol/L
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FIGURE 1 | Gamma oscillations in slice cultures. (A) Gamma oscillations
were induced by bath application of acetylcholine (2 µmol/L) and
physostigmine (400 nmol/L) (upper sample trace), and they persisted for
more than 60 min (n = 13, N = 6). Gamma oscillations are shown with a
higher temporal resolution after 15 min (1), 30 min (2), 45 min (3), and 60 min
(4) (lower sample traces). Local field potentials (LFP) were recorded in
stratum pyramidale of the CA3 subfield in organotypic hippocampal slice

cultures of the rat. (B) Corresponding power spectra of sample traces shown
in (A) were calculated from 100 s taken at the end of each data segment. (C)

Gamma oscillations were analyzed for various parameters, i.e., peak
frequency (Freq), area under curve (AUC), full width at half maximum
(FWHM), peak power spectral density (PSD), amplitude (Ampl), and variance
of the amplitude (Var). Friedman repeated-measures ANOVA on ranks and
Tukey post-hoc test. Statistical significance is marked by asterisks (P < 0.05).

glucose) for 15 min, which widely resulted in suppression of
gamma oscillations (Figures 4A–B). Subsequent bath application
of lactate (2 mmol/L) for 20 min did not rescue gamma oscilla-
tions. By contrast, re-application of glucose (10 mmol/L) resulted
in almost full recovery of the oscillations.

Subsequently, we determined the capability of equicaloric con-
centrations of lactate (20 mmol/L) or pyruvate (20 mmol/L) to
fuel gamma oscillations (Cater et al., 2003; Galeffi et al., 2007;
Gandhi et al., 2009). Either of these substrates could indeed sus-
tain gamma oscillations for 30 min (Figures 4C–F) and longer
(data not shown). However, in the presence of lactate or pyruvate
gamma oscillations showed significantly lower amplitudes (AUC,
PSD, Ampl) compared with controls (10 mmol/L glucose); lactate
significantly increased the frequency of the oscillations.

Supporting lactate (20 mmol/L) with glutamine (2 mmol/L),
which is an important precursor for neurotransmitters, gluta-
mate, and GABA (Waagepetersen et al., 1998; Hertz et al., 2014),
did not rescue the amplitude of gamma oscillations (Figure 5).

These experiments show that a high concentration of either
lactate or pyruvate can basically power gamma oscillations but
alters their characteristics.

GLYCOGEN STORES AND INHIBITION OF GLYCOGEN PHOSPHORYLASE
We further explored whether glycogen breakdown is capable to
fuel gamma oscillations. Glycogen stores have been described
in astrocytes and, more recently, also in neurons (Choi et al.,
2012; Dienel and Cruz, 2014; Saez et al., 2014). At first, we
determined the time course of suppression of gamma oscilla-
tions during glucose deprivation in the presence of 95% oxygen
fraction (Figures 6A–C). Activity was completely suppressed after

29 ± 1 min (n = 10) in recording solution with 0 mmol/L glucose
(data not shown). This time course reflects utilization of various
energy reserves such as glycogen for ATP generation in different
pathways (Roberts, 2007; Dienel and Cruz, 2014) and, presum-
ably, a considerable glycogen reserve in slice cultures (Cater et al.,
2001).

We next pharmacologically blocked glycogen phosphorylase,
which is a crucial enzyme for glycogen breakdown and thus serves
in the initiation of glycogen metabolism (Dienel and Cruz, 2014).
We applied two different inhibitors, i.e., DAB and CP-316819, at
various concentrations (Gibbs et al., 2006; Dienel et al., 2007; Suh
et al., 2007; Walls et al., 2008; Sickmann et al., 2009). Blockade
of glycogen phosphorylase resulted in significantly faster sup-
pression of gamma oscillations of 8 ± 1 min (n > 10) during
glucose deprivation, indicating that glycogen breakdown can
indeed support the maintenance of fast neuronal-network oscilla-
tions and thus higher brain functions in situations when glucose
supply becomes limited (Wender et al., 2000; Abdelmalik et al.,
2007).

We finally tested whether the turnover of glycogen was essen-
tial for sustainment of gamma oscillations. After gamma oscil-
lations had been fully established, bath application of DAB
(100 µmol/L) or CP-316819 (20 µmol/L) for 20 min left gamma
oscillations widely intact (Figures 7A–C). We even partially
observed increases in power and frequency of the oscillations.

These data show that glycogen is an important fuel reserve to
sustain gamma oscillations for a transient period under patho-
logical conditions such as hypoglycemia. However, the turnover
of glycogen does not significantly contribute to sustainment of
gamma oscillations when glucose is present.
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FIGURE 2 | Gamma oscillations and maturation of slice cultures. (A)

Slice cultures were stained with toluidine blue after 7, 14, and 21 DIV (left).
Gamma oscillations were induced by bath application of acetylcholine
(2 µmol/L) and physostigmine (400 nmol/L) and local field potentials (LFP)
were recorded in stratum pyramidale of the CA3 subfield (middle).
Corresponding power spectra of the sample traces were calculated from
data segments of 100 s (right). (B) Gamma oscillations were analyzed for
various parameters, i.e., peak frequency (Freq), area under curve (AUC), full
width at half maximum (FWHM), peak power spectral density (PSD),
amplitude (Ampl) and variance of the amplitude (Var) (7 DIV, n = 12, N = 4;
14 DIV, n = 7, N = 3; 21 DIV, n = 6, N = 3). One-Way ANOVA and
Kruskal-Wallis ANOVA on ranks.

DISCUSSION
GAMMA OSCILLATIONS IN ORGANOTYPIC HIPPOCAMPAL SLICE
CULTURES
Gamma oscillations provide a temporal matrix for complex neu-
ronal information processing during higher brain functions such

as sensory perception, motor activity, and memory formation
(Paulsen and Moser, 1998; Uhlhaas and Singer, 2010; Kann et al.,
2014).

Persistent gamma oscillations can be reliably induced in acute
slices and slice cultures of the hippocampus by bath application of
cholinergic receptor agonists such as acetylcholine, which mim-
ics cholinergic neuronal input from the septum in vivo (Bartos
et al., 2007). Acetylcholine activates primarily muscarinic recep-
tors in pyramidal cells and interneurons that interact via complex
synaptic mechanisms (Bartos et al., 2007; Hájos and Paulsen,
2009). Cholinergic receptor activation finally leads to subthresh-
old membrane potential fluctuations in neurons and concomitant
rhythmic network oscillations as detected by extracellular record-
ings of the LFP (Hájos et al., 1998; Fisahn et al., 2002; Kann
et al., 2014). Notably, fast rhythmic GABAergic inhibition by
parvalbumin-positive fast-spiking interneurons is crucial for the
generation of gamma oscillations (Bartos et al., 2007; Gulyás et al.,
2010; Oren et al., 2010). Cholinergically induced hippocampal
gamma oscillations in vitro are most prominent in the CA3 sub-
field (Fisahn et al., 1998; Kann et al., 2011), which is similar to
the pattern of gamma oscillations in vivo (Penttonen et al., 1998;
Montgomery and Buzsáki, 2007). Gamma oscillations in vivo
occur transiently on the 100 ms time scale upon sensory input or
during specific cognitive tasks. In the human brain, for example,
gamma oscillations can last in the range of minutes, dependent
on the task (Lehmann et al., 2001; Lutz et al., 2004). This aspect
is important for the validation of in vitro models, most of which
feature persistent gamma oscillations (Bartos et al., 2007; Hájos
and Paulsen, 2009).

Recent in vitro and in vivo studies demonstrated that
gamma oscillations were associated with high energy expendi-
ture (Niessing et al., 2005; Nishida et al., 2008; Kann et al.,
2011; Huchzermeyer et al., 2013), which is most likely caused
by increased rates of action potentials and synaptic interactions.
In particular, the significant increase in excitatory and inhibitory
postsynaptic potentials during gamma oscillations elicits strong
ion fluxes across the neuronal membrane of pyramidal cells and
inhibitory interneurons that finally need to be restored by ATP-
dependent ion pumps such as Na+/K+-ATPase (Kann et al.,
2014).

Taken together, persistent gamma oscillations in organotypic
hippocampal slice cultures are a useful model for a specific neu-
ronal network activity state with high energy expenditure that
naturally occurs in vivo.

GLUCOSE, LACTATE AND PYRUVATE AS ENERGY SUBSTRATES
Here we show that gamma oscillations reliably persist for more
than 1 h in standard recording condition, i.e., in the presence
of 10 mmol/L glucose and 95% oxygen fraction. Traditionally,
brain slices are maintained in the presence of 10 mmol/L glucose
for two main reasons: (i) improved recovery from the prepa-
ration procedure and (ii) heterogeneity in glucose and oxygen
availability owing to the use of interface or submerged condi-
tions, which also includes different application rates of recording
solution (Li and McIlwain, 1957; Kann and Kovács, 2007). Our
optimized recording condition, i.e., the combination of slice cul-
tures, Biopore™ membranes, and interface recording chamber,
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FIGURE 3 | Gamma oscillations at low glucose concentration. (A)

Gamma oscillations were induced by bath application of acetylcholine
(2 µmol/L) and physostigmine (400 nmol/L) in the presence of 10 mmol/L
glucose (red). Then, glucose was lowered to 2.5 mmol/L in the recording
solution and the properties of gamma oscillations were analyzed after 15 min
(black), 30 min (gray), and 45 min (white). Local field potentials (LFP) were
recorded in stratum pyramidale of the CA3 subfield (sample traces). (B)

Corresponding power spectra of sample traces shown in (A) were calculated

from 100 s taken at the end of each data segment. (C) Gamma oscillations
were analyzed for various parameters, i.e., peak frequency (Freq), area under
curve (AUC), full width at half maximum (FWHM), peak power spectral
density (PSD), amplitude (Ampl), and variance of the amplitude (Var) (n = 14,
N = 3). Note the decrease in amplitude at low glucose concentration.
Repeated-measures ANOVA and Holm-Sidak post-hoc test or Friedman
repeated-measures ANOVA on ranks and Tukey post-hoc test. Statistical
significance is marked by asterisks (P < 0.05).

features superior supply of energy substrates and oxygen as well
as fast drug application (Huchzermeyer et al., 2013).

However, gamma oscillations showed clear disturbances in the
presence of 2.5 mmol/L glucose, even in the optimized record-
ing condition. This finding differs from experiments in acute
hippocampal slices, in which 2.5 mmol/L glucose were sufficient
to sustain neuronal population responses as evoked by electri-
cal stimulation (Schurr and Payne, 2007). Our experiments with
energy substrates other than glucose showed that a high concen-
tration (20 mmol/L) of lactate or pyruvate could indeed sustain
gamma oscillations, but these oscillations were of significantly
lower amplitude. This is also in contrast with other studies show-
ing that lactate at 2 mmol/L or higher could maintain synaptic
function in hippocampal tissue in vitro as well as, or better than,
glucose (Schurr et al., 1988; Schurr and Payne, 2007; Ivanov
et al., 2011) and/or proposing that lactate is the preferred energy
substrate of neurons (Bouzier-Sore et al., 2003).

These different findings on the capability of low glucose or
lactate to sustain neuronal activity are most likely due to (i)
the respective activity state that is induced in the local neuronal
network and/or (ii) intracellular acidification of neurons in the
presence of lactate or pyruvate.

(i) In previous studies, electrical stimulation with either single
(Schurr et al., 1988; Schurr and Payne, 2007) or repeti-
tive pulses (at 10 Hz, for 10 or 30 s) (Ivanov et al., 2011)
was used in acute hippocampal slices. Such electrical stim-
ulation is quite robust and brief, and it enforces all neu-
rons in the local network to generate action potentials. The
final individual action potential frequency may considerably
vary depending on neuronal subtypes and accommodation

characteristics (Kann et al., 2014). By contrast, hippocam-
pal gamma oscillations are a specific, naturally occurring
network activity state that is based on complex and pre-
cise synaptic interactions between excitatory pyramidal cells
and inhibitory GABAergic interneurons (Whittington and
Traub, 2003; Bartos et al., 2007; Hájos and Paulsen, 2009).
During gamma oscillations, fast-spiking interneurons gener-
ate action potentials at 30–100 Hz while pyramidal cells spike
at 1–3 Hz in vitro and in vivo (Csicsvari et al., 1999; Traub
et al., 2000; Hájos et al., 2004; Gloveli et al., 2005). In par-
ticular, parvalbumin-positive fast-spiking interneurons are
crucial for the generation of gamma oscillations and have
very special characteristics such as formation of a basket cell
network (Ribak et al., 1993; Traub et al., 2001), perisomatic
control of pyramidal cells (Hájos et al., 2004; Gloveli et al.,
2005), rapid action potential kinetics and high sodium entry
ratio (Carter and Bean, 2009; Hu and Jonas, 2014). Moreover,
parvalbumin-positive fast-spiking interneurons contain large
numbers of mitochondria (Kageyama and Wong-Riley, 1982;
Gulyás et al., 2006; Takács et al., 2014), which likely reflects
the extraordinary high energy expenditure of this neuronal
subtype during fast network oscillations (Kann et al., 2014).
In agreement with these biophysical and biochemical char-
acteristics, fast-spiking interneurons and gamma oscillations
are exquisitely sensitive to metabolic stress (Huchzermeyer
et al., 2008; Kann et al., 2011; Whittaker et al., 2011).
The inability of 2 mmol/L glucose and 20 mmol/L lactate
or pyruvate to (fully) sustain gamma oscillations might
thus be related to properties of fast-spiking interneu-
rons such as high energy expenditure, limitations in the
uptake of substrates via glucose transporter GLUT-3 and
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FIGURE 4 | Gamma oscillations in the presence of either lactate or

pyruvate. (A) Gamma oscillations were induced by bath application of
acetylcholine (2 µmol/L) and physostigmine (400 nmol/L). Initially, the
recording solution contained 10 mmol/L glucose. Subsequently, recording
solutions containing 0 mmol/L glucose (15 min), 2 mmol/L lactate (20 min),
and again 10 mmol/L glucose were applied (n = 15, N = 3), while local field
potentials (LFP) were recorded in stratum pyramidale of the CA3 subfield
(sample traces). (B) Corresponding power spectra of sample traces shown in
(A) were calculated from 100 s taken at the end of each data segment. (C)

Sample traces of gamma oscillations in the presence of 10 mmol/L glucose

vs. 20 mmol/L pyruvate (upper traces) or 20 mmol/L lactate (lower traces),
according to the protocol given in (D). (E) Corresponding power spectra of
sample traces shown in (C) were calculated from data segments of 100 s. (F)

Gamma oscillations were analyzed for various parameters, i.e., peak
frequency (Freq), area under curve (AUC), full width at half maximum
(FWHM), peak power spectral density (PSD), amplitude (Ampl), and variance
of the amplitude (Var) (control 1 and pyruvate, n = 12, N = 4; control 2, and
lactate, n = 13, N = 4). Note the significant decrease in amplitude even at
the high concentration of lactate or pyruvate. Paired t-test or Wilcoxon signed
rank test. Statistical significance is marked by asterisks (P < 0.05).

monocarboxylate transporter MCT-2 and/or limitations by
rate-limiting enzymes in cytoplasmic and mitochondrial
pathways related to energy and neurotransmitter metabolism
(Waagepetersen et al., 1998; Bak et al., 2006; Simpson et al.,
2007; Barros, 2013). However, the properties of transporters
and enzymes in parvalbumin-positive fast-spiking interneu-
rons are widely unknown (Kann et al., 2014).

(ii) A complementary or alternative explanation for the distur-
bances in gamma oscillations might be intracellular neuronal
acidification in the presence of high concentration of lactate

or pyruvate. Both substrates are taken up by neurons via
MCT-2, which is a proton-linked monocarboxylate trans-
porter (Roberts, 2007; Halestrap, 2013). Previous studies
indeed showed decreases in the intracellular pH in the
presence of 20 mmol/L lactate (Munsch and Pape, 1999;
Ruusuvuori et al., 2010).

GLYCOGEN STORES AND INHIBITION OF GLYCOGEN PHOSPHORYLASE
Glycogen phosphorylase catalyzes the rate-limiting step in
glycogenolysis in animals by releasing glucose-1-phosphate from
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FIGURE 5 | Gamma oscillations in the presence of lactate and

glutamine. (A) Gamma oscillations were induced by bath application of
acetylcholine (2 µmol/L) and physostigmine (400 nmol/L) in the presence
of 20 mmol/L lactate (black bar); after 30 min, 2 mmol/L glutamine was
added (green bar). Local field potentials (LFP) were recorded in stratum
pyramidale of the CA3 subfield (sample traces). (B) Corresponding
power spectra of sample traces shown in (A) were calculated from

100 s taken at the end of each data segment. (C) Gamma oscillations
were analyzed for various parameters, i.e., peak frequency (Freq), area
under curve (AUC), full width at half maximum (FWHM), peak power
spectral density (PSD), amplitude (Ampl), and variance of the amplitude
(Var) (n = 19, N = 4). Note that glutamine has only a minor effect on
the frequency of gamma oscillations. Paired t-test. Statistical
significance is marked by asterisks (P < 0.05).

FIGURE 6 | Gamma oscillations and glycogen stores during glucose

deprivation. (A) Gamma oscillations were induced by bath application of
acetylcholine (2 µmol/L) and physostigmine (400 nmol/L) in the presence of
10 mmol/L glucose (white bar). Subsequently, inhibitors of glycogen
phosphorylase, DAB (50 µmol/l or 100 µmol/L) or CP-316819 (10 µmol/L or
20 µmol/L) were applied, in the presence (black bar) or absence (light blue
bar) of glucose. Note that the standard gas mixture (95% O2 and 5% CO2)
was continuously present. Local field potentials (LFP) were recorded in
stratum pyramidale of the CA3 subfield subfield (sample trace). (B) The peak
power spectral density (µV2/Hz) for each recording trace is shown in black

(scaling on left y-axis), the average of all recordings is shown in blue (scaling
on right y-axis). Power spectra were calculated every 10 s and plotted over
time. (C) The points in time are given for complete suppression of gamma
oscillations, i.e., power reaching a threshold defined as the mean of the last
100 s plus 1 standard deviation, according to the protocol given in (A)

(control, n = 10, N = 3; DAB, n = 6, N = 3, and n = 5, N = 3; CP-316819,
n = 6, N = 3, and n = 5, N = 2). Note that inhibition of glycogen
phosphorylase accelerates the decay of gamma oscillations during glucose
deprivation. Kruskal Wallis ANOVA on ranks. Statistical significance vs.
control is marked by asterisks (P < 0.05).
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FIGURE 7 | Gamma oscillations and glycogen turnover. (A) Gamma
oscillations were induced by bath application of acetylcholine (2 µmol/L) and
physostigmine (400 nmol/L) in the presence of 10 mmol/L glucose. After
15 min, inhibitors of glycogen phosphorylase, DAB (50 µmol/l or 100 µmol/L)
or CP-316819 (10 µmol/L or 20 µmol/L) were added to the recording solution.
Local field potentials (LFP) were recorded in stratum pyramidale of the CA3
subfield (sample traces). (B) Corresponding power spectra of sample traces
shown in (A) were calculated from 100 s taken at the end of each data

segment. (C) Gamma oscillations were analyzed for various parameters, i.e.,
peak frequency (Freq), area under curve (AUC), full width at half maximum
(FWHM), peak power spectral density (PSD), amplitude (Ampl), and variance
of the amplitude (Var) (control 1 and DAB, n = 13, N = 4; control 2 and
CP-316819, n = 10, N = 3). Note that inhibition of glycogen phosphorylase in
the presence of 10 mmol/L glucose has only minor effects on gamma
oscillations. Paired t-test or Wilcoxon signed rank test. Statistical significance
is marked by asterisks (P < 0.05).

the terminal alpha-1,4-glycosidic bond, finally supporting vari-
ous intracellular metabolic pathways (Dienel and Cruz, 2014). It
is widely accepted that glycogen is stored in astrocytes (Roberts,
2007; Dienel and Cruz, 2014). However, glycogen has been also
found in localized compartments of neurons such as synaptic
boutons and dendritic spines (Fiala et al., 2003), and there is
recent evidence that neurons have an active glycogen metabolism
(Saez et al., 2014). Several studies support two roles of glycogen as
an energy substrate. The first role is to supply energy for regular
neuronal activity (Swanson, 1992; Dienel et al., 2002; Kong et al.,
2002; Gibbs et al., 2006; Choi et al., 2012; Duran et al., 2013).
The second role is to provide glucose equivalents when supply
with glucose or oxygen is limited, such as during hypoglycemia
or ischemia/hypoxia (Wender et al., 2000; Choi et al., 2003; Saez
et al., 2014). The glycogen metabolism might primarily occur in
astrocytes that finally provide lactate to neurons (Dringen et al.,
1993; Dienel and Cruz, 2014).

In our study, glycogen breakdown significantly delayed the
decay of gamma oscillations in the absence of glucose for about
8 min. This indicates (i) a considerable glycogen reserve in slice
cultures that might be larger than in vivo (Cater et al., 2001;
Kong et al., 2002), and (ii) quite effective mechanisms to mobilize
and metabolize astrocytic and neuronal glycogen during gamma
oscillations. However, inhibition of glycogen phosphorylase had
only minor effects on gamma oscillations in the presence of glu-
cose. Thus, our data suggest that glycogen serves as an important
fuel reserve to sustain gamma oscillations and thus higher brain
functions for a transient period under pathological conditions.
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